×

Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis. (English) Zbl 1422.92159

Summary: In this paper, a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis is proposed and analysed. We explain the effects of stochastic disturbance on disease transmission. To this end, firstly, we investigated the dynamic properties of the system neglecting stochastic disturbance and obtained the threshold and the conditions for the extinction and the permanence of two kinds of epidemic diseases by considering the stability of the equilibria of the deterministic system. Secondly, we paid prime attention on the threshold dynamics of the stochastic system and established the conditions for the extinction and the permanence of two kinds of epidemic diseases. We found that there exists a significant difference between the threshold of the deterministic system and that of the stochastic system. Moreover, it has been established that the persistent of infectious disease analysed by use of deterministic system becomes extinct under the same conditions due to the stochastic disturbance. This implies that a stochastic disturbance has significant impact on the spread of infectious diseases and the larger stochastic disturbance leads to control the epidemic diseases. In order to illustrate the dynamic difference between the deterministic system and the stochastic system, there have been given a series of numerical simulations by using different noise disturbance coefficients.

MSC:

92D30 Epidemiology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
92D25 Population dynamics (general)
34K20 Stability theory of functional-differential equations
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hamer, WH, Epidemic disease in england, Lancet, 1, 733-739, (1906)
[2] Brauer, F, Castillo-Chavez, C: Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics. Springer, New York (2001) · Zbl 0967.92015 · doi:10.1007/978-1-4757-3516-1
[3] Bernoulli, D; Blower, S, An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Rev. Med. Virol., 14, 275-288, (2004) · doi:10.1002/rmv.443
[4] Ross, RA: The Prevention of Malaria. Murray, London (1911)
[5] May, RM; Anderson, RM; McLean, AR, Possible demographic consequences of HIV/AIDS epidemics. I. assuming HIV infection always leads to AIDS, Math. Biosci., 90, 475-505, (1988) · Zbl 0673.92008 · doi:10.1016/0025-5564(88)90079-X
[6] Anderson, RM, May, RM: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)
[7] Zhang, T; Ma, W; Meng, X; Zhang, T, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput., 266, 95-107, (2015)
[8] Meng, X; Zhang, L, Evolutionary dynamics in a Lotka-Volterra competition model with impulsive periodic disturbance, Math. Methods Appl. Sci., 39, 177-188, (2016) · Zbl 1342.92192 · doi:10.1002/mma.3467
[9] Cheng, H; Zhang, T, A new predator-prey model with a profitless delay of digestion and impulsive perturbation on the prey, Appl. Math. Comput., 217, 9198-9208, (2011) · Zbl 1215.92060
[10] Cheng, H; Zhang, T; Wang, F, Existence and attractiveness of order one periodic solution of a Holling I predator-prey model, Abstr. Appl. Anal., 2012, (2012) · Zbl 1253.34043
[11] Zhang, T; Ma, W; Meng, X, Global dynamics of a delayed chemostat model with harvest by impulsive flocculant input, Adv. Differ. Equ., 2017, (2017) · doi:10.1186/s13662-017-1163-9
[12] Xu, X, A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation, Appl. Math. Comput., 251, 275-283, (2015) · Zbl 1328.37054
[13] Dong, H; Zhang, Y; Zhang, X, The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation, Commun. Nonlinear Sci. Numer. Simul., 36, 354-365, (2016) · doi:10.1016/j.cnsns.2015.12.015
[14] Zhang, Y; Dong, H; Zhang, X; Yang, H, Rational solutions and lump solutions to the generalized-dimensional shallow water-like equation, Comput. Math. Appl., 73, 246-252, (2017) · Zbl 1368.35240 · doi:10.1016/j.camwa.2016.11.009
