×

Heterogeneous Stefan problem and permafrost models with P0-P0 finite elements and fully implicit monolithic solver. (English) Zbl 07510645

Summary: We consider heat conduction models with phase change in heterogeneous materials. We are motivated by important applications including heat conduction in permafrost, phase change materials (PCM), and human tissue. We focus on the mathematical and computational challenges associated with the nonlinear and discontinuous character of constitutive relationships related to the presence of free boundaries and material interfaces. We propose a monolithic discretization framework based on lowest order mixed finite elements on rectangular grids well known for its conservative properties. We implement this scheme which we call P0-P0 as cell centered finite differences, and combine with a fully implicit time stepping scheme. We show that our algorithm is robust and compares well to piecewise linear approaches. While various basic theoretical properties of the algorithms are well known, we prove several results for the new heterogeneous framework, and point out challenges and open questions; these include the approximability of fluxes by piecewise continuous linears, while the true flux features a jump. We simulate a variety of scenarios of interest.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74-XX Mechanics of deformable solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E, A reduced fracture model for two-phase flow with different rock types, Math. Comput. Simul., 137, 49-70 (2017) · Zbl 07313815 · doi:10.1016/j.matcom.2016.10.005
[2] C, Domain decomposition for some transmission problems in flow in porous media, Numer. Treat. Multiphase Flows Porous Media, 552, 22-34 (2000) · Zbl 1010.76050
[3] J, Optimal rates of convergence for degenerate parabolic problems in two dimensions, SIAM J. Numer. Anal., 33, 56-67 (1996) · Zbl 0856.65102 · doi:10.1137/0733004
[4] E, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, ESAIM: M2AN, 21, 655-678 (1987) · Zbl 0635.65123
[5] R, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9, 1177-1192 (1988) · Zbl 0629.35116 · doi:10.1080/01630568808816279
[6] J, Simulation of heat transfer from a warm pipeline buried in permafrost, Am. Inst. Chem. Eng., 267-284 (1973)
[7] J, Permafrost thermal design for the trans-Alaska pipeline, Moving Boundary Probl., 267-284 (1978)
[8] D, Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems, The Cryosphere, 1, 41-58 (2007) · doi:10.5194/tc-1-41-2007
[9] S. Marchenko, V. Romanovsky, G. Tipenko, Numerical modeling of spatial permafrost dynamics in alaska, in <i>Proceedings of Ninth International Conference on Permafrost, Ninth International Conference on Permafrost</i>, (2008), 1125-1130.
[10] E, Numerical modeling of permafrost dynamics in alaska using a high spatial resolution dataset, The Cryosphere, 6, 613-624 (2012) · doi:10.5194/tc-6-613-2012
[11] T, Solution of the discretized Stefan problem by Newton’s method, Nonlinear Anal., 14, 851-872 (1990) · Zbl 0709.65107 · doi:10.1016/0362-546X(90)90025-C
[12] M, Computational engineering and science methodologies for modeling and simulation of subsurface applications, Adv. Water Resour., 25, 1147-1173 (2002)
[13] C, Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Eng., 193, 2565-2580 (2004) · Zbl 1067.76565 · doi:10.1016/j.cma.2003.12.059
[14] R, A constitutive model of saturated soils for frost heave simulations, Cold Reg. Sci. Technol., 22, 47-63 (1993) · doi:10.1016/0165-232X(93)90045-A
[15] Y, Thermal-hydro-mechanical analysis of frost heave and thaw settlement, J. Geotech. Geoenviron. Eng., 141 (2015)
[16] H, Thermo-hydro-mechanical modeling of frost heave using the theory of poroelasticity for frost-susceptible soils in double-barrel culvert sites, Trans. Geotech., 20 (2019) · doi:10.1016/j.trgeo.2019.100251
