×

Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint. (English) Zbl 1441.93103

Summary: In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks.

MSC:

93B70 Networked control
34H10 Chaos control for problems involving ordinary differential equations
93C20 Control/observation systems governed by partial differential equations
35C07 Traveling wave solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adachi, M.; Aihara, K., Associative dynamics in a chaotic neural network, Neural Networks, 10, 83-98 (1997), URL: http://www.sciencedirect.com/science/article/pii/S0893608096000615 · Zbl 1423.68396
[2] Aihara, K.; Takabe, T.; Toyoda, M., Chaotic neural networks, Physics Letters A, 144, 333-340 (1990), URL: http://www.sciencedirect.com/science/article/pii/037596019090136C
[3] Aihara, K.; Yamada, T.; Oku, M., Chaotic neural networks and beyond, (Adamatzky, A.; Chen, G., Chaos, CNN, memristors and beyond: a festschrift for leon chua (2013), World Scientific: World Scientific Singapore), 259-270 · Zbl 1315.94005
[4] Aquino, K. M.; Schira, M. M.; Robinson, P. A.; Drysdale, P. M.; Breakspear, M., Hemodynamic traveling waves in human visual cortex, PLoS Computational Biology, 8, e1002435 (2012)
[5] Courbage, M., On the abundance of traveling waves in 1D infinite cellular automata, Physica D: Nonlinear Phenomena, 103, 133-144 (1997), URL: http://www.sciencedirect.com/science/article/pii/S0167278996002564 · Zbl 1194.82062
[6] Freeman, W. J., Hilbert transform for brain waves, Scholarpedia, 2, 1338 (2007)
[7] Freeman, W. J.; Barrie, J. M., Analysis of spatial patterns of phase in neocortical gamma EEGs in rabbit, Journal of Neurophysiology, 84, 1266-1278 (2000), URL: http://jn.physiology.org/content/84/3/1266.long
[8] Gerhardt, M.; Schuster, H.; Tyson, J. J., A cellular automaton model of excitable media including curvature and dispersion, Science, 247, 1563-1566 (1990), URL: http://science.sciencemag.org/content/247/4950/1563.long · Zbl 1226.37004
[9] Grace, M.; Hütt, M.-T., Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh-Nagumo oscillators, Journal of the Royal Society Interface, 10, 20121016 (2013)
[10] Haissaguerre, M.; Hocini, M.; Denis, A.; Shah, A. J.; Komatsu, Y.; Yamashita, S., Driver domains in persistent atrial fibrillation, Circulation, 130, 530-538 (2014)
[11] Harris-White, M. E.; Zanotti, S. A.; Frautschy, S. A.; Charles, A. C., Spiral intercellular calcium waves in hippocampal slice cultures, Journal of Neurophysiology, 79, 1045-1052 (1998), URL: http://jn.physiology.org/content/79/2/1045.long
[12] He, G.; Cao, Z.; Chen, H.; Zhu, P., Controlling chaos in a neural network based on the phase space constraint, International Journal of Modern Physics B, 17, 4209-4214 (2003)
[13] He, G.; Cao, Z.; Zhu, P.; Ogura, H., Controlling chaos in a chaotic neural network, Neural Networks, 16, 1195-1200 (2003)
[14] He, G.; Chen, L.; Aihara, K., Associative memory with a controlled chaotic neural network, Neurocomputing, 71, 2794-2805 (2008)
[15] He, G.; Shrimali, M. D.; Aihara, K., Partial state feedback control of chaotic neural network and its application, Physics Letters A, 371, 228-233 (2007) · Zbl 1209.93116
[16] He, G.; Shrimali, M. D.; Aihara, K., Threshold control of chaotic neural network, Neural Networks, 21, 114-121 (2008) · Zbl 1254.37061
[17] He, G.; Wang, C.; Xie, X.; Zhu, P., Multi-frequency sinusoidal wave control in a chaotic neural network, (2015 International joint conference on neural networks. 2015 International joint conference on neural networks, (IJCNN) (2015), IEEE), 1-6
