×

Quantum-corrected two-dimensional Horava-Lifshitz black hole entropy. (English) Zbl 1375.83022

Summary: We focus on the Hamilton-Jacobi method to determine several thermodynamic quantities such as temperature, entropy, and specific heat of two-dimensional Horava-Lifshitz black holes by using the generalized uncertainty principles (GUP). We also address the product of horizons, mainly concerning the event, Cauchy, and cosmological and virtual horizons.

MSC:

83C57 Black holes
94A17 Measures of information, entropy
85A40 Astrophysical cosmology
83C75 Space-time singularities, cosmic censorship, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Mann, R. B.; Shiekh, A.; Tarasov, L., Classical and quantum properties of two-dimensional black holes, Nuclear Physics B, 341, 1, 134-154 (1990) · doi:10.1016/0550-3213(90)90265-f
[2] Callan, C. G.; Giddings, S. B.; Harvey, J. A.; Strominger, A., Evanescent black holes, Physical Review D, 45, 4, 1005 (1992) · doi:10.1103/physrevd.45.r1005
[3] Sikkema, A. E.; Mann, R. B., Gravitation and cosmology in \((1 + 1)\) dimensions, Classical and Quantum Gravity, 8, 1, 219-235 (1991) · Zbl 0713.53050 · doi:10.1088/0264-9381/8/1/022
[4] Christensen, D.; Mann, R. B., The causal structure of two-dimensional spacetimes, Classical and Quantum Gravity, 9, 7, 1769-1786 (1992) · Zbl 0774.53040 · doi:10.1088/0264-9381/9/7/010
[5] Eling, C.; Jacobson, T., Two-dimensional gravity with a dynamical aether, Physical Review D, 74, 8 (2006) · doi:10.1103/physrevd.74.084027
[6] Christensen, S. M.; Fulling, S. A., Trace anomalies and the Hawking effect, Physical Review D, 15, 8, 2088-2104 (1977) · doi:10.1103/PhysRevD.15.2088
[7] Trivedi, S. P., Semiclassical extremal black holes, Physical Review D, 47, 10, 4233-4238 (1993) · doi:10.1103/physrevd.47.4233
[8] Polyakov, A. M., Quantum gravity in two dimensions, Modern Physics Letters A, 2, 11, 893-898 (1987) · doi:10.1142/s0217732387001130
[9] Teitelboim, C.; Christensen, S., The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly, Quantum Theory of Gravity, 327-344 (1984), Bristol, UK: Adam Hilger, Bristol, UK
[10] Jackiw, R.; Christensen, S., Liouville field theory: a two-dimensional model for gravity?, Quantum Theory of Gravity, 403 (1984), Bristol, UK: Adam Hilger, Bristol, UK
[11] Jackiw, R., Lower dimensional gravity, Nuclear Physics B, 252, 343-356 (1985) · doi:10.1016/0550-3213(85)90448-1
[12] Knizhnik, V.; Polyakov, A. M.; Zamolodchikov, A. B., Fractal structure of 2d—quantum gravity, Modern Physics Letters A, 3, 8, 819-826 (1988) · doi:10.1142/s0217732388000982
[13] Leblanc, M.; Mann, R. B.; Shadwick, B., Regularization ambiguities of the nonlinear \(\sigma\) model in 2 and \(2+ \varepsilon\) dimensions, Physical Review D, 37, 12, 3548-3556 (1988) · doi:10.1103/physrevd.37.3548
[14] Gegenberg, J.; Kelly, P. F.; Mann, R. B.; McArthur, R.; Vincent, D. E., Reinterpretation of the non-linear sigma model with torsion, Modern Physics Letters A, 3, 18, 1791 (1988) · doi:10.1142/s0217732388002154
[15] Gegenberg, J.; Kelly, P. F.; Kunstatter, G.; Mann, R. B.; McArthur, R.; Vincent, D. E., Quantum properties of algebraically extended bosonic \(\sigma\) models, Physical Review D, 40, article 1919 (1989) · doi:10.1103/PhysRevD.40.1919
