×

Cell-based volume integration for boundary integral analysis. (English) Zbl 1242.65253

Summary: The evaluation of volume integrals that arise in boundary integral formulations for non-homogeneous problems was considered. Using the ”Galerkin vector” to represent the Green’s function, the volume integral was decomposed into a boundary integral, together with a volume integral wherein the source function was everywhere zero on the boundary. This new volume integral can be evaluated using a regular grid of cells covering the domain, with all cell integrals, including partial cells at the boundary, evaluated by simple linear interpolation of vertex values. For grid vertices that lie close to the boundary, the near-singular integrals were handled by partial analytic integration. The method employed a Galerkin approximation and was presented in terms of the three-dimensional Poisson problem. An axisymmetric formulation was also presented, and in this setting, the solution of a nonlinear problem was considered.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs

Software:

BEAN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (1992) · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[2] Bush, Numerical solution of viscous flows using integral equation method, International Journal for Numerical Methods in Fluids 3 (1) pp 71– (1983) · Zbl 0515.76030 · doi:10.1002/fld.1650030107
[3] Tosaka, Integral equation formulation with the primitive variables for incompressible viscous fluid flow problems, Computational Mechanics 4 pp 89– (1989) · Zbl 0668.76031 · doi:10.1007/BF00282412
[4] Toose, Axisymmetric non-Newtonian drops treated with a boundary integral method, Journal of Engineering Mathematics 30 pp 131– (1996) · Zbl 0887.76006 · doi:10.1007/BF00118827
[5] Florez, Conservative interpolation for the boundary integral solution of the Navier-Stokes equations, Computational Mechanics 26 pp 507– (2000) · Zbl 1012.76062 · doi:10.1007/s004660000187
[6] Biros, Proceedings of the International Association for Boundary Element Methods (2002)
[7] Graziani, From a boundary integral formulation to a vortex method for viscous flows, Computational Mechanics 15 pp 301– (1995) · Zbl 0824.76051 · doi:10.1007/BF00372269
[8] Hsiao, The evaluation of domain integrals in complex multiply-connected three-dimensional geometries for boundary element methods, Computational Mechanics 32 pp 226– (2003) · Zbl 1035.65139 · doi:10.1007/s00466-003-0479-3
[9] Partridge, The Dual Reciprocity Boundary Element Method (1992) · Zbl 0712.73094
[10] Rashed, Transformation of Domain Effects to the Boundary (2003) · Zbl 1031.65001
[11] Nowak, The multiple-reciprocity method. A new approach for transforming BEM domain integrals to the boundary, EABE 6 (3) pp 164– (1989)
[12] Goldberg, Some comments on the use of radial basis functions in the dual reciprocity method, Computational Mechanics 21 (2) pp 141– (1998) · Zbl 0931.65116 · doi:10.1007/s004660050290
[13] Ingber, A comparison of domain integral evaluation techniques for boundary element methods, International Journal for Numerical Methods in Engineering 52 pp 417– (2001) · Zbl 0984.65124 · doi:10.1002/nme.217
[14] Portapila, Boundary Element Technology XIV pp 343– (2001)
[15] Zheng, A boundary element approach for non-linear boundary-value problems, Computational Mechanics 8 pp 71– (1991) · Zbl 0732.73064 · doi:10.1007/BF00350612
[16] Gao, The radial integration methods for evaluation of domain integrals with boundary-only discretization, Engineering Analysis with Boundary Elements 26 pp 905– (2002) · Zbl 1130.74461 · doi:10.1016/S0955-7997(02)00039-5
[17] Hematiyan, A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM, Computational Mechanics 39 pp 509– (2007) · Zbl 1160.74049 · doi:10.1007/s00466-006-0050-0
[18] Fata, Treatment of domain integrals in boundary element methods, Applied Numerical Mathematics (2010) · Zbl 1237.65132
[19] Greengard, A fast Poisson solver for complex geometries, Journal of Computational Physics 118 pp 348– (1995) · Zbl 0823.65115 · doi:10.1006/jcph.1995.1104
[20] Brown, Parallel multipole implementation of the generalized Helmholtz decomposition for solving viscous flow problems, International Journal for Numerical Methods in Engineering 58 pp 1617– (2003) · Zbl 1032.76650 · doi:10.1002/nme.830
[21] Of, Fast evaluation of volume potentials in boundary element methods, SIAM Journal on Scientific Computing 32 pp 585– (2010) · Zbl 1233.65095 · doi:10.1137/080744359
[22] Mammoli, Solution of non-linear integral equations in complex geometries with auxiliary integral subtraction, International Journal for Numerical Methods in Engineering 55 pp 1115– (2002) · Zbl 1013.65129 · doi:10.1002/nme.539
[23] Ding, An accelerated surface discretization-based BEM approach for non-homogeneous linear problems in 3-D complex domains, International Journal for Numerical Methods in Engineering 63 (12) pp 1775– (2005) · Zbl 1090.65136 · doi:10.1002/nme.1346
[24] Pierce, A spectral multipole method for efficient solution of large-scale boundary element models in elastostatics, International Journal for Numerical Methods in Engineering 38 pp 4009– (1995) · Zbl 0852.73076 · doi:10.1002/nme.1620382307
[25] Phillips, A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16 pp 1059– (1997) · Zbl 05449263 · doi:10.1109/43.662670
[26] Ye, Air damping in lateral oscillating micro resonators: a numerical and experimental study, Journal of Microelectromechanical Systems 12 (5) pp 1– (2003)
[27] Fata, Fast Galerkin BEM for 3D potential theory, Computational Mechanics 42 (3) pp 417– (2008) · Zbl 1163.65088 · doi:10.1007/s00466-008-0251-9
[28] Fata, A fast spectral Galerkin method for hypersingular boundary integral equations in potential theory, Computational Mechanics 44 (2) pp 263– (2009) · Zbl 1165.74046 · doi:10.1007/s00466-009-0373-8
[29] Bonnet, Boundary Integral Equation Methods for Solids and Fluids (1995)
[30] Aliabadi, The Boundary Element Method II (2002)
[31] Bebendorf, Lecture Notes in Computational Science and Engineering (LNCSE) 63, in: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems (2008) · Zbl 1151.65090
[32] Sutradhar, The Symmetric Galerkin Boundary Element Method (2008) · Zbl 1156.65101
[33] Fata, Explicit expressions for 3D boundary integrals in potential theory, International Journal for Numerical Methods in Engineering 78 (1) pp 32– (2009) · Zbl 1183.65155 · doi:10.1002/nme.2472
[34] Salvadori, Analytical integrations in 3D BEM for elliptic problems: evaluation and implementation, International Journal for Numerical Methods in Engineering 84 (5) pp 505– (2010) · Zbl 1202.65163
[35] Garzon, Numerical simulation of non-viscous liquid pinch-off using a coupled level set-boundary integral method, Journal of Computational Physics 228 (17) pp 6079– (2009) · Zbl 1173.76030 · doi:10.1016/j.jcp.2009.04.048
[36] Gray, Boundary integral evaluation of surface derivatives, SIAM Journal on Scientific Computing 26 (1) pp 294– (2004) · Zbl 1075.65141 · doi:10.1137/S1064827502406002
[37] Gray, Galerkin boundary integral analysis for the axisymmetric Laplace equation, International Journal for Numerical Methods in Engineering 66 pp 2014– (2006) · Zbl 1114.65148 · doi:10.1002/nme.1613
[38] Milne-Thomson, Handbook of Mathematical Functions, Chapter17 pp 587– (1972) · Zbl 0239.73025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.