×

Hidden Markov model-based \(\mathcal{H}_\infty\) control for singular Markov jump systems under denial of service attacks. (English) Zbl 07821192

Summary: This work investigates the \(\mathcal{H}_{\infty}\) control problem of discrete-time singular Markov jump systems against denial of service attacks, in which the Markov state information is seen as restricted access. To solve this situation, a hidden Markov model is introduced. The main objective is to construct a controller with the help of hidden Markov model such that the stochastically admissible of the closed-loop singular Markov jump systems with limited access mode information can be guaranteed under denial of service attacks. To produce the needed hidden Markov model-based controller, a matrix contract transformation approach is developed. At the end, a numerical example and a tunnel diode circuit are presented to demonstrate the effectiveness and benefit of the design technique described in this research.
© 2024 John Wiley & Sons Ltd.

MSC:

93B36 \(H^\infty\)-control
93C55 Discrete-time control/observation systems
93E03 Stochastic systems in control theory (general)
62M05 Markov processes: estimation; hidden Markov models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] TanC, ZhangH, WongWS, ZhangZ. Feedback stabilization of uncertain networked control systems over delayed and fading channels. IEEE Trans Control Netw Syst. 2021;8(1):260‐268. · Zbl 07588092
[2] ZhangZ, FengZ. Enclosing ellipsoid‐based reachable set estimation for discrete‐time singular systems. Int J Robust Nonlinear Control. 2022;32(17):9294‐9306.
[3] FanX, ZhangQ, RenJ. Event‐triggered sliding mode control for discrete‐time singular system. IET Control Theory Appl. 2018;12(17):2390‐2398.
[4] ChangXH, WangJ, ZhaoX. Peak‐to‐peak filtering for discrete‐time singular systems. IEEE Trans Circuits Syst II: Exp Briefs. 2021;68(7):2543‐2547.
[5] TanC, GaoC, ZhangZ, WongWS. Non‐fragile guaranteed cost control for networked nonlinear Markov jump systems under multiple cyber‐attacks. J Franklin Inst. 2023;360(13):9446‐9467. · Zbl 1521.93199
[6] ZhangM, ShiP, LiuZ, CaiJ, SuH. Dissipativity‐based asynchronous control of discrete‐time Markov jump systems with mixed time delays. Int J Robust Nonlinear Control. 2018;28(6):2161‐2171. · Zbl 1390.93854
[7] ZhangY, LiuC. Observer‐based finite‐time
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control of discrete‐time Markovian jump systems. Appl Math Model. 2013;37(6):3748‐3760. · Zbl 1270.93046
[8] VargasAN, AchoL, PujolG, CostaEF, IshiharaJY, do ValJBR. Output feedback of Markov jump linear systems with no mode observation: an automotive throttle application. Int J Robust Nonlinear Control. 2016;26(9):1980‐1993. · Zbl 1342.93123
[9] ShenH, HuX, WangJ, CaoJ, QianW. Non‐Fragile
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) synchronization for Markov jump singularly perturbed coupled neural networks subject to double‐layer switching regulation. IEEE Trans Neural Netw Learn Syst. 2023;34(5):2682‐2692.
[10] ChenW, ZhuangG, GaoF, LiuW, XiaW.
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control for singular systems with interval time‐varying delays via dynamic feedback controller. J Franklin Inst. 2023;360(2):1106‐1123. · Zbl 1506.93028
[11] TaoR, MaY, WangC. Stochastic admissibility of singular Markov jump systems with time‐delay via sliding mode approach. Appl Math Comput. 2020;380:125282. · Zbl 1460.93101
[12] SunM, ZhuangG, XiaJ, WangY, ChenG. Stochastic admissibility and
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) output feedback control for singular Markov jump systems under dynamic measurement output event‐triggered strategy. Chaos, Solitons Fract. 2022;164:112635. · Zbl 1508.93324
[13] ZhangH, LiL, LiX. Exponential synchronization of coupled neural networks under stochastic deception attacks. Neural Netw.2022;145:189‐198. · Zbl 1526.93209
[14] ChenW, DingD, DongH, WeiG. Distributed resilient filtering for power systems subject to denial‐of‐service attacks. IEEE Trans. Syst. Man. Cybern Syst. 2019;49(8):1688‐1697.
[15] LiY, SongF, LiuJ, XieX, TianE. Decentralized event‐triggered synchronization control for complex networks with nonperiodic DoS attacks. Int J Robust Nonlinear Control. 2022;32(3):1633‐1653.
[16] BefekaduGK, GuptaV, AntsaklisPJ. Risk‐sensitive control under Markov modulated denial‐of‐service (DoS) attack strategies. IEEE Trans Autom Control. 2015;60(12):3299‐3304. · Zbl 1360.93766
[17] YeZ, ZhangD, WuZG. Adaptive event‐based tracking control of unmanned marine vehicle systems with DoS attack. J Franklin Inst. 2021;358(3):1915‐1939. · Zbl 1458.93141
