×

Inversely designed micro-textures for robust Cassie-Baxter mode of super-hydrophobicity. (English) Zbl 1440.74253

Summary: The robust Cassie-Baxter mode of the wetting behaviour on a micro-textured solid surface, is a key topography element yielding stable super-hydrophobicity. To meet this purpose, we propose an inverse computational design procedure for the discovery of suitable periodic micro-textures, based on three different tilings of the plane. The symmetric tiles of the lattice are regular triangles, quadrangles, and hexagons. The goal of the inverse design procedure is to achieve the robust Cassie-Baxter state, in which the liquid/vapour interface is mathematically described using the Young-Laplace equation on the lattice, and a topology optimisation approach is utilised to construct a variational problem for the inverse design procedure. Based on numerical calculations of the constructed variational problem, underlying effects are revealed for several factors, including the Bond number, duty ratio, feature size, and lattice constant. The effects of feature size and lattice constant provide approaches for compromisingly considering the robustness of the Cassie-Baxter mode and manufacturability of the inversely designed micro-textures; the effect of the lattice constant permits the scaling properties of the derived patterns, and this in turn provides an approach to avoid the elasto-capillary instability driven collapse of the micro/nanostructures in the derived micro-textures. Further, a monolithic inverse design procedure for the periodic micro-textures is proposed in the conclusions, with synthetically considering the manufacturability as well as contact angle and surface-volume ratio of the liquid bulge held by the supported liquid/vapour interface.

MSC:

74M25 Micromechanics of solids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74P15 Topological methods for optimization problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Feng, X.; Jiang, L., Design and creation of superwetting/antiwetting surfaces, Adv. Mater., 18, 3063-3078 (2006)
[2] Öner, D.; McCarthy, T. J., Langmuir, 16, 7777 (2000)
[3] Wang, Q. J.; Chung, Y. W., Encyclopedia of Tribology (2013), Springer US
[4] Jenkins, G.; Mansfield, C. D., Microfluidic Diagnostics (2013), Humana Press
[5] Li, J.; Wei, Y.; Huang, Z.; Wang, F.; Yan, X.; Wu, Z., Electrohydrodynamic behavior of water droplets on a horizontal super hydrophobic surface and its self-cleaning application, Appl. Surf. Sci., 403, 133-140 (2017)
[6] Feng, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water, Angew. Chem. Int. Ed., 43, 2012-2014 (2004)
[7] Kavalenka, M.; Vllers, F.; Kumberg, J.; Zeiger, C.; Trouillet, V.; Stein, S.; Ava, T.; Li, C.; Worgull, M.; Hölscher, H., Adaptable bioinspired special wetting surface for multifunctional oil/water separation, Sci. Rep. (2017)
[8] Ragesh, P.; Ganesh, V. A.; Nair, S. V.; Nair, A. S., A review on self-cleaning and multifunctional materials, J. Mater. Chem. A, 2, 14773-14797 (2014)
[9] Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 14, 1857 (2002)
[10] Feng, L.; Song, Y.; Zhai, J.; Liu, B.; Xu, J.; Jiang, L.; Zhu, D., Creation of a superhydrophobic surface from an amphiphilic polymer, Angew. Chem. Int. Ed., 42, 800-802 (2003)
[11] Gurav, A. B.; Guo, Q.; Tao, Y.; Mei, T.; Wang, Y.; Wang, D., Durable, robust and free-standing superhydrophobic poly(vinyl alcohol-co-ethylene) nanofiber membrane, Mater. Lett., 182, 106-109 (2016)
[12] Yan, H.; Kurogi, K.; Mayama, H.; Tsujii, K., Environmentally stable super water-repellent poly(alkylpyrrole) films, Angew. Chem. Int. Ed., 44, 3453 (2005)
[13] Jiang, L.; Zhao, Y.; Zhai, J., Angew. Chem. Int. Ed., 43, 4338 (2004)
[14] Wang, W.; Lockwood, K.; Boyd, L. M.; Davidson, M. D.; Movafaghi, S.; Vahabi, H.; Khetani, S. R.; Kota, A. K., Superhydrophobic coatings with edible materials, ACS Appl. Mater. Interfaces, 8, 29, 18664-18668 (2016)
