×

Stability analysis and clinic phenomenon simulation of a fractional-order HBV infection model. (English) Zbl 1451.92195

Summary: In this paper, a fractional-order HBV model was set up based on standard mass action incidences and quasisteady assumption. The basic reproductive number \(R_0\) and the cytotoxic T lymphocytes’ immune-response reproductive number \(R_1\) were derived. There were three equilibrium points of the model, and stable analysis of each equilibrium point was given with corresponding hypothesis about \(R_0\) or \(R_1\). Some numerical simulations were also given based on HBeAg clinical data, and the simulation showed that there existed positive logarithmic correlation between the number of infected cells and HBeAg, which was consistent with the clinical facts. The simulation also showed that the clinical individual differences should be reflected by the fractional-order model.

MSC:

92C60 Medical epidemiology
34A08 Fractional ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xiao, Y.; Xu, X.; Tang, S., Sliding mode control of outbreaks of emerging infectious diseases, Bulletin of Mathematical Biology, 74, 10, 2403-2422 (2012) · Zbl 1312.92043 · doi:10.1007/s11538-012-9758-5
[2] Zheng, Y.; Min, L. Q.; Ji, Y.; Su, Y.; Kuang, Y., Global stability of endemic equilibrium point of basic virus infection model with application to HBV infection, Journal of Systems Science and Complexity, 23, 6, 1221-1230 (2009) · Zbl 1402.92416 · doi:10.1007/s11424-010-8467-0
[3] Huang, G.; Ma, W.; Takeuchi, Y., Global properties for virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 22, 11, 1690-1693 (2009) · Zbl 1178.37125 · doi:10.1016/j.aml.2009.06.004
[4] Huang, G.; Yokoi, H.; Takeuchi, Y.; Kajiwara, T.; Sasaki, T., Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics, Japan Journal of Industrial and Applied Mathematics, 28, 3, 383-411 (2011) · Zbl 1226.92049 · doi:10.1007/s13160-011-0045-x
[5] Zhang, T. Q.; Wang, J. L.; Li, Y.; Jiang, Z.; Han, X. F., Dynamics analysis of a delayed virus model with two different transmission methods and treatments, Advances in Difference Equations, 2020, 1, 1-17 (2020) · Zbl 1487.92057 · doi:10.1186/s13662-019-2438-0
[6] Wang, W.; Ma, W. B.; Feng, Z. S., Dynamics of reaction-diffusion equations for modelling CD4^+ T cells decline with general infection mechanism and distinct dispersal rate, Nonlinear Analysis: Real World Applications, 51, 2 (2020) · Zbl 1429.35185 · doi:10.1016/j.nonrwa.2019.102976
[7] Yan, C.; Wang, W., Modeling HIV dynamics under combination therapy with inducers and antibodies, Bulletin of Mathematical Biology, 81, 7, 2625-2648 (2019) · Zbl 1417.92097 · doi:10.1007/s11538-019-00621-0
[8] Shi, R. Q.; Lu, T.; Wang, C. H., Dynamic analysis of a fractional order delayed model for hepatitis B virus with CTL immune response, Virus Research, 277, 2 (2020) · doi:10.1016/j.virusres.2019.197841
[9] He, S.; Tang, S. Y.; Tang, S.; Rong, L., A discrete stochastic model of the COVID-19 outbreak: forecast and control, Mathematical Biosciences and Engineering, 17, 4, 2792-2804 (2020) · Zbl 1467.92200 · doi:10.3934/mbe.2020153
[10] Perelson, A. S., Modelling viral and immune system dynamics, Nature Reviews Immunology, 2, 1, 28-36 (2002) · doi:10.1038/nri700
[11] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C.; McDade, H., Viral dynamics in hepatitis B virus infection, Proceedings of the National Academy of Sciences, 93, 9, 4398-4402 (1996) · doi:10.1073/pnas.93.9.4398
[12] Lau, G. K.; Tsiang, M.; Hou, J., Combination therapy with lamivudine and famciclovir for chronic hepatitis B-infected Chinese patients: a viral dynamics study, Hepatology, 32, 2, 394-399 (2000) · doi:10.1053/jhep.2000.9143