[18] AminS, CárdenasAA, SastrySS. Safe and secure networked control systems under denial‐of‐service attacks. Hybrid Systems: Computation and Control. Springer; 2009:31‐45. · Zbl 1237.90054
[19] BayramS, VanliND, DulekB, SezerI, GeziciS. Optimum power allocation for average power constrained jammers in the presence of non‐Gaussian noise. IEEE Commun Lett. 2012;16(8):1153‐1156.
[20] LiY, KaoB, ParkJH, KaoY, MengB. Observer‐based mode‐independent integral sliding mode controller design for phase‐type semi‐Markov jump singular systems. Int J Robust Nonlinear Control. 2019;29(15):5213‐5226. · Zbl 1426.93043
[21] WuHN, CaiKY. Mode‐independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans Syst Man, Cybern Part B: Cybern. 2006;36(3):509‐519.
[22] ZhengK, LiY, XuW. Regime switching model estimation: spectral clustering hidden Markov model. Ann Oper Res. 2021;303(1):297‐319. · Zbl 1476.62172
[23] VergésFV, FragosoMD. Optimal linear mean square filter for the operation mode of continuous‐time Markovian jump linear systems. IET Control Theory Appl. 2019;13(9):1309‐1319. · Zbl 1432.93357
[24] LiM, LiuX. Iterative parameter estimation methods for dual‐rate sampled‐data bilinear systems by means of the data filtering technique. IET Control Theory Appl. 2021;15(9):1230‐1245.
[25] SuL, YeD. Static output feedback control for discrete‐time hidden Markov jump systems against deception attacks. Int J Robust Nonlinear Control. 2019;29(18):6616‐6637. · Zbl 1447.93113
[26] LiF, XuS, ShenH, MaQ. Passivity‐based control for hidden Markov jump systems with singular perturbations and partially unknown probabilities. IEEE Trans Autom Control. 2020;65(8):3701‐3706. · Zbl 07256476
[27] WangJ, YangC, XiaJ, WuZG, ShenH. Observer‐based sliding mode control for networked fuzzy singularly perturbed systems under weighted try‐once‐discard protocol. IEEE Trans Fuzzy Syst. 2022;30(6):1889‐1899.
[28] doValle CostaOL, FragosoMD, TodorovMG. A detector‐based approach for the
[( {\mathcal{\mathscr{H}}}_2 \]\) control of Markov jump linear systems with partial information. IEEE Trans Autom Control. 2015;60(5):1219‐1234. · Zbl 1360.93761
[29] LiF, XuS, ShenH, MaQ. Passivity‐based control for hidden Markov jump systems with singular perturbations and partially unknown probabilities. IEEE Trans Autom Control. 2020;65(8):3701‐3706. · Zbl 07256476
[30] ZhuC, LiX, CaoJ. Finite‐time
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) dynamic output feedback control for nonlinear impulsive switched systems. Nonlinear Anal Hybrid Syst. 2021;39:100975. · Zbl 1478.93612
[31] WuS, HanX, LiX.
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) state estimation of static neural networks with mixed delay. Neural Process Lett. 2020;52(2):1069‐1087.
[32] YinY, ZhuangG, XiaJ, ChenG. Asynchronous
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) filtering for singular Markov jump neural networks with mode‐dependent time‐varying delays. Neural Process Lett. 2022;54(6):5439‐5456.
[33] MaS, ZhangC.
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control for discrete‐time singular Markov jump systems subject to actuator saturation. J Franklin Inst. 2012;349(3):1011‐1029. · Zbl 1273.93066
[34] KwonNK, ParkIS, ParkP.
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control for singular Markovian jump systems with incomplete knowledge of transition probabilities. Appl Math Comput. 2017;295:126‐135. · Zbl 1411.93170
[35] SuL, YeD. Observer‐based output feedback
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control for cyber-physical systems under randomly occurring packet dropout and periodic DoS attacks. ISA Trans.2019;95:58‐67.
[36] PengC, WuJ, TianE. Stochastic event‐triggered
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control for networked systems under denial of service attacks. IEEE Trans Syst Man, Cybern Syst. 2022;52(7):4200‐4210.
[37] GaoX, RenH, DengF, ZhouQ. Observer‐based finite‐time
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) control for uncertain discrete‐time nonhomogeneous Markov jump systems. J Franklin Inst. 2019;356(4):1730‐1749. · Zbl 1409.93068
[38] ShenH, XingM, WuZG, ParkJH. Fault‐tolerant control for fuzzy switched singular systems with persistent dwell‐time subject to actuator fault. Fuzzy Sets Syst. 2020;392:60‐76. · Zbl 1452.93020
[39] WangJ, MaS, ZhangC, FuM. Finite‐time
[( {\mathcal{\mathscr{H}}}_{\infty } \]\) filtering for nonlinear singular systems with nonhomogeneous Markov jumps. IEEE Trans Cybern. 2019;49(6):2133‐2143.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.