×

Stability and bifurcation analysis in the delay-coupled nonlinear oscillators. (English) Zbl 1267.34122

Summary: This paper investigates the dynamical behavior of two oscillators with nonlinearity terms, which are coupled with finite delay parameters. Each oscillator is a general class of second-order nonlinear delay-differential equations. The system of delay differential equations is analyzed by reducing the delay equations to a system of ordinary differential equations on a finite-dimensional center manifold, the corresponding to an infinite-dimensional phase space. In addition, the characteristic equation for the linear stability of the trivial equilibrium is completely analyzed and the stability region is illustrated in the parameters space. Our analysis reveals necessary coefficients of the reduced vector field on the center manifold for studying the bifurcations of the trivial equilibrium such as transcritical, pitchfork, and Hopf bifurcation. Finally, we consider the delay-coupled van der Pol equations.

MSC:

34K11 Oscillation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
34K18 Bifurcation theory of functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atay, F.M.: van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998) · Zbl 1235.70142 · doi:10.1006/jsvi.1998.1843
[2] Balachandran, B., Kalmar-Nagy, T., et al.: Delay Differential Equations, Recent Advances and New Directions. Springer, New York (2009) · Zbl 1162.34003
[3] Baptistini, M., T’aboas, P.A.: On the stability of some exponential polynomials. J. Math. Anal. Appl. 205, 259–272 (1997) · Zbl 0888.34063 · doi:10.1006/jmaa.1996.5152
[4] Beuter, A., Glass, L., Mackey, M., Titcombe, M. (eds.): Nonlinear Dynamics in Physiology and Medicine. Interdiscip. Appl. Math. Springer, New York (2003) · Zbl 1050.92013
[5] Eissa, M.H., Hegazy, U.H., Amer, Y.A.: Dynamic behavior of an AMB supported rotor subject to harmonic excitation. Appl. Math. Model. 32, 1370–1380 (2008) · Zbl 1375.70069 · doi:10.1016/j.apm.2007.04.005
[6] Enjieu Kadji, H.G., Chabi Orou, J.B., Woafo, P.: Synchronization dynamics in a ring of four mutually coupled biological systems. Commun. Nonlinear Sci. Numer. Simul. 13, 1361–1372 (2008) · Zbl 1221.37188 · doi:10.1016/j.cnsns.2006.11.004
[7] Faro, J., Velasco, S.: An approximation for prey-predator models with time delay. Physica D 110, 313 (1997) · Zbl 0925.92106 · doi:10.1016/S0167-2789(97)00124-3
[8] Gholizade-Narm, H.: Heart pacemakers synchronization and an index for evaluating distance of a healthy heart from sino-atrial blocking arrhythmia. PhD thesis (2009)
[9] Glass, L., Mackey, M.C.: Oscillations and chaos in physiological control systems. Science 197, 287–289 (1977) · Zbl 1383.92036 · doi:10.1126/science.197.4304.638
[10] Guo, S., Chen, Y., Wu, J.: Two-parameter bifurcations in a network of two neurons with multiple delays. J. Differ. Equ. 244, 444–486 (2008) · Zbl 1136.34058 · doi:10.1016/j.jde.2007.09.008
[11] Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993) · Zbl 0787.34002
[12] Hale, J.: Theory of Functional Differential Equations. Springer, New York (1977) · Zbl 0352.34001
[13] Heiden, U.: Delays in physiological systems. J. Math. Biol. 8, 345–364 (1979) · Zbl 0429.92009 · doi:10.1007/BF00275831
[14] Jiang, W., Wei, J.: Bifurcation analysis in van der Pol’s oscillator with delayed feedback. J. Comput. Appl. Math. 213, 604–615 (2008) · Zbl 1354.34125
[15] Kozlowski, J., Parlitz, U., Lauterborn, W.: Bifurcation analysis of two coupled periodically driven Duffing oscillators. Phys. Rev. E 51, 1861–1867 (1995) · doi:10.1103/PhysRevE.51.1861
[16] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Math. Sci. Engrg. Academic Press, Boston (1993) · Zbl 0777.34002
[17] Lang, R., Kobayashi, K.: External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 16, 347–355 (1980) · doi:10.1109/JQE.1980.1070479
[18] Li, X., Ji, J.C., Hansen, C.H.: Dynamics of two delay coupled van der Pol oscillators. Mech. Res. Commun. 33, 614–627 (2006) · Zbl 1192.70034 · doi:10.1016/j.mechrescom.2005.09.009
[19] MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge (1989) · Zbl 0669.92001
[20] Moore-Ede, M.C., Sulzman, F.M., Fuller, C.A.: The Clocks That Time Us, p. 306. Harvard University Press, Harvard (1982)
[21] Ohgane, K., Ei, S., Mahara, H.: Neuron phase shift adaptive to time delay in locomotor control. Appl. Math. Model. 33, 797–811 (2009) · Zbl 1168.34363 · doi:10.1016/j.apm.2007.12.011
[22] Rompala, K., Rand, R., Howland, H.: Dynamics of three coupled van der Pol oscillators with application to circadian rhythms. Commun. Nonlinear Sci. Numer. Simul. 12, 794–803 (2007) · Zbl 1120.34025 · doi:10.1016/j.cnsns.2005.08.002
[23] Stone, E., Askari, A.: Nonlinear models of chatter in drilling processes. Dyn. Syst. 17, 65–85 (2002) · Zbl 1095.70011 · doi:10.1080/14689360110105788
[24] Suarez, M.J., Schopf, P.L.: A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–3287 (1988) · doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
[25] van der Pol, B., van der Mark, J.: The heartbeat considered as a relaxation oscillation and an electrical model of the heart. Philos. Mag. J. Sci. 6, 763–775 (1982)
[26] Wei, J., Jiang, W.: Stability and bifurcation analysis in van der Pol oscillators with delayed feedback. J. Sound Vib. 283, 801–819 (2005) · Zbl 1237.70091 · doi:10.1016/j.jsv.2004.05.014
[27] Wirkus, S., Rand, R.: The dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002) · Zbl 1021.70010 · doi:10.1023/A:1020536525009
[28] Wirkus, S.: The dynamics of two coupled van der Pol oscillators with delay coupling. PhD thesis (1999) · Zbl 1021.70010
[29] Zhang, J., Gu, X.: Stability and bifurcation analysis in the delay-coupled van der Pol oscillators. Appl. Math. Model. 34, 2291–2299 (2010) · Zbl 1195.34109 · doi:10.1016/j.apm.2009.10.037
[30] Zhang, L., Liu, S.Y.: Stability and pattern formation in a coupled arbitrary order of autocatalysis system. Appl. Math. Model. 33, 884–896 (2009) · Zbl 1168.35385 · doi:10.1016/j.apm.2007.12.013
[31] Zhang, Y., Zhang, C., Zheng, B.: Analysis of bifurcation in a system of n coupled oscillators with delays. Appl. Math. Model. (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.