×

Residue calculus and applications. (English) Zbl 1136.32300

Summary: We present a new algorithm in order to compute the multidimensional residue of a polynomial map based on a perturbation argument and the Generalized Transformation Law. Then we use it for studying some fundamental problems in Computer Aided Geometric Design.

MSC:

32A27 Residues for several complex variables
68W30 Symbolic computation and algebraic computation
65D17 Computer-aided design (modeling of curves and surfaces)
68U07 Computer science aspects of computer-aided design
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] I. A. Aizenberg and A. P. Yuzhakov, Integral representations and residues in multidi- mensional complex analysis, Translated from the Russian by H. H. McFaden, Translation edited by Lev J. Leifman, Amer. Math. Soc., Providence, RI, 1983.
[2] V. Arnold, A. Varchenko and S. Goussein-Zade, Singularities of differential maps, the classification of critical points, caustics and wave fronts, vol. 82, Birkhäuser-Verlag, 1982.
[3] E. Becker, J. Cardinal, M. Roy and Z. Szafraniec, Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levin formula, in Algorithms in Algebraic Geometry and Applica- tions, L. González-Vega and T. Recio, eds., vol. 143 of Progr. Math., Birkhäuser, Basel, 1996, pp. 79-104. · Zbl 0873.13013
[4] C. A. Berenstein, R. Gay, A. Vidras and A. Yger, Residue Currents and Bezout Identi- ties, vol. 114 of Progr. Math., Birkhäuser, 1993.
[5] C. A. Berenstein and A. Yger, Effective Bezout identities in Q[z1, \cdot \cdot \cdot , zn], Acta Math. 166 (1991), no. 1-2, 69-120. · Zbl 0724.32002
[6] , Residue calculus and effective Nullstellensatz, Amer. J. Math. 121 (1999), no. 4, 723-796. i i i i i i i Residue Calculus and Applications 73 · Zbl 0944.14002
[7] B. Buchberger, Applications of Gröbner bases in nonlinear computational geometry, in Trends in computer algebra (Bad Neuenahr, 1987), 52-80, Lecture Notes in Comput. Sci., 296, Springer, Berlin. · Zbl 0653.13012
[8] L. Busé, Residual resultant over the projective plane and the implicitization problem, in Proceedings of the 2001 International Symposium on Symbolic and Algebraic Com- putation, 48-55 (electronic), ACM, New York. · Zbl 1356.14057
[9] L. Busé, D. Cox and C. D’Andrea, Implicitization of surfaces in P3 in the presence of base points, J. Algebra Appl. 2 (2003), no. 2, 189-214. · Zbl 1068.14066
[10] L. Busé and J.-P. Jouanolou, On the closed image of a rational map and the impliciti- zation problem, J. Algebra 265 (2003), no. 1, 312-357. · Zbl 1050.13010
[11] D. Manocha and J. F. Canny, Implicit representation of rational parametric surfaces, J. Symbolic Comput. 13 (1992), no. 5, 485-510. · Zbl 0767.68068
[12] E. Cattani, A. Dickenstein and B. Sturmfels, Computing multidimensional residues, in Algorithms in algebraic geometry and applications (Santander, 1994), 135-164, Progr. Math., 143, Birkhäuser, Basel. · Zbl 0882.13020
[13] R. M. Corless, M. Giesbrecht, I. Kotsireas and S. Watt, Numerical implicitization of parametric hypersurfaces with linear algebra, in Artificial intelligence and symbolic computation (Madrid, 2000), 174-183, Lecture Notes in Comput. Sci., 1930, Springer, Berlin. · Zbl 1042.65020
[14] D. Cox, R. Goldman and M. Zhang, On the validity of implicitization by moving quadrics of rational surfaces with no base points, J. Symbolic Comput. 29 (2000), no. 3, 419-440. · Zbl 0959.68124
[15] A. Dickenstein and C. Sessa, An effective residual criterion for the membership problem in C[z1, \cdot \cdot \cdot , zn], J. Pure Appl. Algebra 74 (1991), no. 2, 149-158. · Zbl 0754.14034
[16] T. Dokken, Approximate implicitization, in Mathematical methods for curves and sur- faces (Oslo, 2000), 81-102, Vanderbilt Univ. Press, Nashville, TN. · Zbl 0989.65019
[17] M. Elkadi, Bornes pour les degrés et les hauteurs dans le probl‘ eme de division, Michigan Math. J. 40 (1993), no. 3, 609-618. · Zbl 0810.32001
[18] , Résidu de Grothendieck et forme de Chow, Publ. Mat. 38 (1994), no. 2, 381-393.
[19] M. Elkadi, A. Galligo and T. H. L\hat e, Parametrized surfaces in P3 of bidegree (1, 2), in ISSAC 2004, 141-148, ACM, New York. · Zbl 1134.14316
[20] M. Elkadi and B. Mourrain, Algorithms for residues and Lojasiewicz exponents, J. Pure Appl. Algebra 153 (2000), no. 1, 27-44. · Zbl 0974.13021
[21] , Introduction ‘ a la résolution des syst‘ emes polynomiaux, to appear, 2006.
[22] , Residue and implicitization problem for rational surfaces, Appl. Algebra Engrg. Comm. Comput. 14 (2004), no. 5, 361-379. · Zbl 1058.14073
[23] N. Fitchas, M. Giusti and F. Smietanski, Sur la complexité du théor‘ eme des zéros, in Approximation and optimization in the Caribbean, II (Havana, 1993), 274-329, Lang, Frankfurt am Main. · Zbl 0868.12008
[24] L. Gonzalez-Vega, Implicitization of parametric curves and surfaces by using multidi- mensional Newton formulae, J. Symbolic Comput. 23 (1997), no. 2-3, 137-151. · Zbl 0872.68192
[25] T. Krick, L. M. Pardo and M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke Math. J. 109 (2001), no. 3, 521-598. · Zbl 1010.11035
[26] E. Kunz, Kähler differentials, Vieweg, Braunschweig, 1986. · Zbl 0587.13014
[27] H. Matsumura, Commutative algebra, Second edition, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. · Zbl 0441.13001
[28] G. Scheja and U. Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278/279 (1975), 174-190. · Zbl 0316.13003
[29] T. Sederberg, D. Anderson and R. Goldman, Implicit representation of parametric curves and surfaces, Computer Vision, Graphics and Image Processing, 28 (1984), pp.72-84. · Zbl 0601.65008
[30] T. Sederberg and F. Chen, Implicitzing using moving curves and surfaces, in proceedings of SIGGRAPH, 1995, pp. 301-308.
[31] A. Yuzhakov, On the computation of the complete sum of residues relative to a polyno- mial mapping in Cn, Sov. Math., Dokl., 29 (1984), pp. 321-324. i i i i · Zbl 0584.32002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.