×

A three Higgs doublet model with symmetry-suppressed flavour changing neutral currents. (English) Zbl 1521.81481

Summary: We construct a three-Higgs doublet model with a flavour non-universal \(\mathrm{U}(1)\times\mathbb{Z}_2\) symmetry. That symmetry induces suppressed flavour-changing interactions mediated by neutral scalars. New scalars with masses below the TeV scale can still successfully negotiate the constraints arising from flavour data. Such a model can thus encourage direct searches for extra Higgs bosons in the future collider experiments, and includes a non-trivial flavour structure.

MSC:

81V22 Unified quantum theories
81R40 Symmetry breaking in quantum theory
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81T60 Supersymmetric field theories in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \(\sqrt{s} = 7\) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett.114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
[4] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \(\sqrt{s} = 7\) and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
[5] T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D8 (1973) 1226 [INSPIRE].
[6] G.C. Branco, L. Lavoura and J.P. Silva, International Series of Monographs on Physics. Vol. 103: CP Violation, Oxford University Press, Oxford U.K. (1999).
[7] Ferreira, PM; Lavoura, L.; Silva, JP; Lavoura, L., A Soft origin for CKM-type CP-violation, Phys. Lett. B, 704, 179 (2011) · doi:10.1016/j.physletb.2011.08.071
[8] M. Nebot and J.P. Silva, Self-cancellation of a scalar in neutral meson mixing and implications for the LHC, Phys. Rev. D92 (2015) 085010 [arXiv:1507.07941] [INSPIRE].
[9] Ferreira, PM; Lavoura, L., No strong CP violation up to the one-loop level in a two-Higgs-doublet model, Eur. Phys. J. C, 79, 552 (2019) · doi:10.1140/epjc/s10052-019-7053-4
[10] A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D80 (2009) 091702 [arXiv:0908.1554] [INSPIRE]. · Zbl 1294.81353
[11] Jung, M.; Pich, A.; Tuzon, P., Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP, 11, 003 (2010) · Zbl 1294.81353 · doi:10.1007/JHEP11(2010)003
[12] M. Jung, A. Pich and P. Tuzon, The B → X_sγ Rate and CP Asymmetry within the Aligned Two-Higgs-Doublet Model, Phys. Rev. D83 (2011) 074011 [arXiv:1011.5154] [INSPIRE].
[13] D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and Spontaneous Flavor Violation, Phys. Rev. Lett.123 (2019) 031802 [arXiv:1811.00017] [INSPIRE].
[14] D. Egana-Ugrinovic, S. Homiller and P.R. Meade, Higgs bosons with large couplings to light quarks, Phys. Rev. D100 (2019) 115041 [arXiv:1908.11376] [INSPIRE].
[15] D. Egana-Ugrinovic, S. Homiller and P. Meade, Multi-Higgs Production Probes Higgs Flavor, Phys. Rev. D103 (2021) 115005 [arXiv:2101.04119] [INSPIRE].
[16] Ferreira, PM; Lavoura, L.; Silva, JP, Renormalization-group constraints on Yukawa alignment in multi-Higgs-doublet models, Phys. Lett. B, 688, 341 (2010) · doi:10.1016/j.physletb.2010.04.033
[17] L. Lavoura, Models of CP-violation exclusively via neutral scalar exchange, Int. J. Mod. Phys. A9 (1994) 1873 [INSPIRE].
[18] G.C. Branco, W. Grimus and L. Lavoura, Relating the scalar flavor changing neutral couplings to the CKM matrix, Phys. Lett. B380 (1996) 119 [hep-ph/9601383] [INSPIRE].
[19] Botella, FJ; Branco, GC; Carmona, A.; Nebot, M.; Pedro, L.; Rebelo, MN, Physical Constraints on a Class of Two-Higgs Doublet Models with FCNC at tree level, JHEP, 07, 078 (2014) · doi:10.1007/JHEP07(2014)078
[20] Botella, FJ; Branco, GC; Nebot, M.; Rebelo, MN, Flavour Changing Higgs Couplings in a Class of Two Higgs Doublet Models, Eur. Phys. J. C, 76, 161 (2016) · doi:10.1140/epjc/s10052-016-3993-0
[21] G. Bhattacharyya, D. Das and A. Kundu, Feasibility of light scalars in a class of two-Higgs-doublet models and their decay signatures, Phys. Rev. D89 (2014) 095029 [arXiv:1402.0364] [INSPIRE].