[16] Lindstrom, U.; Rocek, M., A gravitational first-order action for the bosonic string, Classical and Quantum Gravity, 4, 4, L79 (1987)
[17] Horava, P., Quantum gravity at a Lifshitz point, Physical Review D, 79, 8 (2009) · doi:10.1103/physrevd.79.084008
[18] Visser, M., Lorentz symmetry breaking as a quantum field theory regulator, Physical Review D. Particles, Fields, Gravitation, and Cosmology, 80, 2 (2009) · doi:10.1103/PhysRevD.80.025011
[19] Sotiriou, T. P.; Visser, M.; Weinfurtner, S., Quantum gravity without Lorentz invariance, Journal of High Energy Physics, 2009, 10, article 033 (2009) · doi:10.1088/1126-6708/2009/10/033
[20] Bogdanos, C.; Saridakis, E. N., Perturbative instabilities in Hořava gravity, Classical and Quantum Gravity, 27, 7 (2010) · Zbl 1187.83058 · doi:10.1088/0264-9381/27/7/075005
[21] Wang, A.; Maartens, R., Cosmological perturbations in Horava-Lifshitz theory without detailed balance, Physical Review D, 81, 2 (2010) · doi:10.1103/physrevd.81.024009
[22] Huang, Y.; Wang, A.; Wu, Q., Stability of the de sitter spacetime in Horava-Lifshitz theory, Modern Physics Letters A, 25, 26, 2267-2279 (2010) · Zbl 1193.83024 · doi:10.1142/s0217732310033268
[23] Charmousis, C.; Niz, G.; Padilla, A.; Saffin, P. M., Strong coupling in Hořava gravity, Journal of High Energy Physics, 2009, 8, 70 (2009) · doi:10.1088/1126-6708/2009/08/070
[24] Blas, D.; Pujolàs, O.; Sibiryakov, S., On the extra mode and inconsistency of Hořava gravity, Journal of High Energy Physics, 2009, 10, 29 (2009) · doi:10.1088/1126-6708/2009/10/029
[25] Koyama, K.; Arroja, F., Pathological behaviour of the scalar graviton in Hořava-Lifshitz gravity, Journal of High Energy Physics, 2010, article 61 (2010) · Zbl 1271.83033 · doi:10.1007/JHEP03(2010)061
[26] Kimpton, I.; Padilla, A., Lessons from the decoupling limit of Hořava gravity, Journal of High Energy Physics, 2010, 7, article 014 (2010) · Zbl 1290.83021 · doi:10.1007/jhep07(2010)014
[27] Wang, A.; Wu, Q., Stability of spin-0 graviton and strong coupling in Horava-Lifshitz theory of gravity, Physical Review D, 83, 4 (2011) · doi:10.1103/PhysRevD.83.044025
[28] Chen, B.; Huang, Q.-G., Field theory at a Lifshitz point, Physics Letters. B, 683, 2-3, 108-113 (2010) · doi:10.1016/j.physletb.2009.12.028
[29] Bazeia, D.; Brito, F. A.; Costa, F. G., Two-dimensional Horava-Lifshitz black hole solutions, Physical Review D. Particles, Fields, Gravitation, and Cosmology, 91, 4 (2015) · Zbl 1375.83022 · doi:10.1103/physrevd.91.044026
[30] Parikh, M. K.; Wilczek, F., Hawking radiation as tunneling, Physical Review Letters, 85, 24, 5042-5045 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[31] Vagenas, E. C., Generalization of the KKW analysis for black hole radiation, Physics Letters B, 559, 1-2, 65-73 (2003) · Zbl 1011.83016 · doi:10.1016/s0370-2693(03)00302-2
[32] Srinivasan, K.; Padmanabhan, T., Particle production and complex path analysis, Physical Review D, 60, 2 (1999) · doi:10.1103/physrevd.60.024007
