×

On human-robot interaction of a 3-DOF decoupled parallel mechanism based on the design and construction of a novel and low-cost 3-DOF force sensor. (English) Zbl 1427.70013

Summary: This paper addresses the extension of a 3-degrees-of-freedom (3-DOF) decoupled parallel mechanism for human-robot interaction purposes. To this end, a low-cost 3-DOF force sensor for human-robot interaction applications is proposed, designed and constructed. In the latter force sensor, five load cells are placed in order to identify the amount of the applied force along each Cartesian direction. In addition, an experimental identification procedure based on least square method is carried out in order to obtain the first and third degree polynomial models of the sensor output model. From the practical tests it has been reveled that the force sensor has a reasonable precision of 0.1 N in both \(x\) and \(y\)-axes and 0.2 N in \(z\)-axis, within a range of 5 N which is suitable for human-robot interaction applications. Then, using the proposed force sensor, two control methods, namely ”position control” and ”speed control” are applied for human-robot interaction purposes and their performances are compared.

MSC:

70B15 Kinematics of mechanisms and robots
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mousavi MA, Masouleh MT, Karimi A (2014) On the maximal singularity-free ellipse of planar 3-RPR parallel mechanisms via convex optimization. Robot Comput Integr Manuf 30(2):218-227 · doi:10.1016/j.rcim.2013.09.012
[2] Pierrot F, Reynaud C, Fournier A (1990) Delta: a simple and efficient parallel robot. Robotica 8(02):105-109 · doi:10.1017/S0263574700007669
[3] Masouleh MT, Gosselin C (2011) Singularity analysis of 5-RPUR parallel mechanisms (3T2R). Int J Adv Manuf Technol 57(9-12):1107-1121 · doi:10.1007/s00170-011-3349-8
[4] Kong X, Gosselin CM (2004) Type synthesis of 3-DOF translational parallel manipulators based on screw theory. J Mech Des 126(1):83-92 · doi:10.1115/1.1637662
[5] Briot S, Bonev IA (2010) Pantopteron-4: a new 3T1R decoupled parallel manipulator for pick-and-place applications. Mech Mach Theory 45(5):707-721 · Zbl 1359.70007 · doi:10.1016/j.mechmachtheory.2009.07.007
[6] Da Silva MM, De Oliveira LP, Brüls O, Michelin M, Baradat C, Tempier O, De Caigny J, Swevers J, Desmet W, Van Brussel H (2010) Integrating structural and input design of a 2-DOF high-speed parallel manipulator: a flexible model-based approach. Mech Mach Theory 45(11):1509-1519 · Zbl 1203.70026 · doi:10.1016/j.mechmachtheory.2010.07.002
[7] Qin H, Song A, Liu Y, Jiang G, Zhou B (2015) Design and calibration of a new 6 dof haptic device. Sensors 15(12):31,293-31,313 · doi:10.3390/s151229857
[8] Dong W, Du Z, Xiao Y, Chen X (2013) Development of a parallel kinematic motion simulator platform. Mechatronics 23(1):154-161 · doi:10.1016/j.mechatronics.2012.10.004
[9] Huang T, Wang P, Zhao X, Chetwynd DG (2010) Design of a 4-DOF hybrid pkm module for large structural component assembly. CIRP Ann Manuf Technol 59(1):159-162 · doi:10.1016/j.cirp.2010.03.098
[10] Masouleh MT, Gosselin C, Saadatzi MH, Kong X, Taghirad HD (2011) Kinematic analysis of 5-RPUR (3T2R) parallel mechanisms. Meccanica 46(1):131-146 · Zbl 1370.70017 · doi:10.1007/s11012-010-9393-x
[11] Clavel R (1990) Device for the movement and positioning of an element in space. US Patent 4,976,582 · Zbl 1203.70026
[12] Tsai LW, Joshi S (2001) Comparison study of architectures of four 3 degree-of-freedom translational parallel manipulators. In: Proceedings 2001 IEEE international conference on robotics and automation, ICRA, vol 2, pp 1283-1288 · Zbl 1359.70007
[13] Qiong J, Tingli Y (2001) Position analysis for a class of novel 3-DOF translational parallel robot mechanisms. J Southeast Univ 5:007
[14] Frisoli A, Checcacci D, Salsedo F, Bergamasco M (2000) Synthesis by screw algebra of translating in-parallel actuated mechanisms. In: Advances in robot kinematics, Springer, Berlin, pp 433-440
[15] Lou Y, Li Z, Zhong Y, Li J, Li Z (2011) Dynamics and contouring control of a 3-DOF parallel kinematics machine. Mechatronics 21(1):215-226 · doi:10.1016/j.mechatronics.2010.10.007
[16] Gosselin C, Kong X (2004) Cartesian parallel manipulators. US Patent 6,729,202
[17] Gosselin CM, Masouleh MT, Duchaine V, Richard PL, Foucault S, Kong X (2007) Parallel mechanisms of the multipteron family: kinematic architectures and benchmarking. In: 2007 IEEE international conference on robotics and automation, pp 555-560
