×

Pattern formation in the Holling-Tanner predator-prey model with predator-taxis. A nonstandard finite difference approach. (English) Zbl 07487733

Summary: A characteristic feature of living organisms is their response to the environment in search for food or reproduction opportunities. This paper is devoted to the investigation of the pattern formation of the Holling-Tanner predator-prey model with predator-taxis. We first summarise the qualitative properties of the model where a threshold for the appearance of pattern formation is specified. Then we design and analyse a coupled nonstandard finite difference and finite volume scheme for the proposed model. Numerical simulations are provided to support theoretical findings.

MSC:

92-XX Biology and other natural sciences
65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aderogba, A. A.; Chapwanya, M., An explicit nonstandard finite difference scheme for the Allen-Cahn equation, J. Difference Equ. Appl., 21, 10, 875-886 (2015) · Zbl 1326.65102
[2] Ahn, I.; Yoon, C., Global solvability of prey-predator models with indirect predator-taxis, Z. Angew. Math. Phys., 72, 1, 1-20 (2021) · Zbl 1464.35019
[3] Ainseba, B. E.; Bendahmane, M.; Noussair, A., A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. RWA, 9, 5, 2086-2105 (2008) · Zbl 1156.35404
[4] Alikakos, N. D., An application of the invariance principle to reaction-diffusion equations, J. Differ. Equ., 33, 2, 201-225 (1979) · Zbl 0386.34046
[5] Amann, H., Dynamic theory of quasilinear parabolic equations. II. reaction-diffusion systems, Differ. Integral Equ., 3, 1, 13-75 (1990) · Zbl 0729.35062
[6] Anguelov, R.; Lubuma, J. M.-S., Contributions to the mathematics of the nonstandard finite difference method and applications, Numer. Methods Partial Differential Equ. Int. J., 17, 5, 518-543 (2001) · Zbl 0988.65055
[7] Anguelov, R.; Lubuma, J. M.-S.; Shillor, M., Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems, (Conference Publications. Vol. 2009. Special (2009), American Institute of Mathematical Sciences), 34 · Zbl 1187.65082
[8] Bairagi, N.; Biswas, M., A predator-prey model with Beddington-DeAngelis functional response: a non-standard finite-difference method, J. Difference Equ. Appl., 22, 4, 581-593 (2016) · Zbl 1342.92155
[9] Chapwanya, M.; Jejeniwa, O.; Appadu, A. R.; Lubuma, J.-S., An explicit nonstandard finite difference scheme for the FitzHugh-Nagumo equations, Int. J. Comput. Math., 96, 10, 1993-2009 (2019) · Zbl 1499.65456
[10] Chapwanya, M.; Lubuma, J. M.-S.; Mickens, R. E., Nonstandard finite difference schemes for Michaelis-Menten type reaction-diffusion equations, Numer. Methods Partial Differ. Equ., 29, 1, 337-360 (2013) · Zbl 1255.65141
[11] Chapwanya, M.; Lubuma, J. M.-S.; Mickens, R. E., Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences, Comput. Math. Appl., 68, 9, 1071-1082 (2014) · Zbl 1362.65084
[12] Gambino, G.; Lombardo, M. C.; Sammartino, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comput. Simul., 82, 6, 1112-1132 (2012) · Zbl 1320.35170
[13] Holling, C. S., The components of predation as revealed by a study of small-mammal predation of the European pine sawfly, Can. Entomol., 91, 5, 293-320 (1959)
[14] Hsu, S.-B.; Huang, T.-W., Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, 3, 763-783 (1995) · Zbl 0832.34035
[15] Lee, J.; Hillen, T.; Lewis, M., Continuous traveling waves for prey-taxis, Bull. Math. Biol., 70, 3, 654-676 (2008) · Zbl 1142.92043
[16] Leslie, P.; Gower, J., The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47, 3/4, 219-234 (1960) · Zbl 0103.12502
[17] LeVeque, R. J., Finite Volume Methods For Hyperbolic Problems. Vol. 31 (2002), Cambridge University Press: Cambridge University Press New York · Zbl 1010.65040
[18] Li, X.; Jiang, W.; Shi, J., Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J. Appl. Math., 78, 2, 287-306 (2013) · Zbl 1267.35236
[19] Li, C.; Wang, X.; Shao, Y., Steady states of a predator-prey model with prey-taxis, Nonlinear Anal. TMA, 97, 155-168 (2014) · Zbl 1287.35018
[20] Liu, X.; Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals, 32, 1, 80-94 (2007) · Zbl 1130.92056
[21] Lotka, A. J., Relation between birth rates and death rates, Science, 26, 653, 21-22 (1907)
[22] Madzvamuse, A.; Ndakwo, H. S.; Barreira, R., Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations, J. Math. Biol., 70, 4, 709-743 (2015) · Zbl 1335.92035
[23] Maynard-Smith, J., Models In Ecology (1978), CUP Archive · Zbl 0312.92001
[24] Mickens, R. E., Nonstandard Finite Difference Models Of Differential Equations (1994), World Scientific: World Scientific Singapore · Zbl 0810.65083
[25] Murray, J. D., Mathematical Biology: I. An Introduction. Vol. 17 (2007), Springer Science & Business Media
[26] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Amer. Nat., 97, 895, 209-223 (1963)
[27] Solomon, M., The natural control of animal populations, J. Anim. Ecol., 1-35 (1949)
[28] Song, Y.; Tang, X., Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math., 139, 3, 371-404 (2017) · Zbl 1373.35324
[29] Sun, X.-K.; Huo, H.-F.; Xiang, H., Bifurcation and stability analysis in predator-prey model with a stage-structure for predator, Nonlinear Dynam., 58, 3, 497 (2009) · Zbl 1183.92085
[30] Tanner, J. T., The stability and the intrinsic growth rates of prey and predator populations, Ecology, 56, 4, 855-867 (1975)
[31] Tao, Y., Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. RWA, 11, 3, 2056-2064 (2010) · Zbl 1195.35171
[32] Tulumello, E.; Lombardo, M. C.; Sammartino, M., Cross-diffusion driven instability in a predator-prey system with cross-diffusion, Acta Appl. Math., 132, 1, 621-633 (2014) · Zbl 1305.35093
[33] Volterra, V., Sui tentativi di applicazione delle matematiche alle scienze biologiche e sociali, Giornale Degli Econ., 436-458 (1901) · JFM 32.0080.03
[34] Wang, Y.-X.; Li, W.-T., Spatial patterns of the Holling-Tanner predator-prey model with nonlinear diffusion effects, Appl. Anal., 92, 10, 2168-2181 (2013) · Zbl 1274.35392
[35] Wang, Q.; Song, Y.; Shao, L., Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27, 1, 71-97 (2017) · Zbl 1368.92160
[36] Wang, X.; Zou, X., Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15, 3, 775 (2018) · Zbl 1406.92530
[37] Wu, S.; Wang, J.; Shi, J., Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28, 11, 2275-2312 (2018) · Zbl 1411.35171
[38] Zhang, S.; Chen, H.-L.; Chen, K.-Y.; Huang, J.-J.; Chang, C.-C.; Piorkowski, D.; Liao, C.-P.; Tso, I.-M., A nocturnal cursorial predator attracts flying prey with a visual lure, Anim. Behav., 102, 119-125 (2015)
[39] Zhang, L.; Fu, S., Global bifurcation for a Holling-Tanner predator-prey model with prey-taxis, Nonlinear Anal. RWA, 47, 460-472 (2019) · Zbl 1408.92025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.