×

Chaotic signal denoising based on simplified convolutional denoising auto-encoder. (English) Zbl 1504.94054

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94C05 Analytic circuit theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Govindan, R.; Narayanan, K.; Gopinathan, M., On the evidence of deterministic chaos in ECG: surrogate and predictability analysis, Chaos, 8, 2, 495-502 (1998) · Zbl 1056.92511
[2] Wessel, N.; Riedl, M.; Kurths, J., Is the normal heart rate “chaotic” due to respiration?, Chaos, 19, 2, Article 028508 pp. (2009)
[3] Yu, S.; Lu, J.; Chen, G., Theoretical design and circuit implementation of multidirectional multi-torus chaotic attractors, IEEE Trans Circ Syst I Regul Pap, 54-I, 9, 2087-2098 (2007) · Zbl 1374.94933
[4] Yu, S.; Tang, W. K.; Lu, J.; Chen, G., Generation of n×m wing Lorenz-like attractors from a modified Shimizu-Morioka model, IEEE Trans Circ Syst II Express Briefs, 55-II, 11, 1168-1172 (2008)
[5] Tse, C.; Lau, F., Chaos-based digital communication systems (2003), Springer Verlag: Springer Verlag Berlin · Zbl 1030.94002
[6] Feng, J. C., Reconstruction of chaotic signals with applications to chaosbased communications (2008), World Scientific · Zbl 1161.94001
[7] Huang, P.; Chai, Y.; Chen, X., Multiple dynamics analysis of Lorenz-family systems and the application in signal detection, Chaos, SolitonsFractals, 156, Article 111797 pp. (2022) · Zbl 1506.94013
[8] Han, M.; Liu, Y.; Xi, J.; Guo, W., Noise smoothing for nonlinear time series using wavelet soft threshold, IEEE Signal ProcessLett, 14, 1, 62-65 (2007)
[9] Li, Y.; Li, F.; Lyu, S.; Xu, M.; Wang, S., Blind extraction of ECG signals based on similarity in the phase space, Chaos, SolitonsFractals, 147, Article 110950 pp. (2021) · Zbl 1486.92102
[10] Huang, J.; Lyu, S.; Chen, Y., Chaotic signal denoising algorithm based on self-similarity, Chin J Electron, 30, 3, 482-488 (2021)
[11] Shang, L. J.; Shyu, K. K., A method for extracting chaotic signal from noisy environment, Chaos, SolitonsFractals, 42, 2, 1120-1125 (2009)
[12] Wenbo, W.; Yunyu, J.; Bing, W.; Weigang, L.; Xiangli, W., Chaotic signal denoising based on adaptive threshold synchrosqueezed wavelet transform, Acta ElectronSin, 46, 7, 1652-1657 (2018)
[13] Wenbo, W.; Xiaodong, Z.; Xiangli, W., Chaotic signal denoising method based on independent component analysis and empirical mode decomposition, Acta Phys Sin Chin Ed, 5 (2013), pp. 50 201- 050 201
[14] Takens, F., Detecting strange attractors in turbulence, (Dynamical systems and turbulence (1981), Springer), 366-381 · Zbl 0513.58032
[15] Shekatkar, S. M.; Kotriwar, Y.; Harikrishnan, K.; Ambika, G., Detecting abnormality in heart dynamics from multifractal analysis of ECG signals, Sci Rep, 7, 1, 1-11 (2017)
[16] Cawley, R.; Hsu, G. H., Local-geometric-projection method for noise reduction in chaotic maps and flows, Phys.RevA, 46, 6, 3057 (1992)
[17] Kotas, M. P.; Dyrek, A.; Piela, M.; Leski, J. M., Clustering based multiple state-space projections, Signal Process, 178, Article 107762 pp. (2021)
[18] Tung, W. W.; Gao, J.; Hu, J.; Lei, Y., Detecting chaos in heavy-noise environments, PhysRevE, 83, 4, Article 046210 pp. (2011)
[19] Acharya, U. R.; Oh, S. L.; Hagiwara, Y.; Tan, J. H.; Adam, M.; Gertych, A.; Tan, R. S., A deep convolutional neural network model to classify heartbeats, ComputBiolMed, 89, 389-396 (2017)
