×

Coproducts of proximity spaces. (English) Zbl 1463.54076

Summary: In this paper, we introduce coproducts of proximity spaces. After exploring several of their basic properties, we show that given a collection of proximity spaces, the coproduct of their Smirnov compactifications proximally and densely embeds in the Smirnov compactification of the coproduct of the original proximity spaces. We also show that the dense proximity embedding is a proximity isomorphism if and only if the index set is finite. After constructing a number of examples of coproducts and their Smirnov compactifications, we explore several properties of the Smirnov compactification of the coproduct, including its metrizability, connectedness of the boundary, dimension, and its relation to the Stone-Čech compactification. In particular, we show that the Smirnov compactification of the infinite coproduct is never metrizable and that its boundary is highly disconnected. We also show that the proximity dimension of the Smirnov compactification of the coproduct equals the supremum of the covering dimensions of the individual Smirnov compactifications and that the Smirnov compactification of the coproduct is homeomorphic to the Stone-Čech compactification if and only if each individual proximity space is equipped with the Stone-Čech proximity. We finish with an example of a coproduct with the covering dimension 0 but the proximity dimension \(\infty\).

MSC:

54E05 Proximity structures and generalizations
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Celani, SA, Quasi-semi-homomorphisms and generalized proximity relations between Boolean algebras, Miskolc Math. Notes, 19, 1, 171-189 (2018) · Zbl 1463.06079 · doi:10.18514/MMN.2018.1803
[2] Di Concilio, A., Point-free geometries: proximities and quasi-metrics, Math. Comput. Sci., 7, 1, 31-42 (2013) · Zbl 1276.54009 · doi:10.1007/s11786-013-0140-2
[3] Di Concilio, A.; Guadagni, C.; Peters, JF; Ramanna, S., Descriptive proximities. Properties and interplay between classical proximities and overlap, Math. Comput. Sci., 12, 1, 91-106 (2018) · Zbl 1403.54017 · doi:10.1007/s11786-017-0328-y
[4] Di Concilio, A., Proximity: a powerful tool in extension theory, function spaces, hyper-spaces. Boolean algebras and point-free geometry, Beyond Topol., 486, 89-114 (2009) · Zbl 1192.54010 · doi:10.1090/conm/486/09508
[5] Di Concilio, A.; Naimpally, S. A., Proximal set-open topologies, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 3, 1, 173-191 (2000) · Zbl 0942.54012
[6] Efremovič, V. A., Infinitesimal spaces, Doklady Akad. Nauk SSSR (N.S.), 76, 341-343 (1951) · Zbl 0042.16703
[7] Efremovič, V. A., The geometry of proximity. I, Mat. Sb. N. S., 31, 73, 189-200 (1952) · Zbl 0046.16302
[8] Engelking, R.: Dimension theory. North-Holland Publishing Co., Amsterdam, Oxford, New York, PWN—Polish Scientific Publishers, Warsaw (1978) [Translated from the Polish and revised by the author, North-Holland Mathematical Library, 19] · Zbl 0401.54029
[9] Fedorčuk, VV, Boolean \(\delta \)-algebras and quasiopen mappings, Sibirsk. Mat. Ž., 14, 1088-1099, 1159 (1973) · Zbl 0274.54028
[10] Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, New York, Heidelberg (1976) [Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43. (1976)] · Zbl 0327.46040
[11] Grzegrzolka, P., Siegert, J.: Boundaries of Coarse Proximity Spaces and Boundaries of Compactifications (2018). arXiv:1812.09802(e-prints) · Zbl 1404.54021
[12] Grzegrzolka, P.; Siegert, J., Coarse proximity and proximity at infinity, Topol. Appl., 251, 18-46 (2019) · Zbl 1404.54021 · doi:10.1016/j.topol.2018.10.009
[13] Grzegrzolka, P.; Siegert, J., Normality conditions of structures in coarse geometry and an alternative description of coarse proximities, Topol. Proc., 53, 285-299 (2019) · Zbl 1416.54012
[14] Kalantari, Sh; Honari, B., Asymptotic resemblance, Rocky Mt. J. Math., 46, 4, 1231-1262 (2016) · Zbl 1355.53019 · doi:10.1216/RMJ-2016-46-4-1231
[15] Kandil, A.; Tantawy, OA; El-Sheikh, SA; Zakaria, A., Multiset proximity spaces, J. Egypt. Math. Soc., 24, 4, 562-567 (2016) · Zbl 1350.54003 · doi:10.1016/j.joems.2015.12.002
[16] Kula, M.; Özkan, S.; Maraşlı, T., Pre-Hausdorff and Hausdorff proximity spaces, Filomat, 31, 12, 3837-3846 (2017) · Zbl 1488.54045 · doi:10.2298/FIL1712837K
[17] Naimpally, S.A., Warrack, B.D.: Proximity Spaces, Cambridge Tracts in Mathematics and Mathematical Physics, no. 59. Cambridge University Press, London, New York (1970) · Zbl 0206.24601
[18] Naimpally, SA, Proximity Approach to Problems in Topology and Analysis (2009), Munich: Oldenbourg Verlag, Munich · Zbl 1185.54001
[19] O’Regan, D.; Perán, J., Fixed points for better admissible multifunctions on proximity spaces, J. Math. Anal. Appl., 380, 2, 882-887 (2011) · Zbl 1221.54063 · doi:10.1016/j.jmaa.2011.03.035
[20] Pervin, WJ, Equinormal proximity spaces, Indag. Math., 26, 152-154 (1964) · Zbl 0136.43503 · doi:10.1016/S1385-7258(64)50017-7
[21] Peters, J.F.: Computational Proximity, Intelligent Systems Reference Library, vol. 102. Springer, Cham (2016) (Excursions in the topology of digital images) · Zbl 1382.68008
[22] Peters, J.; Naimpally, SA, Applications of near sets, Not. Am. Math. Soc., 59, 4, 536-542 (2012) · Zbl 1251.68301
[23] Protasov, IV, Asymptotic proximities, Appl. Gen. Topol., 9, 2, 189-195 (2009) · Zbl 1179.54041 · doi:10.4995/agt.2008.1799
[24] Smirnov, Yu M., On the dimension of proximity spaces, Am. Math. Soc. Transl., 21, 1-20 (1962) · Zbl 0119.18201 · doi:10.1090/trans2/021/01
[25] Tiwari, S.; Singh, PK, An approach of proximity in rough set theory, Fund. Inform., 166, 3, 251-271 (2019) · Zbl 1435.68329 · doi:10.3233/FI-2019-1802
[26] Vîţă, LS, Proximal and uniform convergence on apartness spaces, MLQ Math. Log. Q., 49, 3, 255-259 (2003) · Zbl 1026.03048 · doi:10.1002/malq.200310025
[27] Woods, RG, The minimum uniform compactification of a metric space, Fund. Math., 147, 1, 39-59 (1995) · Zbl 0837.54015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.