×

Opposition-based moth-flame optimization improved by differential evolution for feature selection. (English) Zbl 1510.90308

Summary: This paper provides an alternative method for creating an optimal subset from features which in turn represent the whole features through improving the moth-flame optimization (MFO) efficiency in searching for such optimal subset. The improvement is performed by combining the opposition-based learning technique and the differential evolution approach with the MFO. The opposition-based learning is used to generate an optimal initial population to improve the convergence of the MFO; meanwhile, the differential evolution is applied to improve the exploitation ability of the MFO. Therefore, the proposed method noted as OMFODE has the ability to avoid getting stuck in a local optimal value, unlike the traditional MFO algorithm and increase the fast convergence. The performance evaluation of our approach will be through a group of experimental results. In the first one, the proposed method has been tested over several CEC2005 benchmark functions. The second experimental series aims to assess the quality of the proposed method to improve the classification of ten UCI datasets by performing feature selection on such datasets. Another experiment is testing our method for classifying a real dataset, which represents some types of the galaxy images. The experimental results illustrated that the proposed algorithm is superior to the state-of-the-art meta-heuristic algorithms in terms of the performance measures.

MSC:

90C90 Applications of mathematical programming
90C59 Approximation methods and heuristics in mathematical programming

Software:

SSA; WOA; GWO; ABC; UCI-ml
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asuncion, A.; Newman, D., Uci machine learning repository (2010), University of California, Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/ml/
[2] Awad El-bayoumy, M.; Rashad, M.; Elsoud, M.; El-dosuky, M., Fafsa: fast artificial fish swarm algorithm, Int. J. Inf. Sci. Intell. Syst., 2, 4 (2013)
[3] Awada, W.; Khoshgoftaar, T. M.; Dittman, D.; Wald, R.; Napolitano, A., A review of the stability of feature selection techniques for bioinformatics data, (2012 IEEE 13th International Conference on Information Reuse & Integration, IRI (2012), IEEE), 356-363
[4] S. Babar, I. Mohammad, A. Mohammad, R. Zahoor, 2016. Novel application of moth flame optimization algorithm for solving economic load dispatch problems with emission and valve point loading effect. In: 4th International Conference on Energy, Environment and Sustainable Development.
[5] Bae-Muu, C.; Hung-Hsu, T.; Wen-Ling, C., Using visual features to design a content-based image retrieval method optimized by particle swarm optimization algorithm, Eng. Appl. Artif. Intell., 26, 10, 2372-2382 (2013)
[6] Baillard, A.; Bertin, E.; De Lapparent, V.; Fouqué, P.; Arnouts, S.; Mellier, Y.; Pelló, R.; Leborgne, J.-F.; Prugniel, P.; Makarov, D., The efigi catalogue of 4458 nearby galaxies with detailed morphology, Astron. Astrophys., 532, A74 (2011)
[7] Bertin, E.; Mellier, Y.; Radovich, M.; Missonnier, G.; Didelon, P.; Morin, B.; Bohlender, D.; Durand, D.; Handley, T., (Astronomical Data Analysis Software and Systems XI. Astronomical Data Analysis Software and Systems XI, ASP Conf. Ser., vol. 281 (2002))
[8] Bianconi, F.; Harvey, R. W.; Southam, P.; Fernández, A., Theoretical and experimental comparison of different approaches for color texture classification, J. Electron. Imaging, 20, 4, 043006 (2011)
[9] Buch, H.; Trivedi, I. N.; Jangir, P., Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation, Cogent Eng., 4, 1, 1286731 (2017)
[10] Cano, A.; Gómez-Olmedo, M.; Moral, S., Application of a hill-climbing algorithm to exact and approximate inference in credal networks., (ISIPTA, vol. 5 (2005), Citeseer), 88-97
[11] Chandrashekar, G.; Sahin, F., A survey on feature selection methods, Comput. Electr. Eng., 40, 1, 16-28 (2014)