[22] S. Weinberg, Gauge Theory of CP-violation, Phys. Rev. Lett.37 (1976) 657 [INSPIRE].
[23] Ferreira, PM; Ivanov, IP; Jiménez, E.; Pasechnik, R.; Serôdio, H., CP4 miracle: shaping Yukawa sector with CP symmetry of order four, JHEP, 01, 065 (2018) · doi:10.1007/JHEP01(2018)065
[24] I.P. Ivanov, V. Keus and E. Vdovin, Abelian symmetries in multi-Higgs-doublet models, J. Phys. A45 (2012) 215201 [arXiv:1112.1660] [INSPIRE]. · Zbl 1245.81302
[25] I.P. Ivanov and J.P. Silva, CP-conserving multi-Higgs model with irremovable complex coefficients, Phys. Rev. D93 (2016) 095014 [arXiv:1512.09276] [INSPIRE].
[26] A. Aranda, I.P. Ivanov and E. Jiménez, When the C in CP does not matter: anatomy of order-4 CP eigenstates and their Yukawa interactions, Phys. Rev. D95 (2017) 055010 [arXiv:1608.08922] [INSPIRE].
[27] Ivanov, IP; Obodenko, SA, Constraining CP4 3HDM with Top Quark Decays, Universe, 7, 197 (2021) · doi:10.3390/universe7060197
[28] H. Davoudiasl, I.M. Lewis and M. Sullivan, Higgs Troika for Baryon Asymmetry, Phys. Rev. D101 (2020) 055010 [arXiv:1909.02044] [INSPIRE].
[29] H. Davoudiasl, I.M. Lewis and M. Sullivan, Multi-TeV signals of baryogenesis in a Higgs troika model, Phys. Rev. D104 (2021) 015024 [arXiv:2103.12089] [INSPIRE].
[30] N. Darvishi, M.R. Masouminia and A. Pilaftsis, Maximally Symmetric Three Higgs Doublet Model, arXiv:2106.03159 [INSPIRE].
[31] S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D15 (1977) 1958 [INSPIRE].
[32] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
[33] Campos, MD; Cogollo, D.; Lindner, M.; Melo, T.; Queiroz, FS; Rodejohann, W., Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles, JHEP, 08, 092 (2017) · doi:10.1007/JHEP08(2017)092
[34] G. Arcadi, A.S. De Jesus, T.B. De Melo, F.S. Queiroz and Y.S. Villamizar, A 2HDM for the g-2 and Dark Matter, arXiv:2104.04456 [INSPIRE]. · Zbl 1500.81078
[35] Branco, GC; Ferreira, PM; Lavoura, L.; Rebelo, MN; Sher, M.; Silva, JP, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept., 516, 1 (2012) · doi:10.1016/j.physrep.2012.02.002
[36] E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D15 (1977) 1966 [INSPIRE].
[37] Botella, FJ; Branco, GC; Rebelo, MN, Minimal Flavour Violation and Multi-Higgs Models, Phys. Lett. B, 687, 194 (2010) · doi:10.1016/j.physletb.2010.03.014
[38] P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B603 (2004) 219 [Erratum ibid.629 (2005) 114] [hep-ph/0406231] [INSPIRE].
[39] A. Barroso, P.M. Ferreira and R. Santos, Charge and CP symmetry breaking in two Higgs doublet models, Phys. Lett. B632 (2006) 684 [hep-ph/0507224] [INSPIRE].
[40] A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models, Phys. Lett. B652 (2007) 181 [hep-ph/0702098] [INSPIRE].
[41] A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Stability of the normal vacuum in multi-Higgs-doublet models, Phys. Rev. D74 (2006) 085016 [hep-ph/0608282] [INSPIRE].
[42] I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D75 (2007) 035001 [Erratum ibid.76 (2007) 039902] [hep-ph/0609018] [INSPIRE].
[43] I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM. II. Minima, symmetries, and topology, Phys. Rev. D77 (2008) 015017 [arXiv:0710.3490] [INSPIRE].
[44] Ivanov, IP; Nishi, CC, Symmetry breaking patterns in 3HDM, JHEP, 01, 021 (2015) · doi:10.1007/JHEP01(2015)021
[45] N. Darvishi and A. Pilaftsis, Classifying Accidental Symmetries in Multi-Higgs Doublet Models, Phys. Rev. D101 (2020) 095008 [arXiv:1912.00887] [INSPIRE].
