×

Super-twisting observer-based integral sliding mode control for tracking the rapid acceleration of a piston in a hybrid electro-hydraulic and pneumatic system. (English) Zbl 1422.93034

Summary: A new hybrid electro-hydraulic and pneumatic actuator system and its dynamic model for high-performance control are presented. This work focuses on tracking control of rapidly changing acceleration that is an advanced area with various practical applications in industries. The impact motion control of the actuator is one of challenging task due to the system instability during the transition state. Since composite disturbances derived from the inaccurate and unmodeled dynamics considerably reduce the control performance. A novel structure of variable integral sliding mode controls integrated with a sliding mode disturbance observer is proposed based on the super-twisting algorithm. With the control strategy, not only does the controller overcome the extreme sensitivity of the system during rapid movements, but it also eliminates the internal parameter uncertainties and external load disturbance while tracking rapid gain-scheduled acceleration. The results of the numerical simulation and field experiment are presented to assess the effectiveness of the proposed control scheme.

MSC:

93B12 Variable structure systems
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hu, N. and Q. Yan, “ QA35Y‐16 hydraulic combined punching amp; shearing machine design,” 2nd Int. Conf. Consum. Electron. Commun. Networks, Yichang, China, pp. 448- 451 (2012).
[2] Kim, G.‐H., S. Rhim, S.‐k. Yun, S.‐H. Bum, S. Kang, and S.‐G. Lee, “ Adaptive trajectory shaping for liquid container manipulation,” ICMIT 2007 Mechatronics, MEMS, Smart Mater., Gifu, Japan, pp. 67940V- 1-67940V‐6(2008).
[3] Park, J., B. Lee, S. Kang, P. Y. Kim, and H. J. Kim, “ Online learning control of hydraulic excavators based on echo‐state networks,” IEEE Trans. Autom. Sci. Eng., Vol. 14, No. 1, pp. 249- 259 (2017).
[4] Chu, Y., F. Sanfilippo, and H. Zhang, “ An effective heave compensation and anti‐sway control approach for offshore hydraulic crane operations,” IEEE Int. Conf. Mechatronics Autom., Tianjin, China, pp. 1282- 1287 (2014).
[5] Walters, R. B., Hydraulic and Electro‐Hydraulic Control Systems, Elsevier Applied Science, Wembley, London(1991).
[6] Walters, R. B., Hydraulic and Electro‐Hydraulic Servo Systems, CRC Press, Cleveland (1967).
[7] Konami, S., Hydraulic Control System Vol. Theory and Practice, World Scientific Publishing Company, 5 Toh Tuck Link, Singapore (2016).
[8] Lansky, Z. J. and L. F. Schrader, Industrial Pneumatic Control (Fluid Power and Control, No. 6), CRC Press, 270 Madison Avenue, New York (1986).
[9] Dong, R., Q. n Tan, and Y. Tan, “ A nonsmooth nonlinear programming based predictive control for mechanical servo systems with backlash‐like hysteresis,” Asian J. Control, Vol. 20, No. 1, pp. 1519- 1532 (2018). · Zbl 1397.93102
[10] Sangpet, T., “ Force control of an electrohydraulic actuator using a fractional‐order controller,” Asian J. Control, Vol. 15, No. 3, pp. 764- 772 (2012). · Zbl 1327.93189
[11] Shen, W., Y. Mai, and J. Jiang, “ A new electric hydraulic actuator adopted the variable displacement pump,” Asian J. Control, Vol. 18, No. 1, pp. 178- 191 (2015). · Zbl 1338.93056
[12] Kheowree, T. and S. Kuntanapreeda, “ Adaptive dynamic surface control of an electrohydraulic actuator with friction compensation,” Asian J. Control, Vol. 17, No. 3, pp. 855- 867 (2015). · Zbl 1332.93170
[13] Wu, Y. and D. Yue, “ Desired compensation adaptive repetitive control of electrical‐optical gyro‐stabilized platform with high‐precision disturbance compensation,” Asian J. Control, Vol. 17, No. 3, pp. 855- 867 (2015). · Zbl 1390.93461
[14] Sugiyama, T. and K. Uchida, “ Gain‐scheduled velocity and force controllers for electrohydraulic servo system,” Electr. Eng. Jpn., Vol. 146, No. 3, pp. 65- 73 (2003).