[12] Chang, P.-C.; Lin, J.-J.; Liu, C.-H., An attribute weight assignment and particle swarm optimization algorithm for medical database classifications, Comput. Meth. Prog. Bio, 107, 3, 382-392 (2012)
[13] ling Chen, H.; Yang, B.; jing Wang, S.; Wang, G.; zhong Li, H.; bin Liu, W., Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy, Appl. Math. Comput., 239, 180-197 (2014) · Zbl 1334.68180
[14] Chow, T. W.; Rahman, M., A new image classification technique using tree-structured regional features, Neurocomputing, 70, 4-6, 1040-1050 (2007)
[15] Cuevas, E.; Oliva, D.; Zaldivar, D.; Perez, M.; Pajares, G., Opposition based electromagnetismlike for global optimization (2014), arXiv preprint arXiv:1405.5172
[16] Dacal-Nieto, A.; Vázquez-Fernández, E.; Formella, A.; Martin, F.; Torres-Guijarro, S.; González-Jorge, H., A genetic algorithm approach for feature selection in potatoes classification by computer vision, (2009 35th Annual Conference of IEEE Industrial Electronics (2009), IEEE), 1955-1960
[17] Dixit, A.; Lokhande, M.; joshi, P., Optimization of automatic voltage regulator using moth flame optimization algorithm, Int. J. Eng. Dev. Res., 4 (2016)
[18] Eberhart, R.; Kennedy, J., A new optimizer using particle swarm theory, (Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on (1995), IEEE), 39-43
[19] El Aziz, M. A.; Ewees, A. A.; Hassanien, A. E., Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83, 242-256 (2017)
[20] El Aziz, M. A.; Ewees, A. A.; Hassanien, A. E., Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation, Expert Syst. Appl., 83, 242-256 (2017)
[21] El Aziz, M. A.; Selim, I.; Xiong, S., Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach, Sci. Rep., 7, 1, 4463 (2017)
[22] Elaziz, M. A.; Xiong, S.; Jayasena, K.; Li, L., Task scheduling in cloud computing based on hybrid moth search algorithm and differential evolution, Knowl.-Based Syst. (2019)
[23] Erik, C.; Miguel, C.; Daniel, Z.; Marco, P., A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl., 40, 16, 6374-6384 (2013)
[24] Ewees, A. A.; El Aziz, M. A.; Hassanien, A. E., Chaotic multi-verse optimizer-based feature selection, Neural Comput. Appl., 1-16 (2017)
[25] Ewees, A. A.; Elaziz, M. A.; Oliva, D., Image segmentation via multilevel thresholding using hybrid optimization algorithms, J. Electron. Imaging, 27, 6, 063008 (2018)
[26] Golberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, vol. 1989, 36 (1989), Addion wesley · Zbl 0721.68056
[27] Goodarzi, M.; Freitas, M. P.; Jensen, R., Feature selection and linear/nonlinear regression methods for the accurate prediction of glycogen synthase kinase-3b inhibitory activities, J. Chem. Inf. Model., 49, 4, 824-832 (2009)
[28] Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V., Gene selection for cancer classification using support vector machines, Mach. Learn., 46, 1-3, 389-422 (2002) · Zbl 0998.68111
[29] Hanbury, A.; Kandaswamy, U.; Adjeroh, D. A., Illumination-invariant morphological texture classification, (Mathematical Morphology: 40 Years On (2005), Springer), 377-386
[30] Hassanien, A. E.; Gaber, T.; Mokhtar, U.; Hefny, H., An improved moth flame optimization algorithm based on rough sets for tomato diseases detection, Comput. Electron. Agr., 136, 86-96 (2017)
[31] Hossein, N.; Shima, K., An advanced aco algorithm for feature subset selection, Neurocomputing, 147, 5, 271-279 (2015)
[32] Huang, J.; Zabih, R., Color-spatial image indexing and applications (1998), Cornell University Ithaca: Cornell University Ithaca USA
[33] Ibrahim, R. A.; Elaziz, M. A.; Ewees, A. A.; Selim, I. M.; Lu, S., Galaxy images classification using hybrid brain storm optimization with moth flame optimization, J. Astron. Telescopes Instrum. Syst., 4, 3, 038001 (2018)
[34] Ibrahim, R. A.; Elaziz, M. A.; Lu, S., Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization, Expert Syst. Appl., 108, 1-27 (2018)
[35] Ibrahim, R. A.; Ewees, A. A.; Oliva, D.; Elaziz, M. A.; Lu, S., Improved salp swarm algorithm based on particle swarm optimization for feature selection, J. Amb. Intel. Hum. Comp., 1-15 (2018)
