×

On sound ranging in Hilbert space. (English) Zbl 1421.94014

Summary: We consider the sound ranging problem (SRP), which is to find the position of source-point from the moments when spherical wave reaches sensor-points, in the infinite-dimensional separable Hilbert space, and describe the solving methods, for entire space and for its unit sphere. In the former case, we give some sufficient conditions for solution’s uniqueness. We also provide two examples with the sets of sensors being a basis: 1st, when SRP and so-called dual problem both have single solutions, and 2nd, when SRP has two distinct solutions.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
46N99 Miscellaneous applications of functional analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Bancroft: An Algebraic Solution of the GPS Equations, IEEE Trans. Aerosp. Electron. Syst. 21(1) (1985), 56-59. doi:10.1109/TAES.1985.310538
[2] H. Bateman: Mathematical Theory of Sound Ranging, Mon. Weather Rev. 46 (1918), 4-11.
[3] C.B. Bazzoni: Note on the Accuracy of Sound Ranging Locations, France, (c1918).
[4] W. Bragg: The World of Sound, G. Bell and Sons LTD, London, (1921).
[5] L. Bull: Method of location of (gun) batteries by sound ranging: Note submitted to the Soci´et´e Geographique de l’Arm´ee, Paris, (1915).
[6] S. Burgess, Y. Kuang, K. ˚Astr¨om: TOA sensor network calibration for receiver and transmitter spaces with difference in dimension, Centre for Math. Sciences, Lund Univ., (2013).
[7] H.A. Canistraro, E.H. Jordan: Projectile-impact-location determination: an acoustic triangulation method, Meas. Sci. Technol. 7(12) (1996).
[8] M. Compagnoni, R. Notari, F. Antonacci, A. Sarti: A comprehensive analysis of the geometry of TDOA maps in localization problems, Inverse Prob. 30(3) (2014). · Zbl 1290.94008
[9] H.M. Dadourian: Acoustic Circles, Amer. Math. Monthly 28(3) (1921), 111-114. · JFM 48.0678.05
[10] R. Duraiswami, D. Zotkin, L. Davis: Exact solutions for the problem of source location from measured time differences of arrival, J. Acoust. Soc. Am. 106 (1999). doi:10.1121/1.427784
[11] E. Esclangon: L’acoustique des canons et des projectiles, M‘emorial de l’Artillerie Fran¸caise, Paris, (1925). (in French) · JFM 52.0885.10
[12] B.G. Ferguson, L.G. Criswick, K.W. Lo: Locating far-field impulsive sound sources in air by triangulation, J. Acoust. Soc. Am. 111 (2002). doi:10.1121/1.1402618
[13] B. Friedlander: A passive localization algorithm and its accuracy analysis, IEEE J. Oceanic Eng. 12(1) (1987), 234-245. doi:10.1109/JOE.1987.1145216
[14] M.D. Gillette, H.F. Silverman: A Linear Closed-Form Algorithm for Source Localization From Time-Differences of Arrival, IEEE Signal Process. Lett. 15 (2008), 1-4. doi:10.1109/LSP.2007.910324
[15] A.R. Hercz: Fundamentals of Sound-Ranging, (1987).
[16] D. Hoock, M. Marotta: Hyperbolic fits to time-of-arrival sound ranging measurements, (1979).
[17] W. Hope-Jones, Sound-Ranging, Math. Gaz. 14(195) (1928), 173-186. doi:10.2307/ 3603791 · JFM 54.0921.04
[18] P.D. Lax: Functional Analysis, Wiley-Interscience, (2002). · Zbl 1009.47001
[19] H.B. Lee: Accuracy limitations of hyperbolic multilateration systems: Tech. note, MIT, Lincoln laboratory, (1973).