[15] Moreno‐Valenzuela, J. and V. Santibáñez, “ Robust saturated pi joint velocity control for robot manipulators,” Asian J. Control, Vol. 15, No. 1, pp. 64- 79 (2013). · Zbl 1327.93283
[16] Liu, X., X. Sun, J. Guo, and R. Mou, “ Crash simulation and drop test of civil airplane fuselage section,” Proc. Int. Conf. Mechatron. Sci. Electr. Eng. Comput., Shengyang, China, pp. 3017- 3021 (2013).
[17] Jia, Y. and D. Cebon, “ Field testing of a cyclist collision avoidance system for heavy goods vehicles,” IEEE Trans. Veh. Technol., Vol. 65, No. 6, pp. 4359- 4367 (2016).
[18] Bin, Y., W. Qun, S. Zheng, et al., “ Research on airbag parameters matching in the vehicle crash simulation,” 9th Int. Conf. Meas. Technol. Mechatronics Autom., Changsha, China, pp. 306- 309 (2017).
[19] Gwak, K.‐W., H. D. Kim, S.‐G. Lee, S. Park, and C.‐W. Kim, “ Sliding mode control for the Frank‐Starling response of a piston pump mock ventricle,” J. Process Control, Vol. 25, pp. 70- 77 (2015).
[20] Wos, P. and R. Dindorf, “ Adaptive control of the electro‐hydraulic servo‐system with external disturbances,” Asian J. Control, Vol. 15, No. 4, pp. 1065- 1080 (2013). · Zbl 1286.93101
[21] Truong, D. Q. and K. K. Ahn, “ Parallel control for electro‐hydraulic load simulator using online self tuning fuzzy PID technique,” Asian J. Control, Vol. 13, No. 4, pp. 522- 541 (2011). · Zbl 1219.93085
[22] Chiang, M.‐H., “ The velocity control of an electro‐hydraulic displacement‐controlled system using adaptive fuzzy controller with self‐tuning fuzzy sliding mode compensation,” Asian J. Control, Vol. 13, No. 4, pp. 492- 504 (2011). · Zbl 1219.93057
[23] Sharma, R. and M. Aldeen, “ Fault detection in nonlinear systems with unknown inputs using sliding mode observer,” Amer. Control Conf., New York, NY, USA, pp. 432- 437 (2007).
[24] Ben Brahim, A., S. Dhahri, F. Ben Hmida, and A. Sellami, “ Simultaneous Actuator and Sensor Faults Reconstruction Based on Robust Sliding Mode Observer for a Class of Nonlinear Systems” Asian J. Control, Vol. 19, No. 1, pp. 362- 371 (2016). · Zbl 1357.93019
[25] Shao, X., L. Zhu, and Y. Liu, “ SMDO‐based backstepping terminal sliding mode control method for hot press hydraulic position servo system,” 27th Chinese Control Decis. Conf., Qingdao, China, pp. 596- 601 (2015).
[26] Meng, D., G. Tao, A. Li, and W. Li, “ Precision synchronization motion trajectory tracking control of multiple pneumatic cylinders,” Asian J. Control, Vol. 18, No. 5, pp. 1749- 1764 (2016). · Zbl 1347.93023
[27] Hall, C. E. and Y. B. Shtessel, “ Sliding mode disturbance observer‐based control for a reusable launch vehicle,” J. Guid. Control, Vol. 29, No. 6, pp. 1315- 1328 (2016).
