×

Bipartite qutrit local realist inequalities and the robustness of their quantum mechanical violation. (English) Zbl 1374.81014

Summary: Distinct from the type of local realist inequality (known as the Collins-Gisin-Linden-Massar-Popescu or CGLMP inequality) usually used for bipartite qutrit systems, we formulate a new set of local realist inequalities for bipartite qutrits by generalizing Wigner’s argument that was originally formulated for the bipartite qubit singlet state. This treatment assumes existence of the overall joint probability distributions in the underlying stochastic hidden variable space for the measurement outcomes pertaining to the relevant trichotomic observables, satisfying the locality condition and yielding the measurable marginal probabilities. Such generalized Wigner inequalities (GWI) do not reduce to Bell-CHSH type inequalities by clubbing any two outcomes, and are violated by quantum mechanics (QM) for both the bipartite qutrit isotropic and singlet states using trichotomic observables defined by six-port beam splitter as well as by the spin-1 component observables. The efficacy of GWI is then probed in these cases by comparing the QM violation of GWI with that obtained for the CGLMP inequality. This comparison is done by incorporating white noise in the singlet and isotropic qutrit states. It is found that for the six-port beam splitter observables, QM violation of GWI is more robust than that of the CGLMP inequality for singlet qutrit states, while for isotropic qutrit states, QM violation of the CGLMP inequality is more robust. On the other hand, for the spin-1 component observables, QM violation of GWI is more robust for both the types of states considered.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P15 Quantum measurement theory, state operations, state preparations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bell, J. S., Physics, 1, 195 (1964)
[2] Clauser, J. F.; Horne, M. A.; Shimony, A.; Holt, R. A., Phys. Rev. Lett., 23, 880 (1969)
[3] Wigner, E. P., Am. J. Phys., 38, 1005 (1970)
[4] Domenico, A. D., Nucl. Phys. B, 450, 293 (1995)
[5] Bramon, A.; Nowakowski, M., Phys. Rev. Lett., 83, 1 (1999)
[6] Castelletto, S.; Degiovanni, I. P.; Rastello, M. L., Phys. Rev. A, 67, Article 044303 pp. (2003)
[7] Home, D.; Saha, D.; Das, S., Phys. Rev. A, 91, Article 012102 pp. (2015)
[8] Saha, D.; Mal, S.; Panigrahi, P. K.; Home, D., Phys. Rev. A, 91, Article 032117 pp. (2015)
[9] Mermin, N. D., Phys. Rev. D, 22, 356 (1980)
[10] Mermin, N. D.; Schwarz, G. M., Found. Phys., 12, 101 (1982)
[11] Garg, A.; Mermin, N. D., Phys. Rev. Lett., 49, 1294 (1982)
[12] Garg, A.; Mermin, N. D., Phys. Rev. D, 27, 339 (1983)
[13] Ogren, M., Phys. Rev. D, 27, 1766 (1983)
[14] Braunstein, S. L.; Caves, C. M., Phys. Rev. Lett., 61, 662 (1988)
[15] Ardehali, M., Phys. Rev. D, 44, 3336 (1991)
[16] Peres, A., Phys. Rev. A, 46, 4413 (1992)
[17] Gisin, N.; Peres, A., Phys. Lett. A, 162, 15 (1992)
[18] Home, D.; Majumdar, A. S., Phys. Rev. A, 52, 4959 (1995)