[15] Dong, H; Guo, B; Yin, B, Generalized fractional supertrace identity for Hamiltonian structure of NLS-mkdv hierarchy with self-consistent sources, Anal. Math. Phys., 6, 199-209, (2016) · Zbl 1339.37051 · doi:10.1007/s13324-015-0115-3
[16] Fang, Y; Dong, H; Hou, Y; Kong, Y, Frobenius integrable decompositions of nonlinear evolution equations with modified term, Appl. Math. Comput., 226, 435-440, (2014) · Zbl 1364.35073
[17] Meng, X; Chen, L; Wu, B, A delay sir epidemic model with pulse vaccination and incubation times, Nonlinear Anal., Real World Appl., 11, 88-98, (2010) · Zbl 1184.92044 · doi:10.1016/j.nonrwa.2008.10.041
[18] Zhang, T; Meng, X; Zhang, T, Global analysis for a delayed SIV model with direct and environmental transmissions, J. Appl. Anal. Comput., 6, 1479-1491, (2016)
[19] Cui, Y, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 51, 48-54, (2016) · Zbl 1329.34005 · doi:10.1016/j.aml.2015.07.002
[20] Bai, Z; Dong, X; Yin, C, Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions, Bound. Value Probl., 2016, (2016) · Zbl 1407.34006 · doi:10.1186/s13661-016-0573-z
[21] Cui, Y; Zou, Y, An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions, Appl. Math. Comput., 256, 438-444, (2015) · Zbl 1338.34053
[22] Bai, Z; Dong, X; Yin, C, Monotone iterative method for fractional differential equations, Electron. J. Differ. Equ., 2016, (2016) · doi:10.1186/s13662-015-0733-y
[23] Zou, Y; Cui, Y, Existence results for a functional boundary value problem of fractional differential equations, Adv. Differ. Equ., 2013, (2013) · Zbl 1375.34098 · doi:10.1186/1687-1847-2013-233
[24] Zhang, T; Zhang, T; Meng, X, Stability analysis of a chemostat model with maintenance energy, Appl. Math. Lett., 68, 1-7, (2017) · Zbl 1361.92047 · doi:10.1016/j.aml.2016.12.007
[25] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics - I, Bull. Math. Biol., 53, 33-55, (1991) · Zbl 0007.31502
[26] Kermack, WO; McKendrick, AG, Contributions to the mathematical theory of epidemics: II. further studies of the problem of endemicity, Bull. Math. Biol., 53, 89-118, (1991) · Zbl 0007.31502
[27] Xu, R; Ma, Z, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal., Real World Appl., 10, 3175-3189, (2009) · Zbl 1183.34131 · doi:10.1016/j.nonrwa.2008.10.013
[28] Xu, R; Zhang, S; Zhang, F, Global dynamics of a delayed SEIS infectious disease model with logistic growth and saturation incidence, Math. Methods Appl. Sci., 39, 3294-3308, (2016) · Zbl 1347.34123 · doi:10.1002/mma.3774
[29] Zhang, T; Teng, Z, Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence, Chaos Solitons Fractals, 37, 1456-1468, (2008) · Zbl 1142.34384 · doi:10.1016/j.chaos.2006.10.041
[30] Liu, W; Levin, SA; Iwasa, Y, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23, 187-204, (1986) · Zbl 0582.92023 · doi:10.1007/BF00276956
[31] Liu, W; Hethcote, HW; Levin, SA, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25, 359-380, (1987) · Zbl 0621.92014 · doi:10.1007/BF00277162
[32] Hethcote, HW; Lewis, MA; Driessche, P, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol., 27, 49-64, (1989) · Zbl 0714.92021 · doi:10.1007/BF00276080
[33] Ruan, S; Wang, W, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188, 135-163, (2003) · Zbl 1028.34046 · doi:10.1016/S0022-0396(02)00089-X
[34] Chen, L; Hu, Z; Liao, F, The stability of an SEIR model with nonlinear beddington-deangelis incidence, vertical transmission and time delay, J. Aanhui Norm. Univ., 39, 26-32, (2016) · Zbl 1363.34278
[35] Wang, L; Li, J-Q, Global stability of an epidemic model with nonlinear incidence rate and differential infectivity, Appl. Math. Comput., 161, 769-778, (2005) · Zbl 1055.92053
[36] Mao, X: Stochastic Differential Equations and Applications. Horwood, Chichester (2008) · doi:10.1533/9780857099402