[18] Huang, X.; Troy, W. C.; Yang, Q.; Ma, H.; Laing, C. R.; Schiff, S. J.; Wu, J.-Y., Spiral waves in disinhibited mammalian neocortex, The Journal of Neuroscience, 24, 9897-9902 (2004)
[19] Huang, X.; Xu, W.; Liang, J.; Takagaki, K.; Gao, X.; Wu, J.-Y., Spiral wave dynamics in neocortex, Neuron, 68, 978-990 (2010)
[20] Kuroiwa, J.; Masutani, N.; Nara, S.; Aihara, K., Sensitive response of a chaotic wandering state to memory fragment inputs in a chaotic neural network model, International Journal of Bifurcation and Chaos, 14, 1413-1421 (2004) · Zbl 1084.37509
[21] Lam, Y.-W.; Cohen, L. B.; Zochowski, M. R., Odorant specificity of three oscillations and the DC signal in the turtle olfactory bulb, European Journal of Neuroscience, 17, 436-446 (2003)
[22] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86, 2278-2324 (1998)
[23] Li, Y.; Zhu, P.; Xie, X.; Chen, H.; Aihara, K.; He, G., Controlling a chaotic neural network for information processing, Neurocomputing, 110, 111-120 (2013)
[24] Li, Y.; Zhu, P.; Xie, X.; He, G.; Aihara, K., Learning-induced pattern classification in a chaotic neural network, Physics Letters A, 376, 412-417 (2012) · Zbl 1255.35214
[25] Lubenov, E. V.; Siapas, A. G., Hippocampal theta oscillations are travelling waves, Nature, 459, 534-539 (2009)
[26] Ma, J.; Jia, Y.; Wang, C.-N.; Jin, W.-Y., Transition of spiral wave in a model of two-dimensional arrays of Hindmarsh-Rose neurons, International Journal of Modern Physics B, 25, 1653-1670 (2011)
[27] Ma, J.; Jia, Y.; Yi, M.; Tang, J.; Xia, Y.-F., Suppression of spiral wave and turbulence by using amplitude restriction of variable in a local square area, Chaos, Solitons & Fractals, 41, 1331-1339 (2009)
[28] Ma, J.; Wang, C.-N.; Jin, W.-Y.; Wu, Y., Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin-Huxley neurons, Applied Mathematics and Computation, 217, 3844-3852 (2010) · Zbl 1203.92012
[29] Murata, M., Multidimensional traveling waves in the Allen-Cahn cellular automaton, Journal of Physics A: Mathematical and Theoretical, 48, Article 255202 pp. (2015) · Zbl 1320.35306
[30] Oku, M.; Aihara, K., Associative dynamics of color images in a large-scale chaotic neural network, Nonlinear Theory and Its Applications, IEICE, 2, 508-521 (2011)
[31] Oku, M.; Aihara, K., Traveling waves in locally connected chaotic neural networks and their phenomenological modeling, (Yamaguchi, Y., Advances in cognitive neurodynamics (III): proceedings of the third international conference on cognitive neurodynamics - 2011 (2013), Springer Netherlands: Springer Netherlands Dordrecht, Netherlands), 213-219
[32] Osipov, G. V.; Collins, J. J., Using weak impulses to suppress traveling waves in excitable media, Physical Review E, 60, 54-57 (1999)
[33] Pandit, S. V.; Jalife, J., Rotors and the dynamics of cardiac fibrillation, Circulation Research, 112, 849-862 (2013)
[34] Patten, T. M.; Rennie, C. J.; Robinson, P. A.; Gong, P., Human cortical traveling waves: dynamical properties and correlations with responses, PLoS One, 7, e38392 (2012)
[35] Peters, O.; Schipke, C. G.; Hashimoto, Y.; Kettenmann, H., Different mechanisms promote astrocyte \(Ca^{2 +}\) waves and spreading depression in the mouse neocortex, The Journal of Neuroscience, 23, 9888-9896 (2003), URL: http://jneurosci.org/content/23/30/9888.long
[36] Pivka, L., Autowaves and spatio-temporal chaos in CNNs—Part I: A tutorial, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42, 638-649 (1995)