[17] F, Frost heave and thaw consolidation modelling. part 2: One-dimensional thermohydromechanical (THM) framework, Can. Geotech. J., 57, 1595-1610 (2020)
[18] M, Pore-to-core simulations of flow with large velocities using continuum models and imaging data, Comput. Geosci., 17, 623-645 (2013) · Zbl 1387.76087 · doi:10.1007/s10596-013-9344-4
[19] M, Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling, Adv. Water Res., 95, 288-301 (2016) · doi:10.1016/j.advwatres.2015.07.008
[20] C, Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species, Math. Biosci. Eng., 18, 2097-2149 (2021) · Zbl 1471.92219 · doi:10.3934/mbe.2021108
[21] M, Reduced model for properties of multiscale porous media with changing geometry, Computation, 9, 1-44 (2021)
[22] T, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33, 1669-1687 (1996) · Zbl 0856.76033 · doi:10.1137/S0036142994266728
[23] C, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37, 701-724 (2000) · Zbl 0948.65096
[24] M. Peszynska, E. Jenkins, M. F. Wheeler, Boundary conditions for fully implicit two-phase flow model, in <i>Recent Advances in Numerical Methods for Partial Differential Equations and Applications</i> (eds. X. Feng and T. P. Schulze), Contemporary Mathematics Series, American Mathematical Society, <b>306</b> (2002), 85-106. · Zbl 1022.76053
[25] R. E. Showalter, <i>Monotone operators in Banach space and nonlinear partial differential equations</i>, vol. 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. <a href=“https://doi.org/10.1090/surv/049” target=“_blank”>https://doi.org/10.1090/surv/049</a> · Zbl 0870.35004
[26] J, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal., 16, 563-587 (1979) · Zbl 0418.65051
[27] A. Visintin, <i>Models of phase transitions</i>, vol. 28 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1996. <a href=“https://doi.org/10.1007/978-1-4612-4078-5” target=“_blank”>https://doi.org/10.1007/978-1-4612-4078-5</a> · Zbl 0865.35150
[28] L. W. Lake, <i>Enhanced oil recovery</i>, Prentice Hall, 1989.
[29] T, The Stefan problem in heterogeneous media, Ann. l’Inst. Henri Poincaré Anal. Linéaire, 6, 481-501 (1989) · Zbl 0706.35139
[30] E, A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., 192, 445-459 (2006) · Zbl 1092.65072 · doi:10.1016/j.cam.2005.04.062
[31] X, A P1-P1 finite element method for a phase relaxation model Ⅰ: Quasiuniform mesh, Siam J. Numer. Anal., 35, 1176-1190 (1998) · Zbl 0972.65067
[32] S, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 1085-1095 (1979) · doi:10.1016/0001-6160(79)90196-2
[33] Y, Study of phase-separation dynamics by use of cell dynamical systems, I. modeling, Phys. Rev. A, 38, 434-453 (1988) · doi:10.1103/PhysRevA.38.434
[34] J, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy part Ⅰ: Mathematical analysis, Eur. J. Appl. Math., 2, 233-280 (1991) · Zbl 0797.35172 · doi:10.1017/S095679250000053X
[35] P, Enhancement of thermal conductivity of pcm using filler graphite powder materials, IOP Conf. Ser.: Mater. Sci. Eng., 402 (2018) · doi:10.1088/1757-899X/402/1/012173
[36] Rubitherm ® Technologies GmbH, 2021. <a href=“https://www.rubitherm.eu” target=“_blank”>https://www.rubitherm.eu</a>
[37] D, Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management, Appl. Energy, 247, 503-516 (2019) · doi:10.1016/j.apenergy.2019.04.072
[38] M, Measurement of the thermal properties of human skin: A review, J. Invest. Dermatol., 69, 333-338 (1977) · doi:10.1111/1523-1747.ep12507965
[39] Engineering Toolbox, 2021. <a href=“https://www.engineeringtoolbox.com” target=“_blank”>https://www.engineeringtoolbox.com</a>
[40] Wikipedia, 2021. <a href=“https://en.wikipedia.org” target=“_blank”>https://en.wikipedia.org</a>
[41] O. B. Andersland, B. Ladanyi, <i>Frozen Ground Engineering</i>, 2nd edition, Wiley, ASCE, Hoboken, 2004.