[37] Artalejo, JR; Economou, A; Lopez-Herrero, MJ, On the number of recovered individuals in the SIS and SIR stochastic epidemic models, Math. Biosci., 228, 45-55, (2010) · Zbl 1200.92035 · doi:10.1016/j.mbs.2010.08.006
[38] Bacaër, N, On the stochastic SIS epidemic model in a periodic environment, J. Math. Biol., 71, 491-511, (2014) · Zbl 1326.35396 · doi:10.1007/s00285-014-0828-1
[39] Meng, X, Stability of a novel stochastic epidemic model with double epidemic hypothesis, Appl. Math. Comput., 217, 506-515, (2010) · Zbl 1198.92041
[40] Beretta, E; Kolmanovskii, V; Shaikhet, L, Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simul., 45, 269-277, (1998) · Zbl 1017.92504 · doi:10.1016/S0378-4754(97)00106-7
[41] Yu, J; Jiang, D; Shi, N, Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl., 360, 235-244, (2009) · Zbl 1184.34064 · doi:10.1016/j.jmaa.2009.06.050
[42] Ji, C; Jiang, D, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38, 5067-5079, (2014) · doi:10.1016/j.apm.2014.03.037
[43] Feng, T; Meng, X; Liu, L; Gao, S, Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model, J. Inequal. Appl., 2016, (2016) · Zbl 1357.92069 · doi:10.1186/s13660-016-1265-z
[44] Ma, H; Jia, Y, Stability analysis for stochastic differential equations with infinite Markovian switchings, J. Math. Anal. Appl., 435, 593-605, (2016) · Zbl 1323.93071 · doi:10.1016/j.jmaa.2015.10.047
[45] Zhao, W; Li, J; Zhang, T; Meng, X; Zhang, T, Persistence and ergodicity of plant disease model with Markov conversion and impulsive toxicant input, Commun. Nonlinear Sci. Numer. Simul., 48, 70-84, (2017) · doi:10.1016/j.cnsns.2016.12.020
[46] Tuckwell, HC; Williams, RJ, Some properties of a simple stochastic epidemic model of SIR type, Math. Biosci., 208, 76-97, (2007) · Zbl 1116.92061 · doi:10.1016/j.mbs.2006.09.018
[47] Cai, Y; Kang, Y; Banerjee, M; Wang, W, A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differ. Equ., 259, 7463-7502, (2015) · Zbl 1330.35464 · doi:10.1016/j.jde.2015.08.024
[48] Gray, A; Greenhalgh, D; Mao, X; Pan, J, The SIS epidemic model with Markovian switching, J. Math. Anal. Appl., 394, 496-516, (2012) · Zbl 1271.92030 · doi:10.1016/j.jmaa.2012.05.029
[49] Zhang, X; Jiang, D; Alsaedi, A; Hayat, T, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 59, 87-93, (2016) · Zbl 1343.60095 · doi:10.1016/j.aml.2016.03.010
[50] Meng, X; Zhao, S; Feng, T; Zhang, T, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433, 227-242, (2016) · Zbl 1354.92089 · doi:10.1016/j.jmaa.2015.07.056
[51] Tornatore, E; Buccellato, SM; Vetro, P, Stability of a stochastic sir system, Phys. A, Stat. Mech. Appl., 354, 111-126, (2005) · doi:10.1016/j.physa.2005.02.057
[52] Chang, Z; Meng, X; Lu, X, Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates, Phys. A, Stat. Mech. Appl., 472, 103-116, (2017) · doi:10.1016/j.physa.2017.01.015
[53] Gray, A; Greenhalgh, D; Hu, L; Mao, X; Pan, J, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 876-902, (2011) · Zbl 1263.34068 · doi:10.1137/10081856X
[54] Lin, Y; Jiang, D, Long-time behaviour of a perturbed SIR model by white noise, Discrete Contin. Dyn. Syst., Ser. B, 18, 1873-1887, (2013) · Zbl 1435.92077 · doi:10.3934/dcdsb.2013.18.1873
[55] Schurz, H; Tosun, K, Stochastic asymptotic stability of SIR model with variable diffusion rates, J. Dyn. Differ. Equ., 27, 69-82, (2015) · Zbl 1312.60077 · doi:10.1007/s10884-014-9415-9
[56] Lu, Q, Stability of SIRS system with random perturbations, Phys. A, Stat. Mech. Appl., 388, 3677-3686, (2009) · doi:10.1016/j.physa.2009.05.036
[57] Wei, F; Liu, J, Long-time behavior of a stochastic epidemic model with varying population size, Phys. A, Stat. Mech. Appl., 470, 146-153, (2017) · doi:10.1016/j.physa.2016.11.031
[58] Dalal, N; Greenhalgh, D; Mao, X, A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325, 36-53, (2007) · Zbl 1101.92037 · doi:10.1016/j.jmaa.2006.01.055