[36] Ibrahim, R. A.; Oliva, D.; Ewees, A. A.; Lu, S., Feature selection based on improved runner-root algorithm using chaotic singer map and opposition-based learning, (International Conference on Neural Information Processing (2017), Springer), 156-166
[37] Inbarani, H.; Azar, A. T.; Jothi, G., Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis, Comput. Meth. Prog. Bio., 113, 1, 175-185 (2014)
[38] Jeong, I.-S.; Kim, H.-K.; Kim, T.-H.; Lee, D. H.; Kim, K. J.; Kang, S.-H., A feature selection approach based on simulated annealing for detecting various denial of service attacks, Softw. Netw., 2018, 1, 173-190 (2018)
[39] Jiang, W.; Er, G.; Dai, Q.; Gu, J., Similarity-based online feature selection in content-based image retrieval, IEEE Trans. Image Process., 15, 3, 702-712 (2006)
[40] Jing, S.-Y., A hybrid genetic algorithm for feature subset selection in rough set theory, Soft Comput., 18, 7, 1373-1382 (2014)
[41] Karaboga, D.; Basturk, B., A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm, J. Global Optim., 39, 3, 459-471 (2007) · Zbl 1149.90186
[42] Kohane, I. S.; Butte, A. J.; Kho, A., Microarrays for an Integrative Genomics (2002), MIT press
[43] Kung, S.-Y.; Luo, Y.; Mak, M.-W., Feature selection for genomic signal processing: unsupervised, supervised, and self-supervised scenarios, J. Signal Process. Syst., 61, 1, 3-20 (2010)
[44] Li, Z.; Zhou, Y.; Zhang, S.; Song, J., Lévy-flight moth-flame algorithm for function optimization and engineering design problems, Math. Probl. Eng., 2016 (2016)
[45] Liang, J.-H.; Lee, C.-H., A modification artificial bee colony algorithm for optimization problems, Math. Probl. Eng., 2015 (2015)
[46] Liu, Y., Wavelet feature extraction for high-dimensional microarray data, Neurocomputing, 72, 4-6, 985-990 (2009)
[47] Liu, G.-H.; Yang., J.-Y., Content-based image retrieval using color difference histogram., Pattern Recognit., 46, 1, 188-198 (2013)
[48] Merrikh-Bayat, F., The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature, Appl. Soft Comput., 33, 292-303 (2015)
[49] Mirjalili, S., Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89, 228-249 (2015)
[50] Mirjalili, S.; Gandomi, A. H.; Mirjalili, S. Z.; Saremi, S.; Faris, H.; Mirjalili, S. M., Salp swarm algorithm: a bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163-191 (2017)
[51] Mirjalili, S.; Lewis, A., The whale optimization algorithm, Adv. Eng. Softw., 95, 51-67 (2016)
[52] Mirjalili, S.; Mirjalili, S. M.; Lewis, A., Grey wolf optimizer, Adv. Eng. Softw., 69, 46-61 (2014)
[53] Mistry, Y.; Ingole, D.; Ingole, M., Content based image retrieval using hybrid features and various distance metric, J. Electr. Syst. Inf. Technol. (2017)
[54] Mohamed, A. E.; Aboul, E. H., An improved social spider optimization algorithm based on rough sets for solving minimum number attribute reduction problem, Neural Comput. Appl., 1-12 (2017)
[55] Mohamed, A. E.; Ahmed, M. H.; Hassanien, A. E.; Oliva, D.; Shengwu, X., Analysis of bioactive amino acids from fish hydrolysates with a new bioinformatic intelligent system approach, Sci. Rep., 7, 10860 (2017)
[56] Mohamed, A. E.; Hassanien, A. E., Modified cuckoo search algorithm with rough sets for feature selection, Neural Comput. Appl., 29, 925-934 (2018)
[57] Moradi, P.; Rostami, M., Integration of graph clustering with ant colony optimization for feature selection, Knowl.-Based Syst., 84, 144-161 (2015)
[58] Muangkote, N.; Sunat, K.; Chiewchanwattana, S., Multilevel thresholding for satellite image segmentation with moth-flame based optimization, (2016 13th International Joint Conference on Computer Science and Software Engineering, JCSSE (2016), IEEE), 1-6
[59] Nanda, S. J., Multi-objective moth flame optimization, (2016 International Conference on Advances in Computing, Communications and Informatics, ICACCI (2016), IEEE), 2470-2476
[60] Price, K. V., Differential evolution: a fast and simple numerical optimizer, (Proceedings of North American Fuzzy Information Processing (1996), IEEE), 524-527
[61] Rahnamayan, S.; Tizhoosh, H. R.; Salama, M. M., Opposition-based differential evolution, IEEE Trans. Evol. Comput., 12, 1, 64-79 (2008)