[42] G, Multidimensional Stefan problems, SIAM J. Numer. Anal., 10, 522-538 (1973) · Zbl 0256.65054 · doi:10.1137/0710047
[43] J, Error estimates for the multidimensional two-phase Stefan problem, Math. Comput., 39, 377-414 (1982) · Zbl 0505.65060 · doi:10.1090/S0025-5718-1982-0669635-2
[44] C. Verdi, A. Visintin, Error estimates for a semi-explicit numerical scheme for Stefan-type problems., <i>Numer. Math.</i>, <b>52</b> (1987/88), 165-186. <a href=“http://eudml.org/doc/133231” target=“_blank”>http://eudml.org/doc/133231</a> · Zbl 0617.65125
[45] D. Boffi, M. Fortin, F. Brezzi, <i>Mixed Finite Element Methods and Applications</i>, Springer series in computational mathematics, 2013. · Zbl 1277.65092
[46] A. Ern, J. L. Guermond, <i>Theory and practice of finite elements</i>, vol. 159 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004. <a href=“https://doi.org/10.1007/978-1-4757-4355-5” target=“_blank”>https://doi.org/10.1007/978-1-4757-4355-5</a> · Zbl 1059.65103
[47] F. Brezzi, M. Fortin, <i>Mixed and hybrid finite element methods</i>, vol. 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991. · Zbl 0788.73002
[48] A, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25, 351-375 (1988) · Zbl 0644.65062 · doi:10.1137/0725025
[49] T, Finite element and finite difference methods for continuous flows in porous media, Math. Reservoir Simul., 35-106 (1983) · Zbl 0572.76089
[50] R, Nonlinear degenerate evolution equations in mixed formulation, SIAM J. Math. Anal., 42, 2114-2131 (2010) · Zbl 1237.47079 · doi:10.1137/100789427
[51] E, A priori error estimates for a mixed finite element discretization of the Richards’ equation, Numer. Math., 98, 353-370 (2004) · Zbl 1075.76042 · doi:10.1007/s00211-003-0509-2
[52] M. Ulbrich, <i>Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces</i>, vol. 11 of MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. · Zbl 1235.49001
[53] T, Numerical solution of the nonlinear heat equation in heterogeneous media, Numer. Funct. Anal. Optim., 11, 793-810 (1990) · Zbl 0702.65094
[54] T. Roubicek, A finite-element approximation of Stefan problems in heterogeneous media, in <i>Free Boundary Value Problems</i>, (1990), 267-275. · Zbl 0721.65081
[55] R. Glowinski, M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in <i>First International Symposium on Domain Decomposition Methods for Partial Differential Equations</i> (eds. R. Glowinski, G. H. Golub, G. A. Meurant and J. Periaux), SIAM, Philadelphia, (1988), 144-172. · Zbl 0661.65105
[56] A. Quarteroni, A. Valli, <i>Domain decomposition methods for partial differential equations</i>, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 1999. <a href=“https://doi.org/10.1007/978-94-011-5412-38” target=“_blank”>https://doi.org/10.1007/978-94-011-5412-38</a> · Zbl 0931.65118
[57] I, A variational inequality approach to generalized two-phase Stefan problem in several space variables, Ann. Mat. Pura Appl., 131, 333-373 (1982) · Zbl 0506.35061 · doi:10.1007/BF01765160
[58] M, A generalized Stefan problem in several space variables, Appl. Math. Optim., 9, 193-224 (1982) · Zbl 0519.35079 · doi:10.1007/BF01460125
