×

Self-overlays and symmetries of Julia sets of expanding maps. (English) Zbl 1415.57003

Given a compact Riemannian surface \(M\) the authors of the paper under review do a computational study of the dynamics induced by a branched covering \(f:M\rightarrow M\) considering shape and overlay theories. In this sense they have developed and implemented algorithms that give a shape resolution of the Julia set \(J(f)\) when \(f\) is an expanding map. Such a shape resolution is given by a certain inverse system of cubic complexes that are constructed using the notion of global multiplier. Then they are able to obtain visualizations of the fractal structure of the Julia set determining at the same time its shape. Considering the restriction map \(f\vert_{J(f)}:J(f)\rightarrow J(f)\) they also give an overlay structure which contains many symmetry properties of the fractal structure of \(J(f).\) As an example of their techniques they do an algorithmic study of branched self-coverings of the sphere.

MSC:

57M12 Low-dimensional topology of special (e.g., branched) coverings
54C56 Shape theory in general topology
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beardon, A.F.: Iteration of Rational Functions. Springer, New York (2000) · Zbl 1120.30300
[2] Bonk, M., Mayer, D.: Expanding Thurston Maps. Mathematical Surveys and Monographs, vol. 225, 475 pp. Americal Mathematical Society (2017) · Zbl 1430.37001
[3] Río, A; Hernández, LJ; Rivas, MT, S-types of global towers of spaces and exterior spaces, Appl. Categ. Struct., 17, 287-301, (2009) · Zbl 1183.55002 · doi:10.1007/s10485-008-9157-0
[4] Dydak, J., Segal, J.: Shape Theory. An Introduction. Lecture Notes in Mathematics, vol. 688. Springer, Berlin (1978) · Zbl 0401.54028
[5] Edwards, D., Hastings, H.: Čech and Steenrod Homotopy Theories with Applications to Geometric Topology. Lecture Notes in Mathematics, vol. 542. Springer, Berlin (1976) · Zbl 0334.55001
[6] Extremiana, J.I., Hernández, L.J., Rivas, M.T.: An approach to dynamical systems using exterior spaces. Contribuciones Científicas en Honor de Mirian Andrés Gómez, Serv. Publ. Univ. La Rioja, pp. 307-318 (2010) · Zbl 1211.37018
[7] Extremiana Aldana, J.I., Hernández Paricio, L.J., Rivas Rodríguez, M.T.: The shape of the Julia set of an expanding rational map. Topol. Appl. (2018, to appear) · Zbl 1395.54014
[8] Extremiana Aldana, J.I., Hernández Paricio, L.J., Rivas Rodríguez, M.T.: Branched self-overlays and symmetries of Julia sets (2017, preprint) · Zbl 1060.57003
[9] Fox, R.H.: Covering spaces with singularities. In: Fox et al. (eds.) Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz, pp. 243-257. Princeton University Press, Princeton (1957) · Zbl 0079.16505
[10] Fox, RH, On shape, Fund. Math., 74, 47-71, (1972) · Zbl 0232.55023 · doi:10.4064/fm-74-1-47-71
[11] Fox, R.H.: Shape Theory and Covering Spaces. Lecture Notes in Mathematics, vol. 375, pp. 71-90. Springer, Berlin (1974) · Zbl 0288.55011
[12] García-Calcines, JM; Gutiérrez, JM; Hernández, LJ; Rivas, MT, Graphical representations for the homogeneous bi-variate newton’s method, Appl. Math. Comput., 269, 988-1006, (2015) · Zbl 1410.65140 · doi:10.1016/j.amc.2015.07.102
[13] García-Calcines, JM; Hernández, LJ; Rivas, MT, Limit and end functors of dynamical systems via exterior spaces, Bull. Belg. Math. Soc. Simon Stevin, 20, 937-959, (2013) · Zbl 1287.54034