[28] Slotine, J. J. E. and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood, Cliffs (1991). · Zbl 0753.93036
[29] Shtessel, Y., L. Fridman, and A. Zinober, Higher Order Sliding Modes, Springer Science and Business Media, Verlag, Berlin (2008). · Zbl 1298.00181
[30] Moreno, J. A. and M. Osorio, “ A Lyapunov approach to second‐order sliding mode controllers and observers,” 47th IEEE Conf. Decis. Control, Cancun, Mexico, pp. 2856- 2861 (2008).
[31] Chu, Y., F. Sanfilippo, V. Æsøy, and H. Zhang, “ An effective heave compensation and anti‐sway control approach for offshore hydraulic crane operations,” IEEE Int. Conf. Mechatronics Autom., Tianjin, China, pp. 1282- 1287(2014).
[32] Levant, A., “ Universal single‐input‐single‐output (SISO) sliding‐mode controllers with finite‐time convergence,” IEEE Trans. Autom. Control, Vol. 46, No. 9, pp. 1447- 1451 (2001). · Zbl 1001.93011
[33] Moreno, J. A. and M. Osorio, “ Strict Lyapunov functions for the super‐twisting algorithm,” IEEE Trans. Autom. Control, Vol. 57, No. 4, pp. 1035- 1040 (2012). · Zbl 1369.93568
[34] Chalanga, A., S. Kamal, L. M. Fridman, B. Bandyopadhyay, and J. A. Moreno, “ Implementation of super‐twisting controlvol. Super‐twisting and higher order sliding‐mode observer‐based approaches,” IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3677- 3685 (2016).
[35] Shiralkar, A. and S. Kurode, “ Generalized super‐twisting algorithm for control of electro‐ hydraulic servo system,” IFAC‐PapersOnLine, Vol. 49, No. 1, pp. 742- 747 (2016).
[36] Huang, C. I. and F. Li‐Chen, “ Smooth sliding mode tracking control of the Stewart platform,” Proc. IEEE Conf. Control Applicat. (CCA), Toronto, Canada, pp. 43- 48 (2005).
[37] Wang, Y., Y. Xia, H. Shen, and P. Zhou, “ SMC design for robust stabilization of nonlinear Markovian jump singular systems,” IEEE Trans. Autom. Control, Vol. 63, No. 1, pp. 219- 224 (2018). · Zbl 1390.93695
[38] Jung‐Hua, Y., Y. Wen‐Hai, and F. Li‐Chen, “ Nonlinear observer‐based adaptive tracking control for induction motors with unknown load,” IEEE Trans. Ind. Electron., Vol. 42, No. 6, pp. 579- 586 (1995).
[39] Sun, J., T. Li, M. Yu, and H. M. Zhang, “ Exploring the congestion pattern at long‐queued tunnel sag and increasing the efficiency by control,” IEEE Trans. Intell. Transp. Syst.Advance online publication, https://doi.org/10.1109/TITS.2017.2780103
[40] Yan, H., Q. Yang, H. Zhang, F. Yang, and X. Zhan, “ Distributed H‐; state estimation for a class of filtering networks with time‐varying switching topologies and packet losses,” IEEE Trans. Syst. Man, Cybern. Syst.Advance online publication, https://doi.org/10.1109/TSMC.2017.2708507
[41] Yan, H., H. Zhang, F. Yang, C. Huang, and S. Chen, “ Distributed H‐; filtering for switched repeated scalar nonlinear systems with randomly occurred sensor nonlinearities and asynchronous switching,” IEEE Trans. Syst. Man, Cybern. Syst.Advance online publication, https://doi.org/10.1109/TSMC.2017.2754495
[42] Yan, H., H. Zhang, F. Yang, X. Zhan, and C. Peng, “ Event‐triggered asynchronous guaranteed cost control for Markov jump discrete‐time neural networks with distributed delay and channel fading,” IEEE Trans. Neural Netw. Learn. Syst., Vol. 29, No. 8, pp. 1- 11 (2018).