[20] R.P. Lee: A Probabilistic Model for Acoustic Sound Ranging, J. Acoust. Soc. Am. 42(1187) (1967). doi:10.1121/1.2144096
[21] K. Liu, Y. Xu, J. Zou: A Multilevel Sampling Method for Detecting Sources in a Stratified Ocean Waveguide, J. Comput. Appl. Math. (2016). doi:10.1016/j.cam.2016.06.039 On sound ranging in Hilbert space65 · Zbl 1344.35171
[22] A. Lombard, H. Buchner, W. Kellermann: Multidimensional Localization of Multiple Sound Sources Using Blind Adaptive MIMO System Identification, Multisensor Fusion and Integration for Intelligent Systems, 2006 IEEE International Conference on, (3-6 Sept. 2006). doi:10.1109/MFI.2006.265634
[23] R. Macleod: Sight and Sound on the Western Front: Surveyors, Scientists and the “Battlefield Laboratory”, 1915-1918, War. Soc. 18(1) (2000), 23-46.
[24] G. Mao, B. Fidan: Localization Algorithms and Strategies for Wireless Sensor Networks, Information Science Reference, Hershey, New York, (2009).
[25] M. Maroti, G. Simon, A. Ledeczi, J. Sztipanovits: Shooter localization in urban terrain, Computer 37(8) (2004), 60-61. doi:10.1109/MC.2004.104
[26] W. Miller, B. Engebos: A mathematical structure for refinement of sound ranging estimates: Tech. report, Atmospheric Sciences Lab, New Mexico, (1976).
[27] H. Rachele: Sound-Ranging Technique for Locating Supersonic Missiles, J. Acoust. Soc. Am. 40(5) (1966), 950-954.
[28] M. Robinson, R. Ghrist: Topological Localization Via Signals of Opportunity, IEEE Trans. Signal Process. 60(5) (2012), 2362-2373. doi:10.1109/TSP.2012.2187518 · Zbl 1393.94415
[29] M. Schiavon: Phonotelemetry: sound-ranging techniques in World War I, Lett. Mat. 3(1) (2015), 27-41. · Zbl 1432.01064
[30] J. Schloemann, R.M. Buehrer: On the value of collaboration in multidimensional location estimation, Global Communications Conf. (GLOBECOM), (2014). doi:10.1109/ GLOCOM.2014.7036857
[31] W. Schriever: Sound ranging in a medium having an unknown constant phase velocity, Geophysics 17(4) (1952), 915-923. doi:10.1190/1.1437827
[32] J. Shen, A.F. Molisch, J. Salmi: Accurate Passive Location Estimation Using TOA Measurements, IEEE Trans. Wireless Commun. 11(6) (2012). doi:10.1109/ TWC.2012.040412.110697
[33] S.J. Spencer: Closed-form analytical solutions of the time difference of arrival source location problem for minimal element monitoring arrays, J. Acoust. Soc. Am. (127) (2010). doi:10.1121/1.3365313
[34] J.L. Spiesberger: Hyperbolic location errors due to insufficient numbers of receivers, J. Acoust. Soc. Am. 109(6) (2001), 3076-3079.
[35] A. Tobias: Acoustic-emission source location in two dimensions by an array of three sensors, Non-Destr. Test. 9(1) (1976), 9-12. doi:10.1016/0029-1021(76)90027-X
[36] D.J. Torrieri: Statistical theory of passive location systems, IEEE Trans. Aerosp. Electron. Syst. AES-20 (1984), 183-198. doi:10.1109/TAES.1984.310439
[37] W.A. Watkins, W.E. Schevill: Four-hydrophone array for acoustic three-dimensional location: Tech. Report, Woods Hole Oceanogr. Inst., (1971).
[38] W.L.A. Whitlow, M.C. Hastings: Principles of Marine Bioacoustics, Springer, (2008).
[39] S.F. Wu, N. Zhu: Locating arbitrarily time-dependent sound sources in three dimensional space in real time, J. Acoust. Soc. Am. 128(2) (2010), 728-739. doi:0.1121/1.3455846
[40] S.A. Zekavat, R.M. Buehrer: Handbook of Position Location. Theory, Practice, and Advances, IEEE Press, Wiley, (2012).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.