[33] Shankaranarayanan, S.; Srinivasan, K.; Padmanabhan, T., Method of complex paths and general covariance of Hawking radiation, Modern Physics Letters A, 16, 9, 571-578 (2001) · doi:10.1142/s0217732301003632
[34] Shankaranarayanan, S.; Padmanabhan, T.; Srinivasan, K., Hawking radiation in different coordinate settings: complex paths approach, Classical and Quantum Gravity, 19, 10, 2671-2687 (2002) · Zbl 1002.83039 · doi:10.1088/0264-9381/19/10/310
[35] Akhmedov, E. T.; Akhmedova, V.; Singleton, D.; Pilling, T., Thermal radiation of various gravitational backgrounds, International Journal of Modern Physics A, 22, 8-9, 1705-1715 (2007) · Zbl 1206.83093
[36] Akhmedov, E. T.; Akhmedovab, V.; Singletonb, D., Hawking temperature in the tunneling picture, Physics Letters B, 642, 1-2, 124-128 (2006) · Zbl 1248.83046 · doi:10.1016/j.physletb.2006.09.028
[37] Akhmedova, V.; Pilling, T.; de Gill, A.; Singleton, D., Temporal contribution to gravitational WKB-like calculations, Physics Letters B, 666, 3, 269-271 (2008) · Zbl 1328.83069 · doi:10.1016/j.physletb.2008.07.017
[38] Akhmedov, E. T.; Pilling, T.; Singleton, D., Subtleties in the quasi-classical calculation of hawking radiation, International Journal of Modern Physics D, 17, 13-14, 2453-2458 (2008) · Zbl 1172.83320 · doi:10.1142/s0218271808013947
[39] Akhmedova, V.; Pilling, T.; de Gill, A.; Singleton, D., Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation, Physics Letters B, 673, 3, 227-231 (2009)
[40] Eune, M.; Kim, W., Lifshitz scalar, brick wall method, and generalized uncertainty principle in Hořava-Lifshitz gravity, Physical Review D, 82, 12 (2010) · doi:10.1103/physrevd.82.124048
[41] Chen, D.-Y.; Yang, H.; Zu, X.-T., Hawking radiation of black holes in the \(z = 4\) Horava-Lifshitz gravity, Physics Letters B, 681, 5, 463-468 (2009) · doi:10.1016/j.physletb.2009.10.065
[42] Majhi, B. R., Hawking radiation and black hole spectroscopy in Hořava-Lifshitz gravity, Physics Letters B, 686, 1, 49-54 (2010) · doi:10.1016/j.physletb.2010.02.033
[43] Liu, M.; Lu, J.; Lu, J., Fermion analysis of IR modified Hořava-Lifshitz gravity: tunneling and perturbation perspectives, Classical and Quantum Gravity, 28, 12 (2011) · Zbl 1221.81073 · doi:10.1088/0264-9381/28/12/125024
[44] Xiao-Xiong, Z.; Ling, L., Hawking tunneling radiation of black holes in deformed \(Hŏ\) rava-Lifshitz gravity, Communications in Theoretical Physics, 55, 2, 376 (2011) · Zbl 1264.83031 · doi:10.1088/0253-6102/55/2/32
[45] Jiang, Q.-Q.; Wu, S.-Q.; Cai, X., Hawking radiation as tunneling from the KERr and KERr-Newman black holes, Physical Review D: Third Series, 73, 6 (2006) · doi:10.1103/physrevd.73.064003
[46] Xu, Z.; Chen, B., Hawking radiation from general Kerr-(anti)de Sitter black holes, Physical Review D, 75, 2 (2007) · doi:10.1103/physrevd.75.024041
[47] Banerjee, R.; Majhi, B. R., Quantum tunneling and back reaction, Physics Letters. B, 662, 1, 62-65 (2008) · Zbl 1282.83025 · doi:10.1016/j.physletb.2008.02.044
[48] Singleton, D.; Vagenas, E. C.; Zhu, T.; Ren, J.-R., Insights and possible resolution to the information loss paradox via the tunneling picture, Journal of High Energy Physics, 2010, article 89 (2010) · Zbl 1290.83026 · doi:10.1007/JHEP08(2010)089