[15] Reyssat, M.; Pépin, A.; Marty, F.; Chen, Y.; Quéré, D., Bouncing transitions on microtextured materials, Europhys. Lett., 74, 306-312 (2006)
[16] Ragesh, P.; Ganesh, V. A.; Nair, S. V.; Nair, A. S., Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellant, Langmuir, 22, 2433-2436 (2006)
[17] McHale, G.; Shirtcliffe, N. J.; Newton, M. I., Contact-angle hysteresis on super-hydrophobic surfaces, Langmuir, 20, 10146-10149 (2004)
[18] Lee, W.; Jin, M. K.; Yoo, W. C.; Lee, J. K., Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability, Langmuir, 20, 7665-7669 (2004)
[19] Ukiwe, C.; Kwok, D. Y., On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces, Langmuir, 21, 666-673 (2005)
[20] Shirtcliffe, N. J.; McHale, G.; Newton, M. I.; Chabrol, G.; Perry, C. C., Dual-scale roughness produces unusually water-repellent surfaces, Adv. Mater., 16, 1929-1932 (2004)
[21] Scarratt, L. R.J.; Hoatson, B. S.; Wood, E. S.; Hawkett, B. S.; Neto, C., Durable superhydrophobic surfaces via spontaneous wrinkling of Teflon AF, ACS Appl. Mater. Interfaces, 8, 10, 6743-6750 (2016)
[22] Barthlott, W.; Neinhuis, C., Planta, 202, 1 (1997)
[23] Gao, X. F.; Jiang, L., Nature, 432, 36 (2004)
[24] Shi, F.; Wang, Z.; Zhang, X., Combinig a layer-by-layer assembling techinique with electrochemical deposition of gold aggregates to mimic the legs of water-striders, Adv. Mater., 17, 1005-1009 (2005)
[25] Han, Z.; Mu, Z.; Yin, W.; Li, W.; Niu, S.; Zhang, J.; Ren, L., Biomimetic multifunctional surfaces inspired from animals, Adv. Colloid Interface, 234, 27-50 (2016)
[26] Sun, T.; Feng, L.; Gao, X.; Jiang, L., Bioinspired surfaces with special wettability, Acc. Chem. Res., 38, 644-652 (2005)
[27] Ahmad, I.; Kan, C., A review on development and applications of bio-inspired superhydrophobic textiles, Materials, 9, 892 (2016)
[28] Yao, X.; Song, Y.; Jiang, L., Applications of bio-inspired special wettable surfaces, Adv. Mater., 23, 719-734 (2011)
[29] Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L., Bioinspired super-antiwetting interfaces with special liquid – solid adhesion, Acc. Chem. Res., 43, 368-377 (2010)
[30] Wang, S.; Liu, K.; Yao, X.; Jiang, L., Bioinspired surfaces with superwettability: new insight on theory, design, and applications, Chem. Rev., 115, 8230-8293 (2015)
[31] Bendsoe, M. P.; Sigmund, O., Topology Optimisation Theory, Methods and Applications (2003), Springer: Springer Berlin · Zbl 1059.74001
[32] Lazarov, B.; Sigmund, O., Filters in topology optimisation based on Helmholtz type differential equations, Internat. J. Numer. Methods Engrg., 86, 765-781 (2010) · Zbl 1235.74258
[33] Borrvall, T.; Petersson, J., Topology optimisation of fluid in Stokes flow, Internat. J. Numer. Methods Fluids, 41, 77-107 (2003) · Zbl 1025.76007
[34] Nomura, T.; Sato, K.; Taguchi, K.; Kashiwa, T.; Nishiwaki, S., Structural topology optimisation for the design of broadband dielectric resonator antennas using the finite difference time domain technique, Internat. J. Numer. Methods Engrg., 71, 1261-1296 (2007) · Zbl 1194.78073
[35] Sigmund, O.; Hougaard, K. G., Geometric properties of optimal photonic crystals, Phys. Rev. Lett., 100, Article 153904 pp. (2008)
[36] Duhring, M. B.; Jensen, J. S.; Sigmund, O., Acoustic design by topology optimisation, J. Sound Vib., 317, 557-575 (2008)
[37] Akl, W.; El-Sabbagh, A.; Al-Mitani, K., Topology optimisation of a plate coupled with acoustic cavity, Internat. J. Solids Struct., 46, 2060-2074 (2008) · Zbl 1215.74064
[38] Gersborg-Hansen, A.; Bendsoe, M. P.; Sigmund, O., Topology optimisation of heat conduction problems using the finite volume method, Struct. Multidiscip. Optim., 31, 251-259 (2006) · Zbl 1245.80011
[39] Zhou, S.; Li, W.; Sun, G.; Li, Q., A level-set procedure for the design of electromagnetic metamaterials, Opt. Express, 18, 6693-6702 (2010) · Zbl 0828.45001
[40] Zhou, S.; Li, W.; Chen, Y.; Sun, G.; Li, Q., Topology optimisation for negative permeability metamaterials using level-set algorithm, Acta Mater., 59, 2624-2636 (2011)
