×

Controlled generation of intrinsic localized modes in microelectromechanical cantilever arrays. (English) Zbl 1311.74063

Summary: We propose a scheme to induce intrinsic localized modes (ILMs) at an arbitrary site in microelectromechanical cantilever arrays. The idea is to locate the particular cantilever beam in the array that one wishes to drive to an oscillating state with significantly higher amplitude than the average and then apply small adjustments to the electrical signal that drives the whole array system. Our scheme is thus a global closed-loop control strategy. We argue that the dynamical mechanism on which our global driving scheme relies is spatiotemporal chaos and we develop a detailed analysis based on the standard averaging method in nonlinear dynamics to understand the working of our control scheme. We also develop a Markov model to characterize the transient time required for inducing ILMs.{
©2010 American Institute of Physics}

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M25 Micromechanics of solids
70Q05 Control of mechanical systems
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Kiselev S. A., Comments Condens. Matter Phys. 17 pp 135– (1995)
[2] DOI: 10.1016/S0370-1573(97)00068-9
[3] DOI: 10.1016/S0370-1573(98)00090-8
[4] DOI: 10.1142/S0217979201007105
[5] DOI: 10.1103/PhysRevLett.84.745
[6] DOI: 10.1103/PhysRevLett.83.2726
[7] DOI: 10.1103/PhysRevLett.86.5474
[8] DOI: 10.1038/nature03038
[9] DOI: 10.1103/PhysRevA.57.R28
[10] DOI: 10.1103/PhysRevA.57.R28
[11] DOI: 10.1103/PhysRevA.57.R28
[12] DOI: 10.1016/S0375-9601(00)00836-7 · Zbl 0972.82009
[13] DOI: 10.1103/PhysRevA.64.043606
[14] DOI: 10.1103/PhysRevA.66.033610
[15] DOI: 10.1103/PhysRevA.68.013605
[16] DOI: 10.1103/PhysRevLett.97.060401
[17] DOI: 10.1103/RevModPhys.78.137
[18] DOI: 10.1103/PhysRevLett.86.2353
[19] DOI: 10.1103/PhysRevLett.90.044102
[20] DOI: 10.1016/j.physrep.2008.05.002
[21] DOI: 10.1063/1.2946494
[22] DOI: 10.1209/epl/i2003-10224-x
[23] DOI: 10.1063/1.3216054
[24] DOI: 10.1088/0951-7715/10/3/003 · Zbl 0906.76027
[25] DOI: 10.1103/PhysRevE.60.R1134
[26] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501
[27] DOI: 10.1103/PhysRevA.51.4211
[28] D’Azzo J. J., Linear Control System Analysis and Design–Conventional and Modern, 4. ed. (1995)
[29] DOI: 10.1016/S0167-2789(96)00261-8 · Zbl 1194.34059
[30] DOI: 10.1088/0951-7715/7/6/006 · Zbl 0811.70017
[31] DOI: 10.1209/epl/i2005-10550-y
[32] Guckenheimer J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1990)
[33] DOI: 10.1063/1.3078706 · Zbl 06437613
[34] DOI: 10.1109/JMEMS.2002.805056
[35] DOI: 10.1007/978-1-349-14006-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.