[49] Singleton, D.; Vagenas, E. C.; Zhu, T., Self-similarity, conservation of entropy/bits and the black hole information puzzle, Journal of High Energy Physics, 2014, article 74 (2014) · doi:10.1007/JHEP05(2014)074
[50] Silva, C. A.; Brito, F. A., Quantum tunneling radiation from self-dual black holes, Physics Letters. B, 725, 4-5, 456-462 (2013) · Zbl 1364.83025 · doi:10.1016/j.physletb.2013.07.033
[51] Majumder, B., Black hole entropy with minimal length in tunneling formalism, General Relativity and Gravitation, 45, 11, 2403-2414 (2013) · Zbl 1274.83084 · doi:10.1007/s10714-013-1581-2
[52] Anacleto, M. A.; Brito, F. A.; Luna, G. C.; Passos, E.; Spinelly, J., Quantum-corrected finite entropy of noncommutative acoustic black holes, Annals of Physics, 362, 436-448 (2015) · Zbl 1343.83019 · doi:10.1016/j.aop.2015.08.009
[53] Becar, R.; Gonzalez, P.; Pulgar, G.; Saavedra, J., Hawking radiation via anomaly and tunneling method by Unruh’s and canonical acoustic black hole, International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology, 25, 7, 1463-1475 (2010) · Zbl 1189.83041 · doi:10.1142/s0217751x10048081
[54] Anacleto, M. A.; Brito, F. A.; Passos, E., Noncommutative analogue Aharonov-Bohm effect and superresonance, Physical Review D, 87, 12 (2013) · Zbl 1343.83020 · doi:10.1103/PhysRevD.87.125015
[55] Anacleto, M. A.; Brito, F. A.; Passos, E., Supersonic velocities in noncommutative acoustic black holes, Physical Review D, 85 (2012) · doi:10.1103/physrevd.85.025013
[56] Anacleto, M. A.; Brito, F. A.; Passos, E., Acoustic black holes from Abelian Higgs model with Lorentz symmetry breaking, Physics Letters B, 694, 2, 149-157 (2010) · doi:10.1016/j.physletb.2010.09.045
[57] Anacleto, M. A.; Brito, F. A.; Passos, E., Superresonance effect from a rotating acoustic black hole and Lorentz symmetry breaking, Physics Letters B, 703, 5, 609-613 (2011) · doi:10.1016/j.physletb.2011.08.040
[58] Anacleto, M. A.; Brito, F. A.; Passos, E., Analogue Aharonov-Bohm effect in a Lorentz-violating background, Physical Review D, 86, 12 (2012) · doi:10.1103/PhysRevD.86.125015
[59] Anacleto, M. A.; Brito, F. A.; Passos, E., Quantum-corrected self-dual black hole entropy in tunneling formalism with GUP, Physics Letters B, 749, 181-186 (2015) · Zbl 1364.83016 · doi:10.1016/j.physletb.2015.07.072
[60] Anacleto, M. A.; Brito, F. A.; Cavalcanti, A. G.; Passos, E.; Spinelly, J., Quantum correction to the entropy of noncommutative BTZ black hole · Zbl 1390.83169
[61] Övgün, A.; Jusufi, K., Massive vector particles tunneling from noncommutative charged black holes and its GUP-corrected thermodynamics, The European Physical Journal Plus, 131, article 177 (2016) · doi:10.1140/epjp/i2016-16177-4
[62] Faizal, M.; Khalil, M. M., GUP-corrected thermodynamics for all black objects and the existence of remnants, International Journal of Modern Physics A, 30, 22 (2015) · Zbl 1330.83021 · doi:10.1142/s0217751x15501444
[63] Frolov, V.; Novikov, I., Dynamical origin of the entropy of a black hole, Physical Review D, 48, 10, 4545-4551 (1993) · doi:10.1103/physrevd.48.4545
[64] Callan, C. G.; Wilczek, F., On geometric entropy, Physics Letters B, 333, 1-2, 55-61 (1994) · doi:10.1016/0370-2693(94)91007-3