[41] Deng, Y.; Korvink, J. G., Self-consistent adjoint analysis for topology optimization of electromagnetic waves, J. Comput. Phys., 361, 353-376 (2018) · Zbl 1422.78004
[42] Deng, Y.; Korvink, J. G., Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 472, 20150835 (2016)
[43] Otomori, M.; Yamada, T.; Izui, K.; Nishiwaki, S.; Andkjær, J., A topology optimisation method based on the level set method for the design of negative permeability dielectric metamaterials, Comput. Methods Appl. Mech. Engrg., 237-240, 192-211 (2012) · Zbl 1253.74083
[44] Sigmund, O., Materials with prescribed constitutive parameters: an inverse homogenisation problem, Internat. J. Solids Struct., 31, 2313-2329 (1996) · Zbl 0946.74557
[45] Deng, Y.; Liu, Z.; Zhang, P.; Liu, Y.; Wu, Y., Topology optimisation of unsteady incompressible Navier-Stokes flows, J. Comput. Phys., 230, 6688-6708 (2011) · Zbl 1408.76132
[46] Deng, Y.; Liu, Z.; Wu, J.; Wu, Y., Topology optimisation of steady Navier-Stokes flow with body force, Comput. Methods Appl. Mech. Engrg., 255, 306-321 (2013) · Zbl 1297.76048
[47] Deng, Y.; Liu, Z.; Liu, Y.; Wu, Y., Combination of topology optimisation and optimal control method, J. Comput. Phys., 257, 374-399 (2014) · Zbl 1349.74296
[48] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 1031-1055 (2013)
[49] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1-38 (2014)
[50] Cadman, J. E.; Zhou, S.; Chen, Y.; Li, Q., On design of multi-functional microstructural materials, J. Mater. Sci., 48, 51-66 (2013)
[51] Young, T., An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond., 95, 65-87 (1805)
[52] Wenzel, R. N., Ind. Eng. Chem., 28, 988 (1936)
[53] Cassie, A. B.D.; Baxter, S., Trans. Faraday Soc., 40, 546 (1944)
[54] Bico, J.; Marzolin, C.; Quéré, D., Europhys. Lett., 47, 220 (1999)
[55] Lafuma, A.; Quéré, D., Nature Mater., 2, 457 (2003)
[56] Eral, H. B.; ’t Mannetje, D. J.C. M.; Oh, J. M., Contact angle hysteresis: a review of fundamentals and applications, Colloid Polym. Sci., 291, 247-260 (2013)
[57] Toster, J.; Lewis, D., Investigation of roughness periodicity on the hydrophobic properties of surfaces, Aust. J. Chem., 68, 1228-1232 (2015)
[58] Young, T., An essay on the cohesion of fluids, Phil. Trans., 65 (1805)
[59] P. Laplace, Supplement to the tenth edition. Méchanique céles 10, 1806.; P. Laplace, Supplement to the tenth edition. Méchanique céles 10, 1806.
[60] Bond, W. N., Nature, 140, 3547 (1937), 716-716
[61] Yosida, K., Functional Analysis (1980), Springer: Springer Berlin · Zbl 0217.16001
[62] Lazarov, B.; Sigmund, O., Filters in topology optimisation based on Helmholtz type differential equations, Internat. J. Numer. Methods Engrg., 86, 765-781 (2011) · Zbl 1235.74258
[63] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimisation, Struct. Multidiscip. Optim., 43, 767-784 (2011) · Zbl 1274.74409
[64] Guest, J.; Prevost, J.; Belytschko, T., Achieving minimum length scale in topology optimisation using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 238-254 (2004) · Zbl 1079.74599
[65] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimisation with PDE Constraints (2009), Springer: Springer Berlin · Zbl 1167.49001
[66] Svanberg, K., The method of moving asymptotes: a new method for structural optimisation, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[67] Pimpin, A.; Srituravanich, W., Review on micro- and nanolithography techniques and their applications, Eng. J., 16, 37-55 (2012)
[68] Nguyen, C. V.; Delzeit, L.; Cassell, A. M.; Li, J.; Han, J.; Meyyappan, M., Nano Lett., 2, 1079 (2002)
[69] Lau, K. K.S.; Bico, J.; Teo, K. B.K.; Chhowalla, M.; Amaratunga, G. A.J.; Milne, W. I.; McKinley, G. H.; Gleason, K. K., Nano Lett., 3, 1701 (2003)
[70] Gracias, D. H.; Kavthekar, V.; Love, J. C.; Paul, K. E.; Whitesides, G. M., Adv. Mater., 14, 235 (2002)
[71] Roman, B.; Bico, J., J. Phys.: Condens. Matter, 22, Article 493101 pp. (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.