[59] Xu, C, Global threshold dynamics of a stochastic differential equation SIS model, J. Math. Anal. Appl., 447, 736-757, (2017) · Zbl 1350.92057 · doi:10.1016/j.jmaa.2016.10.041
[60] Lahrouz, A; Settati, A, Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation, Appl. Math. Comput., 233, 10-19, (2014) · Zbl 1334.92412
[61] Lahrouz, A; Settati, A, Qualitative study of a nonlinear stochastic SIRS epidemic system, Stoch. Anal. Appl., 32, 992-1008, (2014) · Zbl 1302.92131 · doi:10.1080/07362994.2014.961088
[62] Zhao, D; Zhang, T; Yuan, S, The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence, Phys. A, Stat. Mech. Appl., 443, 372-379, (2016) · doi:10.1016/j.physa.2015.09.092
[63] Zhao, Y; Lin, Y; Jiang, D; Mao, X; Li, Y, Stationary distribution of stochastic SIRS epidemic model with standard incidence, Discrete Contin. Dyn. Syst., Ser. B, 21, 2363-2378, (2016) · Zbl 1354.92100 · doi:10.3934/dcdsb.2016051
[64] Miao, A; Zhang, J; Zhang, T; Sampath Aruna Pradeep, BG, Threshold dynamics of a stochastic SIR model with vertical transmission and vaccination, Comput. Math. Methods Med., 2017, (2017) · doi:10.1155/2017/4820183
[65] Lahrouz, A; Settati, A; Akharif, A, Effects of stochastic perturbation on the SIS epidemic system, J. Math. Biol., 74, 469-498, (2017) · Zbl 1365.60063 · doi:10.1007/s00285-016-1033-1
[66] Liu, Q; Jiang, D; Shi, N; Hayat, T; Alsaedi, A, Stationary distribution and extinction of a stochastic SIRS epidemic model with standard incidence, Phys. A, Stat. Mech. Appl., 469, 510-517, (2017) · doi:10.1016/j.physa.2016.11.077
[67] Dieu, NT; Nguyen, DH; Du, NH; Yin, G, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15, 1062-1084, (2016) · Zbl 1343.34109 · doi:10.1137/15M1043315
[68] Zhao, Y; Jiang, D, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243, 718-727, (2014) · Zbl 1335.92108
[69] Jiang, D; Liu, Q; Shi, N; Hayat, T; Alsaedi, A; Xia, P, Dynamics of a stochastic HIV-1 infection model with logistic growth, Phys. A, Stat. Mech. Appl., 469, 706-717, (2017) · doi:10.1016/j.physa.2016.11.078
[70] Cai, Y; Kang, Y; Banerjee, M; Wang, W, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14, 893-910, (2016) · Zbl 1344.92155 · doi:10.4310/CMS.2016.v14.n4.a1
[71] Du, NH; Nhu, NN, Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Lett., 64, 223-230, (2017) · Zbl 1354.92090 · doi:10.1016/j.aml.2016.09.012
[72] Liu, Q; Chen, Q, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence, Phys. A, Stat. Mech. Appl., 428, 140-153, (2015) · doi:10.1016/j.physa.2015.01.075
[73] Zhang, X; Jiang, D; Hayat, T; Ahmad, B, Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps, Phys. A, Stat. Mech. Appl., 471, 767-777, (2017) · doi:10.1016/j.physa.2016.12.074
[74] Li, C; Pei, Y; Liang, X; Fang, D, A stochastic toxoplasmosis spread model between cat and oocyst with jumps process, Commun. Math. Biol. Neurosci., 2016, (2016)
[75] Zhou, Y; Yuan, S; Zhao, D, Threshold behavior of a stochastic SIS model with jumps, Appl. Math. Comput., 275, 255-267, (2016)
[76] Jiang, D; Ji, C; Shi, N; Yu, J, The long time behavior of DI SIR epidemic model with stochastic perturbation, J. Math. Anal. Appl., 372, 162-180, (2010) · Zbl 1194.92053 · doi:10.1016/j.jmaa.2010.06.003
[77] Liu, M; Bai, C; Wang, K, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 19, 3444-3453, (2014) · doi:10.1016/j.cnsns.2014.02.025
[78] Liu, Q; Jiang, D; Shi, N; Hayat, T; Alsaedi, A, Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence, Phys. A, Stat. Mech. Appl., 462, 870-882, (2016) · doi:10.1016/j.physa.2016.06.095
[79] Kloeden, PE; Platen, E, Higher-order implicit strong numerical schemes for stochastic differential equations, J. Stat. Phys., 66, 283-314, (1992) · Zbl 0925.65261 · doi:10.1007/BF01060070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.