[59] N, Evolution of phase transitions in methane hydrate, J. Math. Anal. Appl., 409, 816-833 (2014) · Zbl 1310.35051 · doi:10.1016/j.jmaa.2013.07.023
[60] M, Advection of methane in the hydrate zone: Model, analysis and examples, Mathe. Methods Appl. Sci., 38, 4613-4629 (2015) · Zbl 1338.47126 · doi:10.1002/mma.3401
[61] M, Stability of a numerical scheme for methane transport in hydrate zone under equilibrium and non-equilibrium conditions, Comput. Geosci., 5, 1855-1886 (2021) · Zbl 1473.65084 · doi:10.1007/s10596-021-10053-2
[62] D, Multiscale modeling of solar cells with interface phenomena, J. Coupled Syst. Multiscale Dyn., 1, 179-204 (2013) · doi:10.1166/jcsmd.2013.1013
[63] T. Costa, D. Foster, M. Peszynska, Domain decomposition for heterojunction problems in semiconductors, in <i>VECPAR 2014, High Performance Computing for Computational Science - VECPAR 2014, 11th International Conference</i>, (2014), 92-101. <a href=“http://arXiv.org/abs/1412.7946” target=“_blank”>http://arXiv.org/abs/1412.7946</a>.
[64] T, Progress in modeling of semiconductor structures with heterojunctions, J. Coupled Syst. Multiscale Dyn., 3, 66-86 (2015) · doi:10.1166/jcsmd.2015.1066
[65] M, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 57-74 (2002) · Zbl 1023.76048 · doi:10.1016/S0168-9274(02)00125-3
[66] M. Sandells, D. Flocco, <i>Introduction to the Physics of the Cryosphere</i>, Morgan and Claypool, 2014.
[67] T. Osterkamp, C. Burn, Permafrost, in <i>Encyclopedia of Atmospheric Sciences</i>, (2003), 1717-1729. <a href=“https://doi.org/10.1016/B0-12-227090-8/00311-0” target=“_blank”>https://doi.org/10.1016/B0-12-227090-8/00311-0</a>
[68] X, Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone, J. Hydrol., 593 (2021) · doi:10.1016/j.jhydrol.2020.125603
[69] X, Theoretical and numerical analyses on hydro-thermal-salt-mechanical interaction of unsaturated salinized soil subjected to typical unidirectional freezing process, Int. J. Geomech., 21, 04021104 (2021) · doi:10.1061/(ASCE)GM.1943-5622.0002036
[70] J, Premelting dynamics, Annu. Rev. Fluid Mech., 38, 427-452 (2006) · Zbl 1101.76061 · doi:10.1146/annurev.fluid.37.061903.175758
[71] A, Premelting dynamics in a continuum model of frost heave, J. Fluid Mech., 498, 227-244 (2004) · Zbl 1101.76061 · doi:10.1146/annurev.fluid.37.061903.175758
[72] C. W. Lovell, Temperature effects on phase composition and strength of partially-frozen soil, <i>Highw. Res. Board Bull.</i>, 1957.
[73] V, Effects of unfrozen water on heat and mass transport in the active layer and permafrost, Permafrost Periglacial Processes, 11, 219-239 (2000) · doi:10.1002/1099-1530(200007/09)
[74] Ulrich Hornung, <i>Homogenization and porous media</i>, vol. 6 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 1997. · Zbl 0872.35002
[75] H, A consolidation model for estimating the settlement of warm permafrost, Comput. Geotech., 76, 43-50 (2016) · doi:10.1016/j.compgeo.2016.02.013
[76] C. T. Kelley, <i>Iterative methods for linear and nonlinear equations</i>, SIAM, Philadelphia, 1995. · Zbl 0832.65046
[77] M, Finite element approximations of singular parabolic problems, Int. J. Numer. Methods Eng., 26, 1989-2007 (1988) · Zbl 0664.65110 · doi:10.1002/nme.1620260907
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.