[19] Cabello, A., Phys. Rev. A, 65, Article 062105 pp. (2002)
[20] Weiss, W.; Benenti, G.; Casati, G.; Guarneri, I.; Calarco, T.; Paternostro, M.; Montangero, S., New J. Phys., 18, Article 013021 pp. (2016)
[21] Bruss, D.; Macchiavello, C., Phys. Rev. Lett., 88, Article 127901 pp. (2002)
[22] Durt, T.; Cerf, N. J.; Gisin, N.; Zukowski, M., Phys. Rev. A, 67, Article 012311 pp. (2003)
[23] Cereceda, J. L., Int. J. Quantum Inf., 01, 115 (2003)
[24] Greentree, A. D.; Schirmer, S. G.; Green, F.; Hollenberg, L. C.L.; Hamilton, A. R.; Clark, R. G., Phys. Rev. Lett., 92, Article 097901 pp. (2004)
[25] Zhu, G.-Q.; Zhao, X.; Li, Y.-Q., Eur. Phys. J. B, 44, 359 (2005)
[26] Scarani, V., Phys. Rev. A, 77, Article 042112 pp. (2008)
[27] Baumgartner, B.; Hiesmayr, B. C.; Narnhofer, H., Phys. Lett. A, 372, 2190 (2008)
[28] Movahhedian, H., Quantum Inf. Comput., 9, 90 (2009)
[29] Khan, S.; Khan, M. K., J. Mod. Opt., 58, 918 (2011)
[30] Brunner, T.; Roux, F. S., New J. Phys., 15, Article 063005 pp. (2013)
[31] Mal, S.; Pramanik, T.; Majumdar, A. S., Phys. Rev. A, 87, Article 012105 pp. (2013)
[32] Collins, D.; Gisin, N.; Linden, N.; Massar, S.; Popescu, S., Phys. Rev. Lett., 88, Article 040404 pp. (2002)
[33] Bernhard, C.; Bessire, B.; Montina, A.; Pfaffhauser, M.; Stefanov, A.; Wolf, S., J. Phys. A, Math. Theor., 47, Article 424013 pp. (2014)
[34] Adhikari, S.; Majumdar, A. S.; Roy, S.; Ghosh, B.; Nayak, N., Quantum Inf. Comput., 10, Article 0398 pp. (2010)
[35] Gisin, N., Phys. Lett. A, 154, 201 (1991)
[36] Werner, R. F., Phys. Rev. A, 40, 4277 (1989) · Zbl 1371.81145
[37] Zeilinger, A.; Zukowski, M.; Horne, M. A.; Bernstein, H. J.; Greenberger, D. M., (DeMartini, F.; Zeilinger, A., Quantum Interferometry (1994), World Scientific: World Scientific Singapore)
[38] Kaszlikowski, D.; Kwek, L. C.; Chen, J.-L.; Zukowski, M.; Oh, C. H., Phys. Rev. A, 65, Article 032118 pp. (2002)
[39] Acin, A.; Durt, T.; Gisin, N.; Latorre, J. I., Phys. Rev. A, 65, Article 052325 pp. (2002)
[40] Braunstein, S. L.; Mann, A.; Revzen, M., Phys. Rev. Lett., 68, 3259 (1992)
[41] Zukowski, M.; Zeilinger, A.; Horne, M. A., Phys. Rev. A, 55, 2564 (1997)
[42] Kaszlikowski, D.; Gnacinski, P.; Zukowski, M.; Miklaszewski, W.; Zeilinger, A., Phys. Rev. Lett., 85, 4418 (2000)
[43] Durt, T.; Kaszlikowski, D.; Zukowski, M., Phys. Rev. A, 64, Article 024101 pp. (2001)
[44] Nelder, J. A.; Mead, R., Comput. J., 7, 308 (1965)
[45] Wu, X.-H.; Zong, H.-S.; Pang, H.-R.; Wang, F., Phys. Lett. A, 281, 203 (2001) · Zbl 0984.81010
[46] Munro, W. J.; Nemoto, K.; White, A. G., J. Mod. Opt., 48, 1239 (2001)
[47] Ghosh, S.; Kar, G.; Sen (De), A.; Sen, U., Phys. Rev. A, 64, Article 044301 pp. (2001)
[48] Derkacz, L.; Jakobczyk, L., Phys. Lett. A, 328, 26 (2004) · Zbl 1134.81311
[49] Golshani, M.; Fahmi, A., Ann. de la Found. L. de Broglie, 26, 735 (2001)
[50] Acin, A.; Gisin, N.; Masanes, L., Phys. Rev. Lett., 97, Article 120405 pp. (2006)
[51] Nihira, H.; Stroud, C. R., Phys. Rev. A, 72, Article 022337 pp. (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.