[65] Mag, J. M.; Melnikov, D.; Silva, M. R. O., Black holes in AdS/BCFT and fluid/gravity correspondence, Journal of High Energy Physics, 2014, 11, article 069 (2014) · Zbl 1333.83103 · doi:10.1007/JHEP11(2014)069
[66] Casini, H.; Huerta, M.; Myers, R. C., Towards a derivation of holographic entanglement entropy, Journal of High Energy Physics, 2011, article 36 (2011) · Zbl 1296.81073 · doi:10.1007/jhep05(2011)036
[67] Solodukhin, S. N., Entanglement entropy of black holes, Living Reviews in Relativity, 14, article 8 (2011) · Zbl 1320.83015 · doi:10.12942/lrr-2011-8
[68] Xu, W.; Wang, J.; Meng, X.-H., Entropy bound of horizons for charged and rotating black holes, Physics Letters B, 746, 53-58 (2015) · Zbl 1343.83032 · doi:10.1016/j.physletb.2015.04.050
[69] Meng, X.-H.; Xu, W.; Wang, J., A note on entropy relations of black hole horizons, International Journal of Modern Physics A: Particles and Fields, Gravitation, Cosmology, 29, 18 (2014) · Zbl 1294.83059 · doi:10.1142/s0217751x14500882
[70] Wang, J.; Xu, W.; Meng, X.-H., Entropy relations of black holes with multihorizons in higher dimensions, Physical Review D, 89 (2014) · doi:10.1103/physrevd.89.044034
[71] Xu, W.; Wang, J.; Meng, X.-H., The entropy sum of (A)dS black holes in four and higher dimensions, International Journal of Modern Physics A: Particles and Fields, Gravitation, Cosmology, 29, 30 (2014) · Zbl 1306.83053 · doi:10.1142/s0217751x14501723
[72] Wang, J.; Xu, W.; Meng, X.-H., The ‘universal property’ of horizon entropy sum of black holes in four dimensional asymptotical (anti-)de-sitter spacetime background, Journal of High Energy Physics, 2014, 31 (2014) · doi:10.1007/JHEP01(2014)031
[73] Kaul, R. K.; Majumdar, P., Logarithmic correction to the Bekenstein-Hawking entropy, Physical Review Letters, 84, 23, 5255-5257 (2000) · doi:10.1103/PhysRevLett.84.5255
[74] Kaul, R. K.; Majumdar, P., Quantum black hole entropy, Physics Letters. B, 439, 3-4, 267-270 (1998) · doi:10.1016/S0370-2693(98)01030-2
[75] Carlip, S., Logarithmic corrections to black hole entropy, from the Cardy formula, Classical and Quantum Gravity, 17, 20, 4175-4186 (2000) · Zbl 0970.83026 · doi:10.1088/0264-9381/17/20/302
[76] Giovanazzi, S., Entanglement entropy and mutual information production rates in acoustic black holes, Physical Review Letters, 106, 1 (2011) · doi:10.1103/PhysRevLett.106.011302
[77] Rinaldi, M., Entropy of an acoustic black hole in Bose-Einstein condensates, Physical Review D, 84, 12 (2011) · doi:10.1103/physrevd.84.124009
[78] Rinaldi, M., The entropy of an acoustic black hole in Bose-Einstein condensates: transverse modes as a cure for divergences, International Journal of Modern Physics D, 22, 4 (2013) · Zbl 1267.76104 · doi:10.1142/S0218271813500168
[79] Brustein, R.; Kupferman, J., Black hole entropy divergence and the uncertainty principle, Physical Review D, 83, 12 (2011) · doi:10.1103/physrevd.83.124014
[80] Kim, W.; Kim, Y.-W.; Park, Y.-J., Entropy of 2+1 de Sitter space with the GUP, Journal of the Korean Physical Society, 49, 1360-1364 (2006)
