×

Wronskian, Pfaffian and periodic wave solutions for a \((2 + 1)\)-dimensional extended shallow water wave equation. (English) Zbl 1377.35056

Summary: Under investigation in this paper is a \((2 + 1)\)-dimensional extended shallow water wave equation. Bilinear form is obtained via the generalized dependent variable transformation. The \(N\)th-order analytic solutions are, respectively, obtained via the Wronskian and Pfaffian techniques. Soliton solutions are constructed through the \(N\)th-order solutions. Discussions on the propagation of the solitons indicate that the soliton solutions with \(\varphi (y)\) are more general than those without \(\varphi (y)\), and \(\varphi (y)\) could affect the features of the soliton solutions, where \(\varphi (y)\) is a real function related to the aforementioned transformation. One-periodic wave solutions are obtained via the Hirota-Riemann method. Relation between the one-periodic wave solutions and one-soliton solutions is studied, which indicates that the one-periodic wave solutions can approach to the one-soliton solutions under certain condition.

MSC:

35C08 Soliton solutions
35C09 Trigonometric solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chai, J., Tian, B., Zhen, H.L., Sun, W.R., Liu, D.Y.: Dynamic behaviors for a perturbed nonlinear Schrodinger equation with the power-law nonlinearity in a non-Kerr medium. Commun. Nonlinear Sci. Numer. Simul. 45, 93-103 (2017) · Zbl 1485.35343 · doi:10.1016/j.cnsns.2016.10.004
[2] Kibler, B., Fatome, J., Finot, C., et al.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790-795 (2010) · doi:10.1038/nphys1740
[3] Borghesi, M., Bulanov, S., Campbell, D.H., et al.: Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett. 88, 135002 (2002) · doi:10.1103/PhysRevLett.88.135002
[4] Cheng, J.J., Zhang, H.Q.: The Wronskian technique for nonlinear evolution equations. Chin. Phys. B 25, 514-519 (2016)
[5] Cheng, J., Wang, Z., Zhang, H.: Generalized Wronskian and Grammian solutions to a isospectral B-type Kadomtsev-Petviashvili equation. J. Nonlinear Math. Phys. 21, 17-33 (2014) · Zbl 1421.76043 · doi:10.1080/14029251.2014.894718
[6] Cheng, J.J., Zhang, H.Q.: Wronskian solution of general nonlinear evolution equations and Young diagram prove. Acta Phys. Sin. 62, 750-754 (2013)
[7] Cheng, L., Zhang, Y., Lin, M.J.: A Wronskian formulation of the \[(3 + 13+1)\]-dimensional generalized BKP equation. Phys. Scr. 88, 15002-15008 (2013) · Zbl 1314.35015 · doi:10.1088/0031-8949/88/01/015002
[8] Ma, W.X., Abdeljabbar, A., Asaad, M.G.: Wronskian and Grammian solutions to a \[(3 + 13+1)\]-dimensional generalized KP equation. Appl. Math. Comput. 217, 10016-10023 (2011) · Zbl 1225.65098
[9] Asaad, M.G., Ma, W.X.: Pfaffian solutions to a \[(3 + 13+1)\]-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart. Appl. Math. Comput. 218, 5524-5542 (2012) · Zbl 1241.35168
[10] Tang, Y.N., Ma, W.X., Xu, W.: Grammian and Pfaffian solutions as well as Pfaffianization for a \[(3 + 13+1)\]-dimensional generalized shallow water equation. Chin. Phys. B 21, 85-91 (2012)
[11] Tang, Y.: Pfaffian solutions and extended Pfaffian solutions to \[(3 + 13+1)\]-dimensional Jimbo-Miwa equation. Appl. Math. Mod. 37, 6631-6638 (2013) · Zbl 1438.35369 · doi:10.1016/j.apm.2013.01.037
[12] Asaad, M.G., Ma, W.X.: Extended Gram-type determinant, wave and rational solutions to two \[(3 + 13+1)\]-dimensional nonlinear evolution equations. Appl. Math. Comput. 219, 213-225 (2012) · Zbl 1291.35008
[13] Wu, J., Xing, X., Geng, X.: Generalized bilinear differential operators application in a \[(3 + 13+1)\]-dimensional generalized shallow water equation. Adv. Math. Phys. 4, 1-9 (2015) · Zbl 1342.35270
[14] Chen, Y., Song, M., Liu, Z.: Soliton and Riemann theta function quasi-periodic wave solutions for a \[(2 + 12+1)\]-dimensional generalized shallow water wave equation. Nonlinear Dyn. 82, 333-347 (2015) · Zbl 1348.76038 · doi:10.1007/s11071-015-2161-7
[15] Tian, S., Zhang, H.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 2, 585-608 (2010) · Zbl 1201.35072 · doi:10.1016/j.jmaa.2010.05.070