[43] Chen, X., J. H. Park, J. Cao, and J. Qiu, “ Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances,” Appl. Math. Comput., Vol. 308, pp. 161- 173 (2017). · Zbl 1411.34087
[44] Chen, X., J. H. Park, J. Cao, and J. Qiu, “ Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control,” Neurocomputing, Vol. 273, pp. 9- 21 (2018).
[45] Li, Y., K. Sun, and S. Tong, “ Adaptive fuzzy robust fault‐tolerant optimal control for nonlinear large‐scale systems,” IEEE Trans. Fuzzy Syst., Vol. 26, pp. 1- 1 (2017).
[46] Li, Y. and S. Tong, “ Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., Vol. 29, No. 7, pp. 1- 10 (2018).
[47] Wang, Y., Y. Gao, H. R. Karimi, H. Shen, Z. Fang, and Senior, “ Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit,” IEEE Trans. Syst. Man, Cybern. Syst., Vol. 48, pp. 1- 9 (2018).
[48] Hsu, F.‐Y. and L.‐C. Fu, “ Nonlinear control of robot manipulators using adaptive fuzzy sliding mode control,” Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. Hum. Robot Interact. Coop. Robot, vol. 1, Pittsburgh, PA, USA, pp. 156- 161 (1995).
[49] Li, Y., K. Sun, and S. Tong, “ Observer‐based adaptive fuzzy fault‐tolerant optimal control for siso nonlinear systems,” IEEE T. Cybern., Vol. 2018, pp. 1- 13 (2018).
[50] Chen, S. H. and L. C. Fu, “ Output feedback sliding mode control for a stewart platform with a nonlinear observer‐based forward kinematics solution,” IEEE Trans. Control Syst. Technol., Vol. 21, No. 1, pp. 176- 185 (2013).
[51] Wang, N., S. Lv, W. Zhang, Z. Liu, and M. J. Er, “ Finite‐time observer based accurate tracking control of a marine vehicle with complex unknowns,” Ocean Eng., Vol. 145, pp. 406- 415 (2017).
[52] Wang, N., Z. Sun, J. Yin, S. F. Su, and S. Sharma, “ Finite‐time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances,” IEEE Access, Vol. 6, pp. 14059- 14070(2018).
[53] Lin, B., X. Su, and X. Li, “ Fuzzy sliding mode control for active suspension system with proportional differential sliding mode observer,” Asian J. Control, Vol. 41, No. 8, pp. 1531- 1537 (2018).
[54] Tao, F. and M. Deng, “ Nonlinear control method for nonlinear systems with unknown perturbations by combining left and right factorization,” Asian J. Control, Vol. 17, No. 1, pp. 71- 74 (2017).
[55] Chen, X., D. Li, X. Yang, and H. Zhang, “ Identification recurrent type 2 fuzzy wavelet neural network and L2‐gain adaptive variable sliding mode robust control of electro‐hydraulic servo system (EHSS),” Asian J. Control, Vol. 20, No. 5, pp. 1- 11 (2017).
[56] Yang, H. and J. Liu, “ Active vibration control for a flexible‐link manipulator with input constraint based on a disturbance observer,” Asian J. Control, Vol. 41, No. 8, pp. 1531- 1537 (2018).