[46] I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
[47] N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D18 (1978) 2574 [INSPIRE].
[48] R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
[49] Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].
[50] L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP02 (2007) 028 [hep-ph/0612275] [INSPIRE].
[51] Bhattacharyya, G.; Das, D.; Pal, PB; Rebelo, MN, Scalar sector properties of two-Higgs-doublet models with a global rmU(1) symmetry, JHEP, 10, 081 (2013) · doi:10.1007/JHEP10(2013)081
[52] Bhattacharyya, G.; Das, D., Scalar sector of two-Higgs-doublet models: A minireview, Pramana, 87, 40 (2016) · doi:10.1007/s12043-016-1252-4
[53] D. Das and I. Saha, Alignment limit in three Higgs-doublet models, Phys. Rev. D100 (2019) 035021 [arXiv:1904.03970] [INSPIRE].
[54] Particle Data Group collaboration, Review of Particle Physics, PTEP2020 (2020) 083C01 [INSPIRE].
[55] F.S. Faro and I.P. Ivanov, Boundedness from below in the U(1) × U(1) three-Higgs-doublet model, Phys. Rev. D100 (2019) 035038 [arXiv:1907.01963] [INSPIRE].
[56] S. Moretti and K. Yagyu, Constraints on Parameter Space from Perturbative Unitarity in Models with Three Scalar Doublets, Phys. Rev. D91 (2015) 055022 [arXiv:1501.06544] [INSPIRE].
[57] B.W. Lee, C. Quigg and H.B. Thacker, The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass, Phys. Rev. Lett.38 (1977) 883 [INSPIRE].
[58] B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D16 (1977) 1519 [INSPIRE].
[59] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e^+e^−colliders, Comput. Phys. Commun.153 (2003) 275 [hep-ph/0301101] [INSPIRE].
[60] W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
[61] Staub, F., SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun., 185, 1773 (2014) · Zbl 1348.81026 · doi:10.1016/j.cpc.2014.02.018
[62] A.P. Morais, R. Pasechnik and J.P. Rodrigues, What can a heavy U(1)_B−LZ′ boson do to the muon (g − 2)_μanomaly and to a new Higgs boson mass?, Chin. Phys. C45 (2021) 013103 [arXiv:1912.11882] [INSPIRE].
[63] Bechtle, P.; Heinemeyer, S.; Stål, O.; Stefaniak, T.; Weiglein, G., HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C, 74, 2711 (2014) · doi:10.1140/epjc/s10052-013-2711-4
[64] Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, KE, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun., 181, 138 (2010) · Zbl 1205.82001 · doi:10.1016/j.cpc.2009.09.003
[65] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.182 (2011) 2605 [arXiv:1102.1898] [INSPIRE]. · Zbl 1205.82001
[66] P. Bechtle et al., HiggsBounds − 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
[67] Porod, W.; Staub, F.; Vicente, A., A Flavor Kit for BSM models, Eur. Phys. J. C, 74, 2992 (2014) · doi:10.1140/epjc/s10052-014-2992-2
[68] D.M. Straub, flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond, arXiv:1810.08132 [INSPIRE].
[69] M. Tanabashi et al., Review of particle physics, Phys. Rev. D98 (2018) 030001.
[70] Arbey, A.; Mahmoudi, F.; Stal, O.; Stefaniak, T., Status of the Charged Higgs Boson in Two Higgs Doublet Models, Eur. Phys. J. C, 78, 182 (2018) · doi:10.1140/epjc/s10052-018-5651-1
[71] CMS collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \(\sqrt{s} = 13\) TeV, JHEP06 (2018) 127 [Erratum ibid.03 (2019) 128] [arXiv:1804.01939] [INSPIRE].
[72] CMS collaboration, Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at \(\sqrt{s} = 13\) TeV, JHEP03 (2020) 034 [arXiv:1912.01594] [INSPIRE].
[73] ATLAS collaboration, Search for heavy diboson resonances in semileptonic final states in pp collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, Eur. Phys. J. C80 (2020) 1165 [arXiv:2004.14636] [INSPIRE].
[74] CMS collaboration, Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at \(\sqrt{s} = 13\) TeV, JHEP09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
[75] Alwall, J., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP, 07, 079 (2014) · Zbl 1402.81011 · doi:10.1007/JHEP07(2014)079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.