[14] García-Calcines, JM; Hernández, LJ; Rivas, MT, A completion construction for continuous dynamical systems, Topol. Methods Nonlinear Anal., 44, 497-526, (2014) · Zbl 1420.54058 · doi:10.12775/TMNA.2014.058
[15] García-Calcines, JM; Hernández, LJ; Rivas, MT, Omega limits, prolongational limits and almost periodic points of a continuous flow via exterior spaces, Glasnik Matematicki, 52, 295-329, (2017) · Zbl 1379.54033 · doi:10.3336/gm.52.2.09
[16] Giraldo, A; Morn, MA; Portal, FRR; Sanjurjo, JMR, Shape of global attractors in topological spaces, Nonlinear Anal. Theory Methods Appl., 60, 837-847, (2005) · Zbl 1060.37010 · doi:10.1016/j.na.2004.03.036
[17] Gutiérrez, JM; Hernández-Paricio, LJ; Marañón-Grandes, M; Rivas-Rodríguez, MT, Influence of the multiplicity of the roots on the basins of attraction of newton’s method, Numer. Algorithms, 66, 431-455, (2014) · Zbl 1296.65072 · doi:10.1007/s11075-013-9742-7
[18] Gutiérrez, J.M., Hernández, L.J., Magreñán, Á.A., Rivas, M.T.: Measures of the basins of attracting \(n\)-cycles for the relaxed Newton’s method. In: Amat, S., Busquier, S. (eds.) Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series, vol. 10, pp. 211-245. Springer, Berlin (2016) · Zbl 1353.65041
[19] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001) · Zbl 1044.55001
[20] Hernández, LJ, Fundamental pro-groupoids and covering projections, Fund. Math., 156, 1-31, (1998) · Zbl 0906.55008
[21] Hernández, LJ, Bivariate Newton-raphson method and toroidal attraction basins, Numer. Algorithms, 71, 349-381, (2016) · Zbl 1333.65050 · doi:10.1007/s11075-015-9996-3
[22] Hernández, LJ; Marañón, M; Rivas, MT, Plotting basins of end points of rational maps with sage, Tbilisi Math. J, 5, 71-99, (2012) · Zbl 1280.37001
[23] Hernández, LJ; Matijević, V, Fundamental groups and finite sheeted coverings, J. Pure Appl. Algebra, 214, 281-296, (2010) · Zbl 1181.55010 · doi:10.1016/j.jpaa.2009.05.011
[24] Hilden, HM; Lozano, MT; Montesinos, JM, All three-manifolds are pullbacks of a branched covering \(S^3\) to \(S^3\), Trans. Am. Math. Soc., 279, 729-735, (1983) · Zbl 0533.57005
[25] Hilden, HM; Lozano, MT; Montesinos, JM, On knots that are universal, Topology, 24, 499-504, (1985) · Zbl 0582.57002 · doi:10.1016/0040-9383(85)90019-9
[26] Lundell, A.T., Weingram, S.: The Topology of \(CW\)-Complexes. Van Nostrand Reinhold Co., New York (1969) · Zbl 0207.21704 · doi:10.1007/978-1-4684-6254-8
[27] Mardešić, S; Matijević, V, Classifying overlay structures of topological spaces, Topol. Appl., 113, 1-3, (2001) · Zbl 0989.57002 · doi:10.1016/S0166-8641(00)00039-0
[28] Mardešić, S., Segal, J.: Shape Theory—The Inverse Limit Approach. North-Holland, Amsterdam (1982) · Zbl 0495.55001
[29] Matijević, V, Classifying finite-sheeted coverings of paracompact spaces, Rev. Mat. Complut., 16, 311-327, (2003) · Zbl 1060.57003
[30] Morón, MA; Ruiz del Portal, FR, A note about the shape of attractors of discrete semidynamical systems, Proc. Am. Math. Soc., 134, 2165-2167, (2006) · Zbl 1105.54019 · doi:10.1090/S0002-9939-06-08305-5
[31] Milnor, J.: Dynamics in one complex variable. arXiv:math/9201272v1 (preprint)
[32] Porter, T, Čech and Steenrod homotopy and the quigley exact couple in strong shape and proper homotopy theory, J. Pure Appl. Algebra, 24, 303-312, (1983) · Zbl 0485.55009 · doi:10.1016/0022-4049(82)90049-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.