×

Geometric probability on the sphere. (English) Zbl 1401.60019

This is a beautiful, expository paper containing many interesting results from geometric probability on the surface of a ball in three-dimensional space. The authors carefully develop the geometric machinery needed to present their arguments in an intuitive, elementary and elegant way.
In Section 2, basics of spherical geometry are recalled including Lambert’s cylindrical projection, convex polygons/sets on the sphere, polar sets and the duality theorem. The authors use these tools to study random convex polygons on the sphere in Section 3. In particular, they provide expectations for the perimeter and area of spherical triangles determined by three random points as well as probabilities for the shape of the convex hull of 4 and 5 random points. The authors remark on difficulties when increasing the number of points and formulate two problems for future research. In Section 4, Crofton’s formula as well as Santaló’s chord theorem are derived. This sets the stage for the study of random spherical caps in Section 5. For example, in Theorem 5.1 a lower bound is given for the probability that the union of \(N\) random spherical caps is connected and two more open problems are formulated. The authors also discuss the coverage problem, i.e., given \(N\) spherical caps of the same size, what is the probability that they cover the sphere? The paper is concluded in Section 6 with a glimpse into higher dimensions.

MSC:

60D05 Geometric probability and stochastic geometry
52A22 Random convex sets and integral geometry (aspects of convex geometry)
53C65 Integral geometry
60-02 Research exposition (monographs, survey articles) pertaining to probability theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aigner, M., Ziegler, G.M.: Proofs from the Book. Springer, Berlin (1993). Reprint · Zbl 0905.00001
[2] Ambartzumyan, R.V., Mecke, J., Stoyan, D.: Geometrische Wahrscheinlichkeiten und stochastische Geometrie. Akademie-Verlag, Berlin (1993) · Zbl 0802.60013
[3] Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964). Translated by M. Butler · Zbl 0144.06802
[4] Berger, M.: Geometry I and II. Springer, Berlin (1980)
[5] Bigalke, H.-G.: Kugelgeometrie. Otto Salle Verlag, Frankfurt am Main (1984) · Zbl 0536.51007
[6] Blatter, C.: Four shot for a convex quadrilateral. Am. Math. Mon. 115, 837-843 (2008) · Zbl 1192.60026
[7] Blaschke, W., Leichtweiss, K.: Elementare Differentialgeometrie. Springer, Berlin (1973) · Zbl 0264.53001 · doi:10.1007/978-3-642-49193-1
[8] Bonnesen, T., Fenchel, W.: Theory of Convex Bodies. BCS Associates, Moscow (1987). Translated from the German edition from 1934 · Zbl 0628.52001
[9] Brummelen, G.V.: Heavenly Mathematics—the Forgotten Art of Spherical Trigonometry. Princeton University Press, Princeton (2013) · Zbl 1273.51003
[10] Burago, Yu.D., Zalgaller, V.A.: Geometric Inequalities. Grundlehren Math. Wiss., vol. 285. Springer, Berlin (1988). Translated from the Russian · Zbl 0633.53002 · doi:10.1007/978-3-662-07441-1
[11] Cai, T., Fan, J., Jiang, T.: Distribution of angles in random packing on spheres. J. Mach. Learn. Res. 14, 1837-1864 (2013) · Zbl 1318.60017
[12] Chiu, S.K., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. J. Wiley & Sons, Chichester (2013) · Zbl 1291.60005 · doi:10.1002/9781118658222
[13] Feeman, T.G.: Portraits of the Earth. A Mathematician Looks at Maps. Mathematical World, vol. 18. American Mathematical Society, Providence (2002) · Zbl 1119.00002 · doi:10.1090/mawrld/018
[14] Frankl, P., Maehara, H.: Some geometric applications of the beta distribution. Ann. Inst. Stat. Math. 42, 463-474 (1990) · Zbl 0726.60012 · doi:10.1007/BF00049302
[15] Gardner, R.J.: Geometric Tomography, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 58. Cambridge University Press, New York (2006) · Zbl 1102.52002 · doi:10.1017/CBO9781107341029
[16] Giering, O.: Über gewisse Kennzeichnungen der Kugel. Math.-Phys. Semesterber. 18, 194-204 (1971) · Zbl 0236.53008
[17] Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications, vol. 61. Cambridge University Press, Cambridge (1996) · Zbl 0877.52002 · doi:10.1017/CBO9780511530005
[18] Hilbert, D., Cohn-Vossen, S.: Anschauliche Geometrie, 2nd edn. Springer, Berlin/Heidelberg (1996) · JFM 58.0597.01 · doi:10.1007/978-3-642-19948-6
[19] Hoel, P.G., Port, S.C., Stone, C.J.: Introduction to Probability Theory. Houghton Mifflin Company, Boston (1971) · Zbl 0258.60002
