×

Multiple positive solutions for coupled Schrödinger equations with perturbations. (English) Zbl 1460.35129

Summary: For coupled Schrödinger equations with nonhomogeneous perturbations we give several results on the existence of multiple positive solutions. In particular in one case we consider perturbations of the permutation symmetry.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35J50 Variational methods for elliptic systems
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. Ackermann; T. Bartsch, Superstable manifolds of semilinear parabolic problems, J. Dyn. Differ. Equ., 17, 115-173 (2005) · Zbl 1129.35428 · doi:10.1007/s10884-005-3144-z
[2] S. Adachi; K. Tanaka, Four positive solutions for the semilinear elliptic equation: \(-\Delta u+u = a(x)u^p+f(x)\) in \(\mathbb{R}^N\), Calc. Var. Partial Differ. Equ., 11, 63-95 (2000) · Zbl 0987.35039 · doi:10.1007/s005260050003
[3] S. Alarcón, Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes, Commun. Pure Appl. Anal., 8, 1269-1289 (2009) · Zbl 1165.35362 · doi:10.3934/cpaa.2009.8.1269
[4] A. Bahri; H. Berestycki, Existence of forced oscillations for some nonlinear differential equations, Commun. Pure Appl. Math., 37, 403-442 (1984) · Zbl 0588.34028 · doi:10.1002/cpa.3160370402
[5] A. Bahri; P. L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Commun. Pure Appl. Math., 41, 1027-1037 (1988) · Zbl 0645.58013 · doi:10.1002/cpa.3160410803
[6] N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications, Springer, Berlin, Heidelberg, 1967. · Zbl 0155.42201
[7] D. M. Cao; H. S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \(\mathbb{R}^N\), Commun. Pure Appl. Math., 41, 1027-1037 (1988) · Zbl 0846.35042 · doi:10.1017/S0308210500022836
[8] T. Cazenave; P. L. Lions, Solutions globales d’equations de la chaleur semi lineaire, Commun. Partial Differ. Equ., 9, 955-978 (1984) · Zbl 0555.35067 · doi:10.1080/03605308408820353
[9] K. C. Chang, Infinite-dimensional Morse Theory and Multiple Solution Problems, Birkhäuser Boston, Inc., Boston, MA, 1993. · Zbl 0779.58005
[10] K. C. Chang, Heat method in nonlinear elliptic equations, in Topological Methods, Variational Methods and Their Applications, World Sci., (2003), 65-76. · Zbl 1058.35013
[11] K. C. Chang; Z. Q. Wang; T. Zhang, On a new index theory and non semi-trivial solutions for elliptic systems, Discrete Contin. Dyn. Syst., 28, 809-826 (2010) · Zbl 1193.35036 · doi:10.3934/dcds.2010.28.809
[12] M. Conti; L. Merizzi; S. Terracini, Radial Solutions of Superlinear Equations on \(\mathbb{R}^N \). Part I: Global Variational Approach, Arch. Ration. Mech. Anal., 153, 291-316 (2000) · Zbl 0961.35043 · doi:10.1007/s002050050015
[13] D. Daners and P. K. Medina, Abstract Evolution Equations, Periodic Problems, and Applications, Longman Scientific and Technical, 1992. · Zbl 0789.35001
[14] E. N. Dancer; J. Wei; T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. I. H. Poincare, 27, 953-969 (2010) · Zbl 1191.35121 · doi:10.1016/j.anihpc.2010.01.009
[15] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 2008.
[16] N. Hirano; W. Zou, A perturbation method for multiple sign-changing solutions, Calc. Var. Partial Differ. Equ., 37, 87-98 (2010) · Zbl 1186.35041 · doi:10.1007/s00526-009-0253-2
[17] L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Differ. Integral Equ., 10, 609-624 (1997) · Zbl 0890.35048
[18] Y. Li; Z. Liu; C. Zhao, Nodal solutions of a perturbed elliptic problem, Topol. Methods Nonlinear Anal., 32, 49-68 (2008) · Zbl 1173.35497
[19] H. Li and Z. Q. Wang, Multiple nodal solutions having shared componentwise nodal numbers for coupled Schrödinger equations, arXiv: 2005.13860v1.
[20] J. Liu; X. Liu; Z. Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differ. Equ., 52, 565-586 (2015) · Zbl 1311.35291 · doi:10.1007/s00526-014-0724-y
[21] Z. Liu; Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Commun. Math. Phys., 282, 721-731 (2008) · Zbl 1156.35093 · doi:10.1007/s00220-008-0546-x
[22] Z. Liu; Z. Q. Wang, Ground States and Bound States of a Nonlinear Schrödinger System, Adv. Nonlinear Stud., 10, 175-193 (2010) · Zbl 1198.35067 · doi:10.1515/ans-2010-0109
[23] W. Long and S. Peng, Positive vector solutions for a Schrödinger system with external source terms, Nonlinear Differ. Equ. Appl., 27 (2020), 36 pp. · Zbl 1460.35123
[24] P. Quittner, Boundedness of trajectories of parabolic equations and stationary solutions via dynamical methods, Differ. and Integral Equ., 7, 1547-1556 (1994) · Zbl 0809.35045
[25] P. H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, T. Am. Math. Soc., 272, 753-769 (1982) · Zbl 0589.35004 · doi:10.2307/1998726
[26] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, 1986. · Zbl 0609.58002
[27] K. Tanaka, Morse indices at critical points related to the symmetric mountain pass theorem and applications, Commun. Partial Differ. Equ., 14, 99-128 (1989) · Zbl 0669.34035 · doi:10.1080/03605308908820592
[28] R. Tian; Z. Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topo. Methods Nonlinear Anal., 37, 203-223 (2011) · Zbl 1308.76179 · doi:10.1016/j.matcom.2011.02.010
[29] J. Wei; T. Weth, Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations, Arch. Ration. Mech. Anal., 190, 83-106 (2008) · Zbl 1161.35051 · doi:10.1007/s00205-008-0121-9
[30] J. Wei; W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11, 1003-1011 (2012) · Zbl 1264.35237 · doi:10.3934/cpaa.2012.11
[31] X. Yue; W. Zou, Infinitely many solutions for the perturbed Bose-Einstein condensates system, Nonlinear Anal., 94, 171-184 (2014) · Zbl 1285.35026 · doi:10.1016/j.na.2013.08.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.