[13] Zhang, L.; Huang, G.; Liu, A.; Fan, R., Stability analysis for a fractional HIV infection model with nonlinear incidence, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.92208 · doi:10.1155/2015/563127
[14] Arafa, A. A. M.; Rida, S. Z.; Khalil, M., A fractional-order model of HIV infection with drug therapy effect, Journal of the Egyptian Mathematical Society, 22, 3, 538-543 (2014) · Zbl 1306.34075 · doi:10.1016/j.joems.2013.11.001
[15] Wang, Y.; Liu, L.; Zhang, X.; Wu, Y., Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Applied Mathematics and Computation, 258, 312-324 (2015) · Zbl 1338.92143 · doi:10.1016/j.amc.2015.01.080
[16] Yan, Y.; Kou, C., Stability analysis for a fractional differential model of HIV infection of CD4^+ T-cells with time delay, Mathematics and Computers in Simulation, 82, 9, 1572-1585 (2012) · Zbl 1253.92037 · doi:10.1016/j.matcom.2012.01.004
[17] Salman, S. M.; Yousef, A. M., On a fractional-order model for HBV infection with cure of infected cells, Journal of the Egyptian Mathematical Society, 25, 4, 445-451 (2017) · Zbl 1380.92041 · doi:10.1016/j.joems.2017.06.003
[18] Cardoso, L. C.; Dos Santos, F. L. P.; Camargo, R. F., Analysis of fractional-order models for hepatitis B, Computational and Applied Mathematics, 37, 4, 4570-4586 (2018) · Zbl 1401.92178 · doi:10.1007/s40314-018-0588-4
[19] Su, Y.; Zhao, L.; Min, L., Analysis and simulation of an adefovir anti-hepatitis B virus infection therapy immune model with alanine aminotransferase, IET Systems Biology, 7, 5, 205-213 (2013) · doi:10.1049/iet-syb.2012.0054
[20] Wang, K.; Wang, W.; Pang, H.; Liu, X., Complex dynamic behavior in a viral model with delayed immune response, Physica D: Nonlinear Phenomena, 226, 2, 197-208 (2007) · Zbl 1117.34081 · doi:10.1016/j.physd.2006.12.001
[21] Guo, B. Z.; Cai, L. M., A note for the global stability of a delay differential equation of hepatitis B virus infection, Mathematical Biosciences & Engineering, 8, 3, 689-694 (2012) · Zbl 1260.92051 · doi:10.3934/mbe.2011.8.689
[22] Tavares, D.; Almeida, R.; Torres, D. F. M., Caputo derivatives of fractional variable order: numerical approximations, Communications in Nonlinear Science and Numerical Simulation, 35, 69-87 (2016) · Zbl 07246627 · doi:10.1016/j.cnsns.2015.10.027
[23] Emvudu, Y.; Bongor, D.; Koïna, R., Mathematical analysis of HIV/AIDS stochastic dynamic models, Applied Mathematical Modelling, 40, 21-22, 9131-9151 (2016) · Zbl 1480.92195 · doi:10.1016/j.apm.2016.05.007
[24] Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A., On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358, 1, 1-4 (2006) · Zbl 1142.30303 · doi:10.1016/j.physleta.2006.04.087
[25] Huo, J.; Zhao, H.; Zhu, L., The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Analysis: Real World Applications, 26, 289-305 (2015) · Zbl 1371.92080 · doi:10.1016/j.nonrwa.2015.05.014
[26] Çiçek, M.; Yakar, C.; Oğur, B., Stability, boundedness, and Lagrange stability of fractional differential equations with initial time difference, The Scientific World Journal, 2014 (2014) · doi:10.1155/2014/939027
[27] Yin, W. J.; Wang, F.; Shen, L. P., The positive correlation of log hepatitis B virus (HBV) deoxyribonucleic acid load and log HBeAg and log antibody to HBeAg, Chinese Journal of Vaccines and Immunization, 18, 4, 316-319 (2012)
[28] Min, L. Q.; Su, Y. M.; Kuang, Y., Mathematical analysis of a basic virus infection model with application to HBV infection, Rocky Mountain Journal of Mathematics, 38, 5, 1573-1585 (2008) · Zbl 1194.34107 · doi:10.1216/RMJ-2008-38-5-1573
[29] Hellerstein, M.; Hanley, M. B.; Cesar, D., Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nature Medicine, 5, 1, 83-89 (1999) · doi:10.1038/4772
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.