×

Prospects for mathematical crystallography. (English) Zbl 1341.82082

Summary: The potential of mathematical crystallography as an emerging field is examined from a sociological point of view. Mathematical crystallography is unusual as an emerging field as it is also an old field, albeit scattered, with evidence of continued substantial activity. But its situation is similar to that of an emerging field, so we analyse it as such. Comparisons with past emergent efforts suggest that a new field can grow if given an economic demand for its product and a receptive environment. Developing a field entails developing a sense of identity, developing infrastructure and recruiting practitioners.

MSC:

82D25 Statistical mechanics of crystals
91D99 Mathematical sociology (including anthropology)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Altmann, S. L. (1977). Induced Representations in Crystals and Molecules: Point, Space and Nonrigid Molecule Groups. London, New York, San Francisco: Academic Press.
[2] American Mathematical Society (2009). MSC2010. Posted at http://www.ams.org/msc/pdfs/classifications2010.pdf.
[3] American Mathematical Society, Not. AMS 59:10 pp 1473– (2012)
[4] Barber, Science 131 pp 596– (1961) · doi:10.1126/science.134.3479.596
[5] Bettencourt, Scientometrics 75 pp 495– (2008) · doi:10.1007/s11192-007-1888-4
[6] Blatov, V. A. & Proserpio, D. M. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 1-28. Weinheim: Wiley VCH.
[7] Boisen, M. & Gibbs, G. (1985). Mathematical Crystallography: an Introduction to the Mathematical Foundations of Crystallography. Washington: Mineralogical Society of America.
[8] Brown, H., Bülow, R., Neubüser, J., Wondratschek, H. & Zassenhaus, H. (1978). Crystallographic Groups of Four-Dimensional Space. New York: John Wiley and Sons. · Zbl 0381.20002
[9] Buerger, M. (1971). Introduction to Crystal Geometry. New York: McGraw-Hill.
[10] Campbell, Psychol. Rev. 67 pp 380– (1960) · doi:10.1037/h0040373
[11] Campbell, D. T. (1987). Evolutionary Epistemology, Theory of Rationality, and the Sociology of Knowledge, edited by G. Radnitzky & W. W. Bartley III, pp. 47-89. La Salle: Open Court.
[12] Conway, J. H., Burgiel, H. & Goodman-Strauss, C. (2008). The Symmetries of Things. Wellesley: A. K. Peters. · Zbl 1173.00001
[13] Cowan, H. (1977). The Master Builders: a History of Structural and Environmental Design from Ancient Egypt to the Nineteenth Century. New York: Wiley.
[15] Crowe, M. J. (1967). A History of the Vector Calculus: the Evolution of the Idea of a Vectorial System. New York: Dover. · Zbl 0165.00303
[16] Dana, E. S. (2011). Mathematical Crystallography - a Historical Article on Planes, Spherical Trigonometry, Systems and Other Aspects of Mathematical Crystallography. Redditch: Read Books Ltd.
[17] Darden, L. (1978). Proceedings of the Biennial Meeting of the Philosophy of Science Association, Contributed Papers. Vol. 1, pp. 149-160. Dordrecht: D. Reidel Publishing Co.
[18] David, Am. Econ. Rev. 75 pp 332– (1985)
[19] Daylight, E. G. (2012). The Dawn of Software Engineering: from Turing to Dijkstra. Heverlee: Lonely Scholar.
[20] Dosi, Res. Policy 11 pp 147– (1982) · doi:10.1016/0048-7333(82)90016-6
[21] Eiseley, L. (1958). Darwin’s Century. Garden City: Doubleday.
[22] Engel, P. (1986). Geometric Crystallography: an Axiomatic Introduction to Crystallography. Dordrecht: Springer. · Zbl 0659.51001 · doi:10.1007/978-94-009-4760-3
[23] Fagerberg, Res. Policy 38 pp 218– (2009) · doi:10.1016/j.respol.2008.12.006
[25] Feynman, Caltech Eng. Sci. 23 pp 22– (1960)
[26] Foster, M. D. & Treacy, M. M. J. (2010). A Database of Hypothetical Zeolite Structures. http://www.hypotheticalzeolites.net/.
[27] Friedel, R. (2007). A Culture of Improvement: Technology and the Western Millennium. Cambridge: MIT Press.
[28] Giacovazzo, C. (2002). Editor. Fundamentals of Crystallography. New York: Oxford University Press.
[29] Goedecker, S. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 131-145. Weinheim: Wiley VCH.
[30] Grienesen, Small 7 pp 2836– (2011) · doi:10.1002/smll.201100387
[31] Guo, Y., Ma, T. & Porter, A. (2012). Disruptive Technologies, Innovation and Global Redesign: Emerging Implications, edited by N. Ekekwe & N. Islam, pp. 12-26. Hershey: Information Science Reference (IGI Global).
[32] Hauptman, H. (1972). Crystal Structure Determination: the Role of the Cosine Semiinvariants. New York: Plenum Press. · doi:10.1007/978-1-4684-9954-4
[33] Hilton, H. (1903). Mathematical Crystallography and the Theory of Groups of Movements. Oxford: Clarendon Press. · JFM 34.0748.05
[35] Islam, Technovation 30:4 pp 229– (2010) · doi:10.1016/j.technovation.2009.10.002
[36] Jaswon, M. (1965). An Introduction to Mathematical Crystallography. New York: Elsevier Publishers. · Zbl 0131.46504