[37] Rubino, D.; Robbins, K. A.; Hatsopoulos, N. G., Propagating waves mediate information transfer in the motor cortex, Nature Neuroscience, 9, 1549-1557 (2006)
[38] Sato, T. K.; Nauhaus, I.; Carandini, M., Traveling waves in visual cortex, Neuron, 75, 218-229 (2012)
[39] Sha, C.; Zhao, H.; Huang, T.; Hu, W., A projection neural network with time delays for solving linear variational inequality problems and its applications, Circuits, Systems, and Signal Processing, 35, 2789-2809 (2016) · Zbl 1346.92013
[40] Sinha, S.; Pande, A.; Pandit, R., Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation, Physical Review Letters, 86, 3678-3681 (2001)
[41] Sinha, S.; Sridhar, S., Patterns in excitable media: genesis, dynamics, and control (2014), CRC Press: CRC Press Boca Raton, FL
[42] Skarda, C. A.; Freeman, W. J., How brains make chaos in order to make sense of the world, Behavioral and Brain Sciences, 10, 161-173 (1987)
[43] Takagaki, K.; Zhang, C.; Wu, J.-Y.; Ohl, F. W., Flow detection of propagating waves with temporospatial correlation of activity, Journal of Neuroscience Methods, 200, 207-218 (2011)
[44] Takahashi, K.; Saleh, M.; Penn, R. D.; Hatsopoulos, N. G., Propagating waves in human motor cortex, Frontiers in Human Neuroscience, 5, 40 (2011)
[45] Viventi, J.; Kim, D.-H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y.-S., Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo, Nature Neuroscience, 14, 1599-1605 (2011)
[46] Volpert, V.; Petrovskii, S., Reaction-diffusion waves in biology, Physics of Life Reviews, 6, 267-310 (2009)
[47] Wang, Z.; Fan, H.; Aihara, K., An associative network with chaotic neurons and dynamic synapses, International Journal of Bifurcation and Chaos, 17, 3085-3097 (2007) · Zbl 1185.37201
[48] Wang, C.-N.; Ma, J.; Liu, Y.; Huang, L., Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits, Nonlinear Dynamics, 67, 139-146 (2012) · Zbl 1242.93057
[49] Winfree, A. T., Varieties of spiral wave behavior: An experimentalist’s approach to the theory of excitable media, Chaos, 1, 303-334 (1991) · Zbl 1031.76502
[50] Wu, J.-Y.; Guan, L.; Tsau, Y., Propagating activation during oscillations and evoked responses in neocortical slices, The Journal of Neuroscience, 19, 5005-5015 (1999), URL: http://jneurosci.org/content/19/12/5005.long
[51] Wu, J.-Y.; Huang, X.; Zhang, C., Propagating waves of activity in the neocortex: what they are, what they do, The Neuroscientist, 14, 487-502 (2008)
[52] Yu, G.; Ma, J.; Jia, Y.; Tang, J., Dynamics of spiral wave in the coupled Hodgkin-Huxley neurons, International Journal of Modern Physics B, 24, 4555-4562 (2010) · Zbl 1209.82030
[53] Zhang, H.; Hu, B.; Hu, G., Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media, Physical Review E, 68, Article 026134 pp. (2003)
[54] Zhang, H.; Jacobs, J., Traveling theta waves in the human hippocampus, The Journal of Neuroscience, 35, 12477-12487 (2015)
[55] Zhang, Q.; Xie, X.; Zhu, P.; Chen, H.; He, G., Sinusoidal modulation control method in a chaotic neural network, Communications in Nonlinear Science and Numerical Simulation, 19, 2793-2800 (2014) · Zbl 1510.92029
[56] Zhao, H., Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays, Neurocomputing, 69, 424-448 (2006)
[57] Zhao, Y.; Billings, S. A.; Routh, A. F., Identification of excitable media using cellular automata models, International Journal of Bifurcation and Chaos, 17, 153-168 (2007) · Zbl 1117.37044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.