[18] Chablat D, Wenger P (2003) Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Trans Robot Autom 19(3):403-410 · doi:10.1109/TRA.2003.810242
[19] Briot S, Bonev I (2009) Pantopteron: a new fully decoupled 3DOF translational parallel robot for pick-and-place applications. J Mech Robot 1(2):021,001 · doi:10.1115/1.3046125
[20] Goodrich MA, Schultz AC (2007) Human-robot interaction: a survey. Found Trends Hum Comput Interact 1(3):203-275 · Zbl 1187.68620 · doi:10.1561/1100000005
[21] Duchaine V, Gosselin CM (2007) General model of human-robot cooperation using a novel velocity based variable impedance control. In: EuroHaptics conference, 2007 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics 2007. Second Joint, pp 446-451
[22] Duchaine V (2010) Commande des robots destinés à interagir physiquement avec l’humain. PhD thesis, Université Laval · Zbl 1187.68620
[23] Grunwald G, Schreiber G, Albu-Schaffer A, Hirzinger G (2001) Touch: The direct type of human interaction with a redundant service robot. In: Proceedings of 10th IEEE international workshop on robot and human interactive communication, 2001, pp 347-352
[24] Kobayashi S, Muis A, Ohnishi K (2005) Sensorless cooperation between human and mobile manipulator. In: IEEE international conference on industrial technology, ICIT, 2005, pp 811-816
[25] Ikeura R, Inooka H (1995) Variable impedance control of a robot for cooperation with a human. In: Proceedings—IEEE international conference on robotics and automation, 1995, vol 3, pp 3097-3102
[26] Song A, Wu J, Qin G, Huang W (2007) A novel self-decoupled four degree-of-freedom wrist force/torque sensor. Measurement 40(9):883-891 · doi:10.1016/j.measurement.2006.11.018
[27] Lee J (1987) Apply force/torque sensors to robotic applications. Robotics 3(2):189-194 · doi:10.1016/0167-8493(87)90007-6
[28] Yao J, Zhang H, Zhang W, Xu Y, Zhao Y (2015) Fault-tolerant parallel six-component force sensor. Meccanica 51(7):1639-1651 · Zbl 1342.70012 · doi:10.1007/s11012-015-0299-5
[29] Gobbi M, Mastinu G, Pennati M (2008) Indoor testing of road vehicle suspensions. Meccanica 43(2):173-184 · Zbl 1291.74090 · doi:10.1007/s11012-008-9119-5
[30] Jin W, Mote C Jr (1997) Development and calibration of a submillimeter three-component force sensor. In: International conference on experimental mechanics: advances and applications, international society for optics and photonics, pp 364-369
[31] Ohka M, Yussof HB, Kobayashi H, Suzuki H, Takata J, Morisawa N (2008) Optical three-axis tactile sensor for robotic fingers. INTECH Open Access Publisher
[32] Peirs J, Clijnen J, Reynaerts D, Van Brussel H, Herijgers P, Corteville B, Boone S (2004) A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sens Actuators A Phys 115(2):447-455 · doi:10.1016/j.sna.2004.04.057
[33] Hirose S, Yoneda K (1990) Development of optical six-axial force sensor and its signal calibration considering nonlinear interference. In: 1990 IEEE international conference on robotics and automation, pp 46-53
[34] Voyles RM, Morrow JD, Khosla PK (1997) The shape from motion approach to rapid and precise force/torque sensor calibration. J Dyn Syst Meas Control 119(2):229-235 · Zbl 0900.93106 · doi:10.1115/1.2801238
[35] Ma J, Song A, Xiao J (2012) A robust static decoupling algorithm for 3-axis force sensors based on coupling error model and \[\varepsilon\] ε-SVR. Sensors 12(11):14537-14555 · doi:10.3390/s121114537
[36] Ma J, Song A (2013) Fast estimation of strains for cross-beams six-axis force/torque sensors by mechanical modeling. Sensors 13(5):6669-6686 · doi:10.3390/s130506669
[37] Ma J, Song A, Pan D (2013) Dynamic compensation for two-axis robot wrist force sensors. J Sens. doi:10.1155/2013/357396 · doi:10.1155/2013/357396
[38] Carricato M, Parenti-Castelli V (2003) A family of 3-DOF translational parallel manipulators. J Mech Des 125(2):302-307 · Zbl 1047.70007 · doi:10.1115/1.1563635
[39] Stan S, Balan R, Maties V (2008) Modelling, design and control of 3DOF medical parallel robot. Mechanika 6(74):68-71
[40] Iaccarino P, Langella A, Caprino G (2007) A simplified model to predict the tensile and shear stress-strain behaviour of fibreglass/aluminium laminates. Compos Sci Technol 67(9):1784-1793 · doi:10.1016/j.compscitech.2006.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.