×

Estimation of quantile density function based on regression quantiles. (English) Zbl 0818.62035

Summary: We propose two estimators of quantile density function in linear regression model. The estimators, either of histogram or of kernel types, are based on regression quantiles and extend the M. Falk [ibid. 4, 69-73 (1986; Zbl 0585.62076)] estimators based on order statistics from the location to the linear regression model. Unlike various other estimators proposed in the literature, our estimators are regression invariant and scale equivariant and hence applicable in estimation, testing, bounded-length confidence interval estimation and other inference based on \(L_ 1\)-norm.

MSC:

62G07 Density estimation
62J05 Linear regression; mixed models

Citations:

Zbl 0585.62076
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bassett, G.; Koenker, R., Asymptotic theory of least absolute error regression, J. Amer. Statist. Assoc., 73, 618-622 (1978) · Zbl 0391.62046
[2] Bloch, D. A.; Gastwirth, J. L., On a simple estimate of the reciprocal of the density function, Ann. Math. Statist., 36, 457-462 (1968)
[3] Bofinger, E., Estimation of a density function using the order statistics, Austral. J. Statist., 17, 1-7 (1975) · Zbl 0346.62038
[4] Csörgö, M.; Révész, P., Strong approximation of the quantile process, Ann. Statist., 6, 882-894 (1978) · Zbl 0378.62050
[5] Dodge, Y.; Antoch, J.; Jurečková, J., Adaptive combination of least squares and least absolute deviation estimators: Computational aspects, Comput. Statist. Data Anal., 12, 87-99 (1991) · Zbl 0825.62575
[6] Dodge, Y.; Jurečková, J., Adaptive combination of least squares and of least absolute deviations estimators, (Dodge, Y., Statist. Data Analysis based on \(L_1\)-norm and Rel. Methods (1987), Elsevier: Elsevier Amsterdam), 275-284 · Zbl 0825.62575
[7] Dodge, Y.; Jurečková, J., Adaptive combination of \(M\)-estimator and \(L_1\)-estimator in the linear model, (Dodge, Y.; Fedorov, V. V.; Wynn, H. P., Optimal Design and Analysis of Experiments (1988), Elsevier: Elsevier Amsterdam), 167-176
[8] Dodge, Y.; Jurečková, J., Flexible \(L\)-estimation in the linear model, Comput. Statist. Data Anal., 12, 211-220 (1991) · Zbl 0870.62052
[9] Dodge, Y.; Jurečková, J., A class of estimators based on adaptive convex combinations of two estimation procedures, (Dodge, Y., \(L_1\)-Statistical Analysis and Related Methods (1992), Elsevier: Elsevier Amsterdam), 31-44
[10] Epanechnikov, V. A., Nonparametric estimation of a multivariate probability density, Theor. Probab. Appl., 14, 153-158 (1969) · Zbl 0175.17101
[11] Falk, M., On the estimation of the quantile density function, Statist. Probab. Lett., 4, 69-73 (1986) · Zbl 0585.62076
[12] Geertsema, J. C., A comparison of nonparametric sequential procedures for estimating a quantile, (Sen, P. K.; Salama, I. A., Order Statistics and Nonparametrics: Theory and Applications (1992), Elsevier: Elsevier Amsterdam), 101-113
[13] Gutenbrunner, C.; Jurečková, J., Regression rank scores and regression quantiles, Ann. Statist., 20, 305-330 (1992) · Zbl 0759.62015
[14] Jurečková, J., Regression quantiles and trimmed least squares estimator under a general design, Kybernetika, 20, 345-357 (1984) · Zbl 0561.62027
[15] Koenker, R., A comparison of asymptotic testing methods for \(L_1\)-regression, (Dodge, Y., Statistical Data Analysis Based on \(L_1\)-Norm and Rel. Methods (1987), Elsevier: Elsevier Amsterdam), 287-295
[16] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 33-50 (1978) · Zbl 0373.62038
[17] Koenker, R.; Bassett, G., Tests of linear hypotheses and \(L_1\) estimation, Econometrica, 50, 1577-1582 (1982) · Zbl 0497.62057
[18] Koenker, R.; Portnoy, S., \(L\)-estimation for the linear models, J. Amer. Statist. Assoc., 82, 851-857 (1987) · Zbl 0658.62078
[19] Lai, T. L.; Robbins, H.; Yu, K. F., Adaptive choice of mean or median in estimating the center of a symmetric distribution, (Proc. Nat. Acad. Sci. U.S.A., 80 (1983)), 5803-5806 · Zbl 0515.62029
[20] McKean, J.; Schrader, R. M., Least absolute errors analysis of variance, (Dodge, Y., Statistical Data Analysis Based on \(L_1\)-Norm and Rel. Methods (1987), Elsevier: Elsevier Amsterdam), 297-305
[21] Siddiqui, M. M., Distribution of quantiles in samples from a bivariate population, J. Res. Nat. Bur. Standards, 64B, 145-150 (1960) · Zbl 0096.13402
[22] Welsh, A. H., One-step \(L\)-estimators for the linear model, Ann. Statist., 16, 481 (1988) · Zbl 0655.62036
[23] Welsh, A. H., Kernel estimates of the sparsity function, (Dodge, Y., Statist. Data Analysis Based on the \(L_1\)-Norm and Rel. Methods (1987), Elsevier: Elsevier Amsterdam), 369-378
[24] Yang, S. S., A smooth nonparametric estimator of quantile function, J. Amer. Statist. Assoc., 80, 1004-1011 (1985) · Zbl 0593.62037
[25] Zeltermann, D., Smooth nonparametric estimation of the quantile function, J. Statist. Plann. Inference, 26, 339-352 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.