[37] Jawson, M. & Rose, M. A. (1982). Crystal Symmetry: Theory of Colour Crystallography. Chichester: Ellis Horwood.
[38] Johnson, D. (2007). IEEE Spectrum, 44:8, 10.
[39] Julian, M. M. (2008). Foundations of Crystallography with Computer Applications. Boca Raton: CRC Press.
[40] Kitaigorodskii, A. (1961). Theory of Crystal Structure Analysis. Translated by David and Katherine Harker. New York: Consultants Bureau. · doi:10.1007/978-1-4757-0340-5
[42] Leoni, S. & Boulfelfel, S. E. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 181-221. Weinheim: Wiley VCH.
[43] Library of Congress, Policy & Standards Division (2009). Library of Congress Classification, Vol. Q (Science). Washington: Library of Congress.
[44] Lyakhov, A. O., Oganov, A. R. & Valle, M. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 147-180. Weinheim: Wiley VCH.
[45] McColm, Not. AMS 54:4 pp 499– (2007)
[46] Maddox, Nature (London) 335 pp 201– (1988) · doi:10.1038/335760a0
[47] Martonák, R. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 107-130. Weinheim: Wiley VCH.
[48] Nadeau, M. (1982). The History of Surrealism. Cambridge: Belknap Pr.
[49] National Research Council (1995). Mathematical Challenges from Theoretical/Computational Chemistry. Washington: National Academies Press. · Zbl 0833.92023
[50] Nespolo, Acta Cryst. A 64 pp 96– (2008) · Zbl 1370.52001 · doi:10.1107/S0108767307044625
[51] New York Times (1992). COMPANY NEWS: Mattel Says It Erred; Teen Talk Barbie Turns Silent on Math. 21 October 1992.
[52] Nowick, A. (1996). Crystal Properties via Group Theory. Cambridge University Press. · Zbl 0849.20037
[54] O’Keeffe, M. & Hyde, B. (1996). Crystal Structures I: Patterns and Symmetry. Washington: Mineralogical Society of America.
[55] Patera, J. (1998). Quasicrystals and Discrete Geometry. Providence: American Mathematical Society. · Zbl 0894.00039
[56] Porter, A. L. & Cunningham, S. W. (2004). Tech Mining: Exploiting New Technologies for Competitive Advantage. Hoboken: Wiley. · doi:10.1002/0471698466
[57] Porter, J. Nanopart. Res. 11 pp 1023– (2009) · doi:10.1007/s11051-009-9607-0
[58] Porter, J. Nanopart. Res. 10 pp 715– (2008) · doi:10.1007/s11051-007-9266-y
[59] Prince, E. (1994). Mathematical Techniques in Crystallography and Materials Science. Berlin: Springer-Verlag. · Zbl 0805.00004 · doi:10.1007/978-3-642-97576-9
[60] Robinson, Technol. Forecasting Soc. Change 80 pp 267– (2013) · doi:10.1016/j.techfore.2011.06.004
[61] Rollett, J. (1965). Computing Methods in Crystallography. Oxford: Pergamon Press.
[62] Schöne, J. C. & Jansen, M. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 67-105. Weinheim: Wiley VCH.
[63] Schummer, Scientometrics 59 pp 425– (2004) · doi:10.1023/B:SCIE.0000018542.71314.38
[64] Schumpeter, J. (1942). Capitalism, Socialism and Democracy. New York: Harper Row.
[65] Schwarzenberger, R. (1980). N-Dimensional Crystallography. San Francisco, London, Melbourne: Pitman Advanced Publishing. · Zbl 0419.20001
[66] Senechal, M. (1990). Historical Atlas of Crystallography, edited by J. Lima-de-Faria, pp. 43-59. Dordrecht, Boston, London: Kluwer.
[67] Senechal, M. (1995). Quasicrystals and Geometry. Cambridge University Press. · Zbl 0828.52007
[68] Senechal, M. & Fleck, G. M. (1988). Shaping Space: a Polyhedral Approach. Boston: Birkhäuser. · Zbl 0627.52001
[70] Shmueli, U. (2007). Theories and Techniques of Crystal Structure Determination. Oxford University Press. · Zbl 1132.20028
[71] Smith, F. (2002). The Glass Wall: Why Mathematics Can Seem Difficult. New York: Teachers College Press.
[72] Sunada, T. (2013). Topological Crystallography: With a View Towards Discrete Geometric Analysis. Tokyo: Springer. · Zbl 1271.55001 · doi:10.1007/978-4-431-54177-6
[73] Tipton, W. W. & Hennig, R. G. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 55-66. Weinheim: Wiley VCH.
[74] Tobias, S. (1978). Overcoming Math Anxiety. Boston: Houghton Mifflin.
[75] Toumey, Nat. Nanotechnol. 4 pp 783– (2009) · doi:10.1038/nnano.2009.357
[76] Turing, Proc. London Math. Soc. 42 pp 230– (1936)
[77] Wales, D. J. (2011). Modern Methods of Crystal Structure Prediction, edited by A. R. Oganov, pp. 29-54. Weinheim: Wiley VCH.
[78] Wells, A. (1977). Three-Dimensional Nets and Polyhedra. New York: Wiley.
[80] White, MRS Bull. 38 pp 594– (2013) · doi:10.1557/mrs.2013.187
[81] Whittaker, E. (1985). An Atlas of Hyperstereograms of the Four-Dimensional Crystal Classes. Oxford: Clarendon Press.
[82] Wooster, W. (1973). Tensors and Group Theory for the Physical Properties of Crystals. London: Oxford University Press.
[83] Wussing, H. (1984). The Genesis of the Abstract Group Concept: a Contribution to the History of the Origin of Abstract Group Theory. Cambridge: MIT Press. · Zbl 0547.01001
[84] Yaghi, Nature (London) 423 pp 705– (2003) · doi:10.1038/nature01650
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.