[20] Hykšová, M., Geometric probability applications through historical excursion, 211-222 (2011), Vienna
[21] Hykšová, M., Kalousová, A., Saxl, I.: Early history of geometric probability and stereology. Image Anal. Stereol. 31(1), 1-16 (2012) · Zbl 1356.60008 · doi:10.5566/ias.v31.p1-16
[22] Kendall, W.S., Molchanov, I. (eds.): New Perspectives in Stochastic Geometry. Oxford Univ. Press, Oxford (2010) · Zbl 1183.60001
[23] Kendall, M.G., Moran, P.A.P.: Geometric Probability. Charles Griffin and Company, London (1963) · Zbl 0105.35002
[24] Klain, D.A., Rota, G.C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997) · Zbl 0896.60004
[25] Laugwitz, D.: Differential and Riemannian Geometry. Academic Press, New York/London (1965) · Zbl 0139.38903
[26] Maeda, Y.; Maehara, H., Observing an angle from various viewpoints, No. 2866, 200-203 (2003) · Zbl 1179.52024
[27] Maehara, H.: On Sylvester’s problem. Proc. Inst. Stat. Math., Tokyo 25, 81-86 (1978). (In Japanese) · Zbl 0383.60014
[28] Maehara, H.: A threshold for the size of random caps to cover a sphere. Ann. Inst. Stat. Math. 40, 665-670 (1988) · Zbl 0681.60017 · doi:10.1007/BF00049424
[29] Maehara, H.: On a condition for the union of spherical caps to be connected. J. Comb. Theory, Ser. A 101/102, 264-270 (2003) · Zbl 1014.05042 · doi:10.1016/S0097-3165(02)00008-0
[30] Maehara, H.: When does the union of spherical caps become connected? Ann. Inst. Stat. Math. 56, 397-402 (2004) · Zbl 1064.60019 · doi:10.1007/BF02530553
[31] Mathai, A.M.: An Introduction to Geometrical Probability. Gordon & Breach, Newark (1999) · Zbl 0968.60001
[32] Melzak, Z.A.: Invitation to Geometry. John Wiley & Sons Inc., New York (1983) · Zbl 0584.51001
[33] Miles, R.E.: On random rotations in R \(3R^3\). Biometrika 52, 636-639 (1965) · Zbl 0134.33804
[34] Miles, R.E.: Random points, sets and tessellations on the surface of a sphere. Sankya A 33, 145-174 (1971) · Zbl 0243.60014
[35] Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics, 3rd edn. McGraw-Hill Series in Probability and Statistics. McGraw-Hill Book Company, New York (1974) · Zbl 0277.62002
[36] Moran, P.A.P.: An Introduction to Probability Theory. Clarendon Press, Oxford (1968) · Zbl 0169.48602
[37] Muirhead, R.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982) · Zbl 0556.62028 · doi:10.1002/9780470316559
[38] Penrose, M.D., Wade, A.R.: Multivariate normal approximation in geometric probability. J. Stat. Theory Pract. 2, 293-326 (2008) · Zbl 1420.60010 · doi:10.1080/15598608.2008.10411876
[39] Penrose, M. D.; Yukich, J. E.; Barbour, A. D. (ed.); Chen, L. H.Y. (ed.), Normal approximation in geometric probability, 37-58 (2005), Singapore · doi:10.1142/9789812567673_0003
[40] Rényi, A.: On a one-dimensional problem concerning random place filling. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 3, 109-127 (1958). (In Hungarian) · Zbl 0105.11903
[41] Santaló, L.A.: Integral formulas in Crofton’s style on the sphere and some inequalities referring to spherical curves. Duke Math. J. 9, 707-722 (1942) · Zbl 0063.06699 · doi:10.1215/S0012-7094-42-00949-9
[42] Santaló, L.A.: Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and Its Applications, vol. 1. Addison-Wesley, London (1976) · Zbl 0342.53049
[43] Schmidt, V. (ed.): Stochastic Geometry, Spatial Statistics and Random Fields. Models and Algorithms. Lecture Notes Math., vol. 2120. Springer, Berlin (2015)
[44] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications, vol. 151. Cambridge University Press, Cambridge (2008) · Zbl 1175.60003 · doi:10.1007/978-3-540-78859-1
[45] Seneta, E., Parshall, K.H., Jongmans, F.: Nineteenth century developments in geometric probability: J.J. Sylvester, M.W. Crofton, J.-É. Barbier, and J. Bertrand. Arch. Hist. Exact Sci. 55, 501-524 (2001) · Zbl 1160.01313 · doi:10.1007/s004070100038
[46] Solomon, H.: Geometric Probability. Society for Industrial and Applied Mathematics, Philadelphia (1978) · Zbl 0382.60016 · doi:10.1137/1.9781611970418
[47] Vitale, R.A.: Geometric probability. Math. Model. 1, 375-379 (1980) · Zbl 0513.60019 · doi:10.1016/0270-0255(80)90047-0
[48] Watson, S., Random points on hyperplanes, Oberwolfach, New York
[49] Weil, W.; Wieacker, J. A., Stochastic geometry, 1391-1438 (1993), Amsterdam · Zbl 0788.52002 · doi:10.1016/B978-0-444-89597-4.50023-8
[50] Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109-111 (1962) · Zbl 0108.31603 · doi:10.7146/math.scand.a-10655
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.