×

The closure diagram for nilpotent orbits of the split real form of \({E_7}\). (English) Zbl 1050.17007

Represent. Theory 5, 284-316 (2001); correction ibid. 7, 503 (2001).
Summary: Let \(\mathcal{O}_1\) and \(\mathcal{O}_2\) be adjoint nilpotent orbits in a real semisimple Lie algebra. Write \(\mathcal{O}_1\geq\mathcal{O}_2\) if \(\mathcal{O}_2\) is contained in the closure of \(\mathcal{O}_1.\) This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form E V of \(E_7\).

MSC:

17B25 Exceptional (super)algebras
22E46 Semisimple Lie groups and their representations

Software:

Maple; LiE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dan Barbasch and Mark R. Sepanski, Closure ordering and the Kostant-Sekiguchi correspondence, Proc. Amer. Math. Soc. 126 (1998), no. 1, 311 – 317. · Zbl 0896.22004
[2] W. M. Beynon and N. Spaltenstein, Green functions of finite Chevalley groups of type \?_{\?} (\?=6,7,8), J. Algebra 88 (1984), no. 2, 584 – 614. · Zbl 0539.20025
[3] N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975 (French). · Zbl 0329.17002
[4] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt, Maple V Language reference Manual, Springer-Verlag, New York, 1991, xv+267 pp. · Zbl 0758.68038
[5] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. · Zbl 0972.17008
[6] Dragomir Ž. {\Dj}oković, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), no. 2, 503 – 524. · Zbl 0639.17005
[7] Dragomir Ž. {\Dj}oković, Explicit Cayley triples in real forms of \?\(_{7}\), Pacific J. Math. 191 (1999), no. 1, 1 – 23. · Zbl 1040.17006
[8] Dragomir Ž. {\Dj}oković, The closure diagrams for nilpotent orbits of real forms of \?\(_{4}\) and \?\(_{2}\), J. Lie Theory 10 (2000), no. 2, 491 – 510. · Zbl 0974.17010
[9] -, The closure diagrams for nilpotent orbits of real forms of \(E_6\), J. Lie Theory 11 (2001), 381-413. · Zbl 1049.17006
[10] - The closure diagrams for nilpotent orbits of the real forms EVI and EVII of \(E_7\), Represent. Theory 5 (2001), 17-42. CMP 2001:11
[11] -, The closure diagram for nilpotent orbits of the real form EIX of \(E_8\), Asian J. Math. (to appear), 23 pp. · Zbl 1033.17012
[12] Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups \?\(_{7}\) and \?\(_{8}\), Tokyo J. Math. 3 (1980), no. 2, 391 – 461. · Zbl 0454.20046
[13] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1 – 155. · Zbl 0321.14030
[14] Mikio Sato, Theory of prehomogeneous vector spaces (algebraic part) — the English translation of Sato’s lecture from Shintani’s note, Nagoya Math. J. 120 (1990), 1 – 34. Notes by Takuro Shintani; Translated from the Japanese by Masakazu Muro. · Zbl 0715.22014
[15] J. Tits, Normalisateurs de tores. I. Groupes de Coxeter étendus, J. Algebra 4 (1966), 96 – 116 (French). · Zbl 0145.24703
[16] M.A.A. van Leeuwen, A.M. Cohen, and B. Lisser, “LiE”, a software package for Lie group theoretic computations, Computer Algebra Group of CWI, Amsterdam, The Netherlands.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.