[57] Lau, J. Y., W. Liang, H. C. Liaw, and K. K. Tan, “ Sliding mode disturbance observer‐based motion control for a piezoelectric actuator‐based surgical device,” Asian J. Control, Vol. 20, No. 3, pp. 1194- 1203 (2017). · Zbl 1398.93058
[58] Li, B., W. Dong, and C. Xiong, “ Robust actuator‐ fault‐tolerant control system based on sliding‐mode observer for thrust‐vectoring aircrafts,” Asian J. Control, Vol. 20, No. 5, pp. 1- 11 (2018). · Zbl 1422.93035
[59] Lau, J. Y., W. Liang, H. C. Liaw, and K. K. Tan, “ Sliding mode disturbance observer‐based motion control for a piezoelectric actuator‐based surgical device,” Asian J. Control, Vol. 20, No. 3, pp. 1194- 1203 (2017). · Zbl 1398.93058
[60] Mardani, M., N. Vafamand, M. S. Zeini, and M. Shasadeghi, “ Sum‐of‐squares‐based finite‐time adaptive sliding mode control of uncertain polynomial systems with input nonlinearities,” Asian J. Control, Vol. 20, No. 8, pp. 1658- 1662 (2018). · Zbl 1397.93043
[61] Liu, W. J., “ Decentralized sliding mode control for multi‐input complex interconnected systems subject to non‐smooth nonlinearities,” Asian J. Control, Vol. 20, No. 8, pp. 1171- 1181 (2018). · Zbl 1398.93060
[62] Wang, G. and Q. Xu, “ Adaptive terminal sliding mode control for motion tracking of a micropositioning system,” Asian J. Control, Vol. 20, No. 8, pp. 1241- 1252 (2018). · Zbl 1398.93064
[63] Li, J. and D. Zhang, “ Backstepping and sliding‐mode techniques applied to distributed secondary control of islanded microgrids,” Asian J. Control, Vol. 20, No. 8, pp. 1288- 1295 (2018). · Zbl 1398.93059
[64] Bai, J., R. Lu, Z. Wu, and A. Xue, “ Robust H‐ control of discrete‐time singular systems via integral sliding surface,” Asian J. Control, Vol. 20, No. 8, pp. 1296- 1302(2018). · Zbl 1398.93093
[65] Zaafouri, C., B. Torchani, A. Sellami, and G. Garcia, “ Uncertain saturated discrete‐time sliding mode control for a wind turbine using a two‐mass model,” Asian J. Control, Vol. 20, No. 8, pp. 802- 818 (2018). · Zbl 1390.93205
[66] Peng, Y. i., J. Liu, and W. He, “ Boundary control for a flexible inverted pendulum system based on A Pde model,” Asian J. Control, Vol. 20, No. 8, pp. 12- 21 (2018). · Zbl 1391.93118
[67] Wu, H. and R. Tafreshi, “ Fuzzy sliding‐mode strategy for air‐fuel ratio control of lean‐burn spark ignition engines,” Asian J. Control, Vol. 20, No. 8, pp. 149- 158 (2018). · Zbl 1391.93061
[68] Tiwari, P., S. Janardhanan, and M. Nabi, “ Spacecraft anti‐unwinding attitude control using second‐order sliding mode,” Asian J. Control, Vol. 20, No. 8, pp. 455- 468 (2018). · Zbl 1391.93059
[69] Wang, H., Z. Zhou, C. Hao, Z. Hu, and W. Zheng, “ FTESO‐based finite time control for underactuated system within a bounded input,” Asian J. Control, Vol. 20, No. 8, pp. 1427- 1439 (2018). · Zbl 1397.93034
[70] Galván‐Guerra, R., L. Fridman, and R. Iriarte, “ Integral sliding‐mode observation and control for switched uncertain linear time invariant systems: A robustifying strategy,” Asian J. Control, Vol. 20, No. 8, pp. 1541- 1550 (2018). · Zbl 1397.93042
[71] Yik, J., L. Wenyu, and K. Tan, “ Sliding mode disturbance observer‐based motion control for a piezoelectric actuator‐based surgical device,” Asian J. Control, Vol. 20, No. 8, pp. 1194- 1203 (2018). · Zbl 1398.93058
[72] Wang, Q., M. Ran, and C. Dong, “ On finite‐time stabilization of active disturbance rejection control for uncertain nonlinear systems,” Asian J. Control, Vol. 20, No. 8, pp. 415- 424 (2018). · Zbl 1391.93189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.