[62] Rodrigues, D.; Pereira, L. A.; Nakamura, R. Y.; Costa, K. A.; Yang, X.-S.; Souza, A. N.; Papa, J. P., A wrapper approach for feature selection based on bat algorithm and optimum-path forest, Expert Syst. Appl., 41, 5, 2250-2258 (2014)
[63] Sassi, R. J.; Da Silva, L. A.; Hernandez, E. D.M., Neural networks and rough sets: a comparative study on data classification., (IC-AI (2006)), 175-180
[64] Shi, Y., Brain storm optimization algorithm, (International Conference in Swarm Intelligence (2011), Springer), 303-309
[65] Sidhu, S.; Saxena, J., Content based image retrieval a review, Int. J. Res. Comput. Appl. Robot., 3, 5, 84-88 (2015)
[66] Sikdar, U. K.; Ekbal, A.; Saha, S.; Uryupina, O.; Poesio, M., Differential evolution-based feature selection technique for anaphora resolution, Soft Comput., 19, 8, 2149-2161 (2015)
[67] Sim, D.-G.; Kim, H.-K.; Park, R.-H., Invariant texture retrieval using modified zernike moments, Image Vis. Comput., 22, 4, 331-342 (2004)
[68] Soliman, G. M.; Khorshid, M. M.; Abou-El-Enien, T. H., Modified moth-flame optimization algorithms for terrorism prediction, Int. J. Appl. Innov. Eng. Manage., 5, 47-58 (2016)
[69] Sonmez, M., Artificial bee colony algorithm for optimization of truss structures, Appl. Soft Comput., 11, 2, 2406-2418 (2011)
[70] Suganthan, P. N.; Hansen, N.; Liang, J. J.; Deb, K.; Chen, Y.-P.; Auger, A.; Tiwari, S., Problem suganthan2005 and evaluation criteria for the cec 2005 special session on real-parameter optimization, KanGAL report, 2005005, 2005 (2005)
[71] Tanaka, K.; Kurita, T.; Kawabe, T., Selection of import vectors via binary particle swarm optimization and cross-validation for kernel logistic regression, (2007 International Joint Conference on Neural Networks (2007), IEEE), 1037-1042
[72] ping Tian, D., A review on image feature extraction and representation techniques, Int. J. Multimed. Ubiquitous Eng., 8, 4, 385-396 (2013)
[73] H.R. Tizhoosh, 2005. Reinforcement learning based on actions and opposite actions. In: International conference on artificial intelligence and machine learning, vol. 414.
[74] Tizhoosh, H. R., Opposition-based learning: a new scheme for machine intelligence, (International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC’06, vol. 1 (2005), IEEE), 695-701
[75] Toylan, H.; Kuscu, H., A real-time apple grading system using multicolor space, Sci. World J., 2014 (2014)
[76] Wang, C.; Wood, L. C.; Li, H.; Aw, Z.; Keshavarzsaleh, A., Applied artificial bee colony optimization algorithm in fire evacuation routing system, J. Appl. Math., 2018 (2018) · Zbl 1437.90037
[77] Wolpert, D. H.; Macready, W. G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 1, 67-82 (1997)
[78] Wu, Q.; Yang, W., Feature extraction algorithms to color image, (Examining Information Retrieval and Image Processing Paradigms in Multidisciplinary Contexts (2017), IGI Global), 27-50
[79] Yamany, W.; Fawzy, M.; Tharwat, A.; Hassanien, A. E., Moth-flame optimization for training multi-layer perceptrons, (2015 11th International Computer Engineering Conference, ICENCO (2015), IEEE), 267-272
[80] Yang, Y.; Slattery, S.; Ghani, R., A study of approaches to hypertext categorization, J. Intell. Inf. Syst., 18, 2-3, 219-241 (2002)
[81] Yıldız, B. S.; Yıldız, A. R., Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes, Mater. Test., 59, 5, 425-429 (2017)
[82] Zainuddin, Z.; Lai, K. H.; Ong, P., An enhanced harmony search based algorithm for feature selection: applications in epileptic seizure detection and prediction, Comput. Electr. Eng., 53, 143-162 (2016)
[83] Zhang, Y.; Dong, Z.; Wu, L.; Wang, S., A hybrid method for MRI brain image classification, Expert Syst. Appl., 38, 8, 10049-10053 (2011)
[84] Zhang, H.; Sun, G., Feature selection using tabu search method, Pattern Recognit., 35, 3, 701-711 (2002) · Zbl 0999.68231
[85] Zhu Z. X, O. Y.S.; M., D., Wrapper-filter feature selection algorithm using a memetic framework, IEEE Trans. Syst., Man, Cybern. B, 37, 1, 70-76 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.