[20] Acharya, U. R.; Fujita, H.; Oh, S. L.; Hagiwara, Y.; Tan, J. H.; Adam, M., Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals, Inform Sci, 415, 190-198 (2017)
[21] Gondara, L., Medical image denoising using convolutional denoising autoencoders, CoRR, abs/1608.04667 (2016)
[22] Chiang, H.; Hsieh, Y.; Fu, S.; Hung, K.; Tsao, Y.; Chien, S., Noise reduction in ECG signals using fully convolutional denoising autoencoders, IEEE Access, 7, 60 806-60 813 (2019)
[23] Bouny, L. E.; Khalil, M.; Adib, A., Convolutional denoising auto-encoder based AWGN removal from ECG signal, (International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2021, Kocaeli, Turkey (2021)), 1-6
[24] Glass, L.; Mackey, M. C., From clocks to chaos (2020), Princeton University Press
[25] Yildirim, Ö.; Baloglu, U. B.; Tan, R. S.; Ciaccio, E. J.; Acharya, U. R., A new approach for arrhythmia classification using deep coded features and LSTM networks, Comput Methods Programs Biomed, 176, 121-133 (2019)
[26] Yildirim, Ö.; Tan, R. S.; Acharya, U. R., An efficient compression ¨ of ECG signals using deep convolutional autoencoders, CognSystRes, 52, 198-211 (2018)
[27] Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P., Extracting and composing robust features with denoising autoencoders, (Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland (2008)), 1096-1103
[28] Lecun, Y., Generalization and network design strategies, (Connectionisminperspective (1989))
[29] O’Shea, T. J.; Hoydis, J., An introduction to deep learning for the physical layer, IEEE TransCognCommunNetw, 3, 4, 563-575 (2017)
[30] Almazrouei, E.; Gianini, G.; Almoosa, N. I.; Damiani, E., A deep learning approach to radio signal denoising, (2019 IEEE Wireless Communications and Networking Conference Workshop, WCNC Workshops 2019, Marrakech, Morocco, April 15-18, 2019 (2019)), 1-8
[31] Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E., Tensorflow: large-scale machine learning on heterogeneous distributed systems, CoRR, abs/1603.04467 (2016)
[32] Collobert, R.; Kavukcuoglu, K.; Farabet, C., Torch7: a MATLAB-like environment for machine learning, (BigLearn NIPS Workshop (2011))
[33] Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R. B.; Guadarrama, S.; Darrell, T., Caffe: convolutional architecture for fast feature embedding, (Proceedings of the ACM International Conference on Multimedia, MM ’14, Orlando, FL, USA (2014)), 675-678
[34] Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao, T.; Xu, B.; Zhang, C.; Zhang, Z., Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems, CoRR, abs/1512.01274 (2015)
[35] Al-Rfou, R.; Alain, G.; Almahairi, A., Theano: a Python framework for fast computation of mathematical expressions, CoRR, abs/1605.02688 (2016)
[36] Kingma, D. P.; Ba, J., Adam: a method for stochastic optimization (2014), arXiv preprint arXiv:1412.6980
[37] Karaim, M.; Noureldin, A.; Karamat, T. B., Low-cost IMU data denoising using Savitzky-Golay filters, (International Conference on Communications, Signal Processing, and their Applications, ICCSPA 2019, Sharjah, United Arab Emirates (2019)), 1-5
[38] Lyu, S.; Wang, Z.; Hu, Z.; Feng, J., Gradient method for blind chaotic signal separation based on proliferation exponent, ChinPhysB, 1, 6 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.