[81] Kim, Y.-W.; Park, Y.-J., Entropy of the Schwarzschild black hole to all orders in the Planck length, Physics Letters B, 655, 3-4, 172-177 (2007) · Zbl 1246.83124 · doi:10.1016/j.physletb.2007.08.065
[82] Sun, X.-F.; Liu, W.-B., Improved black hole entropy calculation without cutoff, Modern Physics Letters A, 19, 9, 677 (2004) · Zbl 1080.83528 · doi:10.1142/s0217732304013192
[83] Yoon, M.; Ha, J.; Kim, W., Entropy of Reissner-Nordstrom black holes with minimal length revisited, Physical Review D: Particles, Fields, Gravitation, and Cosmology, 76, 4 (2007) · doi:10.1103/physrevd.76.047501
[84] Li, X.; Zhao, Z., Entropy of a Vaidya black hole, Physical Review D, 62 (2000) · doi:10.1103/physrevd.62.104001
[85] Ren, Z.; Sheng-Li, Z., Dilatonic black hole entropy without brick walls, General Relativity and Gravitation, 36, 9, 2123-2130 (2004) · Zbl 1061.83523 · doi:10.1023/b:gerg.0000038626.11857.3f
[86] Zhao, R.; Wu, Y.-Q.; Zhang, L.-C., Spherically symmetric black-hole entropy without brick walls, Classical and Quantum Gravity, 20, 22, 4885-4890 (2003) · Zbl 1170.83420 · doi:10.1088/0264-9381/20/22/012
[87] Kim, W.; Kim, Y. W.; Park, Y. J., Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle, Physical Review D, 74, 10 (2006) · doi:10.1103/physrevd.74.104001
[88] Kim, W.; Kim, Y.-W.; Park, Y.-J., Entropy of a charged black hole in two dimensions without cutoff, Physical Review D, 75, 12 (2007) · doi:10.1103/physrevd.75.127501
[89] Yoon, M.; Ha, J.; Kim, W., Entropy of Reissner-Nordstrom black holes with minimal length revisited, Physical Review D, 76, 4 (2007) · doi:10.1103/physrevd.76.047501
[90] Kim, Y.-W.; Park, Y.-J., Entropy of the Schwarzschild black hole to all orders in the Planck length, Physics Letters. B, 655, 3-4, 172-177 (2007) · Zbl 1246.83124 · doi:10.1016/j.physletb.2007.08.065
[91] Nouicer, K., Quantum-corrected black hole thermodynamics to all orders in the Planck length, Physics Letters. B, 646, 2-3, 63-71 (2007) · Zbl 1248.83079 · doi:10.1016/j.physletb.2006.12.072
[92] Anacleto, M. A.; Brito, F. A.; Passos, E.; Santos, W. P., The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle, Physics Letters B, 737, 6-11 (2014) · Zbl 1317.83042 · doi:10.1016/j.physletb.2014.08.018
[93] Zhao, H.; Li, G.; Zhang, L., Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole, Physics Letters A, 376, 35, 2348-2351 (2012) · doi:10.1016/j.physleta.2012.05.059
[94] Zhao, R.; Zhang, L. C.; Li, H. F., Generalized uncertainty principle and entropy of three-dimensional BTZ black hole, Acta Physica Sinica, 58, 4, 2193-2197 (2009)
[95] Tawfik, A. N.; Diab, A. M., Black hole corrections due to minimal length and modified dispersion relation, International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology, 30, 12 (2015) · Zbl 1319.83019 · doi:10.1142/s0217751x15500591
[96] Adler, R. J.; Chen, P.; Santiago, D. I., The generalized uncertainty principle and black hole remnants, General Relativity and Gravitation, 33, 12, 2101-2108 (2001) · Zbl 1003.83020 · doi:10.1023/a:1015281430411
[97] Adler, R. J.; Santiago, D. I., On gravity and the uncertainty principle, Modern Physics Letters A, 14, 20, 1371-1381 (1999) · doi:10.1142/s0217732399001462
