×

Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method. (English) Zbl 1432.76259

Summary: The major difficulty in the analysis of unconfined flow in porous media is that the free surface is unknown a priori, where the nonlinearity is even stronger than the unsaturated seepage analysis. There is much space for both the adaptive mesh methods and the fixed mesh methods to improve. In this study, firstly two variational principles fitted to the numerical manifold method (NMM) are formulated, each of which enforces the boundary conditions and the material interface continuity conditions. In the setting of the NMM together with the moving least squares (MLS) interpolation, then the discretization models corresponding to the variational formulations are built, which are utilized to locate the free surface and scrutinize the computational results respectively. Meanwhile, a novel approach is developed to update the free surface in iteration. With high accuracy and numerical stability but no need to remesh, the proposed procedure is able to accommodate complicated dam configuration and strong non-homogeneity, where internal seepage faces may develop, a seldom touched problem in the literature.

MSC:

76S05 Flows in porous media; filtration; seepage
74S05 Finite element methods applied to problems in solid mechanics
76M99 Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Desai, C. S.; Li, G. C., A residual flow procedure and application for free surface in porous media, Adv. Water Resour., 6, 27-35 (1983)
[2] Alt, H. W., Numerical solution of steady state porous flow free boundary problems, Numer. Math., 36, 73-96 (1980) · Zbl 0447.76074
[3] Borja, R. I.; Kishnani, S., On the solution of elliptic free-boundary problems via Newton’s method, Comput. Methods Appl. Mech. Eng., 88, 341-361 (1991) · Zbl 0745.76066
[4] Desai, C. S.; Baseghi, B., Theory and verification of residual flow procedure for 3-D free surface seepage, Adv. Water Resour., 11, 192-203 (1988)
[5] Westbrook, D. R., Analysis of inequality and residual flow procedures and an iterative scheme for free surface seepage, Int. J. Numer. Methods Eng., 21, 1791-1802 (1985) · Zbl 0575.76090
[6] Zheng, H.; Dai, H. C.; Liu, D. F., A variational inequality formulation for unconfined seepage problems in porous media, Appl. Math. Model., 33, 437-450 (2009) · Zbl 1167.76370
[7] Bathe, K. J.; Khoshgoftaar, M. R., Finite element free surface seepage analysis without mesh iteration, Int. J. Numer. Anal. Methods Eng., 3, 13-22 (1979) · Zbl 0392.76089
[8] Oden, J. T.; Kikuchi, N., Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Eng. Sci., 18, 1173-1284 (1980) · Zbl 0444.76069
[9] Bruch, J. C., Fixed domain methods for free and moving boundary flows in porous media, Transp. Porous Media, 6, 627-649 (1991)
[10] Zheng, H.; Liu, D. F.; Lee, C. F.; Tham, L. G., A new formulation of Signorini’s type for seepage problems with free surface, Int. J. Numer. Methods Eng., 64, 1-16 (2005) · Zbl 1073.76069
[11] Chen, Y. F.; Hu, R.; Zhou, C. B.; Li, D. Q.; Rong, G., A new parabolic variational inequality formulation of Signorini’s condition for non-steady seepage problems with complex seepage control systems, Int. J. Numer. Anal. Methods Geomech., 35, 1034-1058 (2011) · Zbl 1274.76310
[12] Kazemzadeh-Parsi, M. J.; Daneshmand, F., Unconfined seepage analysis in earth dams using smoothed fixed grid finite element method, Int. J. Numer. Anal. Methods Geomech., 36, 780-797 (2012)
[13] Darbandi, M.; Torabi, S. O., A moving-mesh finite-volume method to solve free-surface seepage problem in arbitrary geometries, Int. J. Numer. Anal. Methods Geomech., 31, 1609-1629 (2007) · Zbl 1196.74269
[14] Bardet, J. P.; Tobita, T., A practical method for solving free-surface seepage problems, Comput. Geotech., 29, 451-475 (2002)
[15] Zhang, J. Y.; Jiang, B., Enhanced Euler’s method to a free boundary porous media flow problem, Numer. Methods Partial Differ. Equ., 28, 1558-1573 (2012) · Zbl 1386.76169
[16] Herreros, M. I.; Mabssout, M.; Pastor, M., Application of level-set approach to moving interfaces and free surface problems in flow through porous media, Comput. Methods Appl. Mech. Eng., 195, 1-25 (2006) · Zbl 1091.76054
[17] Li, G. X.; Ge, J. H.; Jie, Y. X., Free surface seepage analysis based on the element-free method, Mech. Res. Commun., 30, 9-19 (2003) · Zbl 1026.76548
[18] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., 155, 141-158 (1981) · Zbl 0469.41005
[20] Spivak, M., Calculus on Manifolds (1965), Benjamin: Benjamin New York · Zbl 0141.05403
[21] Babuška, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Eng., 40, 727-758 (1997) · Zbl 0949.65117
[22] Zheng, H.; Liu, Z. J.; Ge, X. R., Numerical manifold space of Hermitian form and application to Kirchhoff’s thin plate problems, Int. J. Numer. Methods Eng., 95, 721-739 (2013) · Zbl 1352.74462
[23] Ma, G. W.; An, X. M.; He, L., The numerical manifold method: a review, Int. J. Comput. Methods, 7, 1-32 (2010) · Zbl 1267.74129
[24] Terada, K.; Asai, M.; Yamagishi, M., Finite cover method for linear and non-linear analyses of heterogeneous solids, Int. J. Numer. Methods Eng., 58, 1321-1346 (2003) · Zbl 1032.74685
[25] Zheng, H.; Xu, D. D., New strategies for some issues of numerical manifold method in simulation of crack propagation, Int. J. Numer. Methods Eng., 97, 986-1010 (2014) · Zbl 1352.74311
[26] Shamsai, A.; Narasimhan, T. N., A numerical investigation of free surface - seepage face relationship under steady state flow conditions, Water Resour. Res., 27, 409-421 (1991)
[27] Parlange, J. Y.; Brutsaert, W., A capillarity correction for free surface flow of groundwater, Water Resour. Res., 23, 805-808 (1987)
[28] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 229-256 (1994) · Zbl 0796.73077
[29] Aalto, J., Singularity elements for seepage analysis, Int. J. Numer. Anal. Methods Geomech., 9, 185-196 (1985)
[30] Zheng, H.; Li, J. L., A practical solution for KKT systems, Numer. Algorithms, 46, 105-119 (2007) · Zbl 1128.65026
[31] Polubarinova-Kochina, P., Theory of Ground Water Movement (1962), Princeton University Press: Princeton University Press Princeton · Zbl 0114.42601
[32] Hornung, U.; Krueger, T., Evaluation of the Polubarinova-Kochina formula for the dam Problem, Water Resour. Res., 21, 395-398 (1985)
[33] Zhang, C. H.; Wang, G. L.; Jing, F., Hydraulic Structures (2011), Tsinghua University Press: Tsinghua University Press Beijing
[34] Neuman, S.; Witherspoon, P., Finite element method of analyzing steady seepage with a free surface, Water Resour. Res., 6, 889-897 (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.