[16] Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the \[(1 + 11+1)\]-dimensional and \[(2 + 12+1)\]-dimensional Ito equation. Chaos Soliton Fractal 47, 27-41 (2013) · Zbl 1258.35011 · doi:10.1016/j.chaos.2012.12.004
[17] Tian, S.F., Ma, P.L.: On the quasi-periodic wave solutions and asymptotic analysis to a \[(3 + 13+1)\]-dimensional generalized Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 8, 245-258 (2014) · Zbl 1297.35210 · doi:10.1088/0253-6102/62/2/12
[18] Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980) · doi:10.1007/978-3-642-81448-8_5
[19] Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Liu, L., Sun, Y.: Solitons, bilinear Backlund transformations and conservation laws for a-dimensional Bogoyavlenskii-Kadontsev-Petviashili equation in a fluid, plasma or ferromagnetic thin film. J. Mod. Opt. 64, 725-731 (2017) · doi:10.1080/09500340.2016.1260174
[20] Li, H.M., Tian, B., Xie, X.Y.: Soliton and rogue-wave solutions for a \[(2 + 12+1)\]-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 86, 369-380 (2016) · doi:10.1007/s11071-016-2894-y
[21] Chai, B., Tian, H.L., Zhen, H.L., Chai, H.P.: Analytic study on certain solitons in an erbium-doped optical fibre. J. Mod. Opt. 64, 366-373 (2017) · doi:10.1080/09500340.2016.1239776
[22] Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Wu, X.Y.: Bright optical solitons or light bullets for a \[(3++1)\]-dimensional generalized nonlinear Schrodinger equation with the distributed coefficients. Mod. Phys. Lett. B 30, 1650306 (2016)
[23] Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017) · doi:10.1103/PhysRevE.95.032202
[24] Liu, L., Tian, B., Xie, X.Y., Guan, Y.Y.: Vector bright soliton behaviors of the coupled higher-order nonlinear Schrodinger system in the birefringent or two-mode fiber. Chaos 27, 013108 (2017) · Zbl 1390.35333 · doi:10.1063/1.4972114
[25] Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426-2435 (2013) · Zbl 1304.35641 · doi:10.1016/j.cnsns.2013.01.019
[26] Zhao, X.H., Tian, B., Li, H.M.: Solitons, periodic waves, breathers and integrability for a nonisospectral and variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl. Math. Lett. 65, 48-55 (2017) · Zbl 1356.35213 · doi:10.1016/j.aml.2016.10.003
[27] Huang, Q.M., Gao, Y.T., Jia, S.L.: Bilinear Bäcklund transformation, soliton and periodic wave solutions for a \[(3 + 13+1)\]-dimensional variable-coefficient generalized shallow water wave equation. Nonlinear Dyn. 87, 2529-2540 (2017) · Zbl 1373.37163 · doi:10.1007/s11071-016-3209-z
[28] Louaked, M., Hanich, L.: TVD scheme for the shallow water equations. J. Hydraul. Res. 36, 363-378 (1998) · Zbl 1010.76069 · doi:10.1080/00221689809498624
[29] Wazwaz, A.M.: Multiple-soliton solutions for extended shallow water wave equations. Stud. Math. Sci. 1, 21-29 (2010)
[30] Bekir, A., Aksoy, E.: Exact solutions of shallow water wave equations by using the-expansion method. Waves Random Complex 22, 317-331 (2012) · Zbl 1291.76063 · doi:10.1080/17455030.2012.683890
[31] Liu, N., Ding, F.: Lax pair, Bäcklund transformation and conservation laws for the \[(2 + 12+1)\]-dimensional extended shallow water wave equation. Comput. Fluids 89, 153-156 (2014) · Zbl 1391.76072 · doi:10.1016/j.compfluid.2013.10.039
[32] Wang, Y.H., Chen, Y.: Binary Bell polynomials, bilinear approach to exact periodic wave solutions of \[(2 + l2\]+l)-dimensional nonlinear evolution equations. Commun. Theor. Phys. 56, 672-678 (2011) · Zbl 1247.35136 · doi:10.1088/0253-6102/56/4/14
[33] Zuo, D.W., Gao, Y.T., Yu, X.: On a \[(3 + 13+1)\]-dimensional Boiti-Leon-Manna-Pempinelli equation. Z. Naturforsch. A 70, 309-316 (2015) · doi:10.1515/zna-2014-0340
[34] Luo, L.: New exact solutions and Bäcklund transformation for Boiti-Leon-Manna-Pempinelli equation. Phys. Lett. A 375, 1059-1063 (2011) · Zbl 1242.37048 · doi:10.1016/j.physleta.2011.01.009
[35] Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95, 4-6 (1983) · doi:10.1016/0375-9601(83)90765-X
[36] Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg de Vries and the Kadomtsev-Petviashvili equations: the Wronskian technique. R. Soc. A 389, 319-329 (1983) · Zbl 0588.35077 · doi:10.1098/rspa.1983.0112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.