[98] Nicolini, P., Noncommutative black holes, the final appeal to quantum gravity: a review, International Journal of Modern Physics A, 24, 7, 1229 (2009) · Zbl 1170.83417 · doi:10.1142/S0217751X09043353
[99] Nicolini, P.; Smailagic, A.; Spallucci, E., Noncommutative geometry inspired Schwarzschild black hole, Physics Letters B, 632, 4, 547-551 (2006) · Zbl 1247.83113 · doi:10.1016/j.physletb.2005.11.004
[100] Gangopadhyay, S.; Dutta, A.; Faizal, M., Constraints on the generalized uncertainty principle from black-hole thermodynamics, Europhysics Letters, 112, 2 (2015) · doi:10.1209/0295-5075/112/20006
[101] Bekenstein, J., Black holes and entropy, Physical Review D, 7, 8, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[102] Bekenstein, J. D., Generalized second law of thermodynamics in black-hole physics, Physical Review D, 9, 12, 3292 (1974) · doi:10.1103/PhysRevD.9.3292
[103] Bekenstein, J. D., Black holes and the second law, Lettere al Nuovo Cimento, 4, 15, 737-740 (1972) · doi:10.1007/BF02757029
[104] Emparan, R.; Horowitz, G. T.; Myers, R. C., Black holes radiate mainly on the brane, Physical Review Letters, 85, 3, 499-502 (2000) · Zbl 1369.83039 · doi:10.1103/PhysRevLett.85.499
[105] Tawfik, A., Impacts of generalized uncertainty principle on black hole thermodynamics and Salecker-Wigner inequalities, Journal of Cosmology and Astroparticle Physics, 2013, 7, 40 (2013) · doi:10.1088/1475-7516/2013/07/040
[106] Ansorg, M.; Hennig, J., The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter, Classical and Quantum Gravity, 25, 22 (2008) · Zbl 1152.83319 · doi:10.1088/0264-9381/25/22/222001
[107] Ansorg, M.; Hennig, J., Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory, Physical Review Letters, 102, 22 (2009) · Zbl 1208.83059 · doi:10.1103/physrevlett.102.221102
[108] Hennig, J.; Ansorg, M., The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: study in terms of soliton methods, Annales Henri Poincaré, 10, 6, 1075-1095 (2009) · Zbl 1208.83059 · doi:10.1007/s00023-009-0012-0
[109] Ansorg, M.; Hennig, J.; Cederbaum, C., Universal properties of distorted Kerr-Newman black holes, General Relativity and Gravitation, 43, 5, 1205-1210 (2011) · Zbl 1215.83003 · doi:10.1007/s10714-010-1136-8
[110] Cvetič, M.; Gibbons, G. W.; Pope, C. N., Universal area product formulas for rotating and charged black holes in four and higher dimensions, Physical Review Letters, 106, 12 (2011) · Zbl 1255.83065 · doi:10.1103/physrevlett.106.121301
[111] Castro, A.; Rodriguez, M. J., Universal properties and the first law of black hole inner mechanics, Physical Review D, 86, 2 (2012) · doi:10.1103/physrevd.86.024008
[112] Cvetic, M.; Lu, H.; Pope, C. N., Entropy-product rules for charged rotating black holes, Physical Review D, 88, 4 (2013) · doi:10.1103/physrevd.88.044046
[113] Visser, M., Area products for stationary black hole horizons, Physical Review D, 88, 4 (2013) · doi:10.1103/physrevd.88.044014
[114] Anacleto, M. A.; Brito, F. A.; Passos, E., Acoustic black holes and universal aspects of area products, Physics Letters A, 380, 11-12, 1105-1109 (2016) · Zbl 1361.83011 · doi:10.1016/j.physleta.2016.01.030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.