×

Maximal orders in unramified central simple algebras. (English) Zbl 1381.16016

Let \(A\) be a central simple algebra over the function field \(K\) of a regular noetherian integral scheme \(X\). Assume that the Brauer class of \(A\) belongs to the image of the map \(\mathrm{Br}(X)\to\mathrm{Br}(K)\). M. Auslander and O. Goldman [Trans. Am. Math. Soc. 97, 1–24 (1960; Zbl 0117.02506)] have shown that maximal orders in \(A\) are Azumaya, provided that the dimension of \(X\) is at most two. The authors prove, in the more general context of Japanese integral noetherian schemes, that this result does not hold in higher dimensions if the degree of \(A\) is greater than one. Moreover, they prove that a two-dimensional integral noetherian scheme \(X\) with function field \(K\) is regular if and only if every maximal order over \(X\) in a central simple \(K\)-algebra with unramified Brauer class is Azumaya. The proof makes use of a concept of depth for coherent sheaves on an algebraic stack.

MSC:

16H10 Orders in separable algebras

Citations:

Zbl 0117.02506
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Antieau, B.; Williams, B., On the non-existence of Azumaya maximal orders, Invent. Math., 197, 1, 47-56 (2014) · Zbl 1305.16013
[2] Auslander, M.; Goldman, O., Maximal orders, Trans. Amer. Math. Soc., 97, 1-24 (1960) · Zbl 0117.02506
[3] Auslander, M.; Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc., 97, 367-409 (1960) · Zbl 0100.26304
[4] Buchweitz, R. O., Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings (1986), available at
[5] Chan, D.; Ingalls, C., The minimal model program for orders over surfaces, Invent. Math., 161, 2, 427-452 (2005) · Zbl 1078.14005
[6] Hartshorne, R., Local cohomology, (A Seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961 (1967), Springer-Verlag: Springer-Verlag Berlin, New York)
[7] Hartshorne, R., Stable reflexive sheaves, Math. Ann., 254, 2, 121-176 (1980) · Zbl 0431.14004
[8] Iyama, O.; Wemyss, M., Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math., 197, 521-586 (2014) · Zbl 1308.14007
[9] Laumon, G.; Moret-Bailly, L., Champs algébriques, Ergeb. Math. Grenzgeb. (3), vol. 39 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0945.14005
[10] Lieblich, M., Twisted sheaves and the period-index problem, Compos. Math., 144, 1, 1-31 (2008) · Zbl 1133.14018
[11] Matsumura, H., Commutative Ring Theory, Cambridge Stud. Adv. Math., vol. 8 (1989), Cambridge University Press: Cambridge University Press Cambridge, Translated from Japanese by M. Reid
[12] Panin, I. A., Purity conjecture for reductive groups, Vestnik St. Petersburg Univ. Math., 43, 1, 44-48 (2010) · Zbl 1260.13024
[13] (2014), The Stacks Project Authors, Stacks Project, available at
[14] Yu, C. F., On the existence of maximal orders, Int. J. Number Theory, 7, 8, 2091-2114 (2011) · Zbl 1258.11096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.