×

Staggered scheme for the Exner-shallow water equations. (English) Zbl 1391.76725

Summary: The staggered numerical scheme is shown to be a robust and simple method for the approximation of the Exner-shallow water equations for bedload sediment modeling. Numerical tests show good convergence properties to an analytical solution and match pretty well data experiments in the case of dam break with erodible bottom. The cases of subcritical steady flow over a bump and transcritical flow over a bump are presented, showing the robustness of the scheme and its interest for engineering applications.

MSC:

76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

Software:

HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arakawa, A., Lamb, V. R.: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Weather Rev. 109(1), 18-36 (1981). doi:10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
[2] Audusse, E., Berthon, C., Chalons, C., Delestre, O., Goutal, N., Jodeau, M., Sainte-Marie, J., Giesselmann, J., Sadaka, G.: Sediment transport modelling: Relaxation schemes for saint-venant-exner and three layer models. In: ESAIM: Proceedings, vol. 38, pp 78-98 (2012), doi:10.1051/proc/201238005 · Zbl 1407.86003
[3] Berthon, C; Cordier, S; Delestre, O; Le, MH, An analytical solution of the shallow water system coupled to the exner equation, C.R. Math., 350, 183-186, (2012) · Zbl 1235.35218 · doi:10.1016/j.crm.2012.01.007
[4] Bouchut, F.: Nonlinear stability of finite Volume Methods for hyperbolic conservation laws: And Well-Balanced schemes for sources. Frontiers in mathematics. Basel, Birkhäuser Verlag (2004) · Zbl 1086.65091
[5] Bristeau, M. O., Coussin, B.: Boundary conditions for the shallow water equations solved by kinetic schemes. Inria report RR-4282 (2001)
[6] Cao, Z; Pender, G; Meng, J, Explicit formulation of the shields diagram for incipient motion of sediment, J. Hydraul. Eng., 132, 1097-1099, (2006) · doi:10.1061/(ASCE)0733-9429(2006)132:10(1097)
[7] Cao, Z; Pender, G; Wallis, S; Carling, P, Computational dam-break hydraulics over erodible sediment bed, J. Hydraul. Eng., 130, 689-703, (2004) · doi:10.1061/(ASCE)0733-9429(2004)130:7(689)
[8] Cordier, S; Le, MH; Morales de Luna, T, Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity (can) help, Adv. Water Resour., 34, 980-989, (2011) · doi:10.1016/j.advwatres.2011.05.002
[9] Delestre, O.: Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. Ph.D. thesis, PhD thesis Laboratoire: MAPMO-Université d’Orléans (2010)
[10] Díaz, MC; Fernández-Nieto, E; Ferreiro, A, Sediment transport models in shallow water equations and numerical approach by high order finite volume methods, Comput. Fluids, 37, 299-316, (2008) · Zbl 1237.76082 · doi:10.1016/j.compfluid.2007.07.017
[11] Doyen, D., Gunawan, P.H.: An explicit staggered finite volume scheme for the shallow water equations. In: Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, pp 227-235. Springer (2014). doi:10.1007/978-3-319-05684-5_21 · Zbl 1304.76034
[12] Dutykh, D; Dias, F, Energy of tsunami waves generated by bottom motion, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 465, 725-744, (2009) · Zbl 1186.86004 · doi:10.1098/rspa.2008.0332
[13] Fernández-Nieto, ED, Modelling and numerical simulation of submarine sediment shallow flows: transport and avalanches, Bol. Soc. Esp. Mat. Apl. SeMA, 49, 83-103, (2009) · Zbl 1242.86008
[14] Fraccarollo, L., Capart, H.: Riemann wave description of erosional dam-break flows. J. Fluid Mech. 461, 183-228 (2002). doi:10.1017/S0022112002008455 · Zbl 1142.76344
[15] Herbin, R; Kheriji, W; Latché, JC, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations, ESAIM: M2AN, 48, 1807-1857, (2014) · Zbl 1304.35519 · doi:10.1051/m2an/2014021
[16] Herbin, R., Latché, J.C., Nguyen, T.T.: Explicit staggered schemes for the compressible euler equations, vol. 40, pp 83-102 (2013), doi:10.1051/proc/201340006 · Zbl 1329.76206
[17] Julien, P; Simons, D, Sediment transport capacity of overland flow, Trans. ASAE, 28, 755-762, (1985) · doi:10.13031/2013.32333
[18] Kadlec, RH, Overland flow in wetlands: vegetation resistance, J. Hydraul. Eng., 116, 691-706, (1990) · doi:10.1061/(ASCE)0733-9429(1990)116:5(691)
[19] Kubatko, EJ; Westerink, JJ; Dawson, C, An unstructured grid morphodynamic model with a discontinuous Galerkin method for bed evolution, Ocean Model., 15, 71-89, (2006) · doi:10.1016/j.ocemod.2005.05.005
[20] LeVeque, R.J.: Finite volume methods for hyperbolic problems, vol. 31 Cambridge university press (2002) · Zbl 1010.65040
[21] Marche, F.: Theoretical and numerical study of shallow water models: applications to nearshore hydrodynamics. Ph.D. thesis, PhD thesis, Laboratoire de mathematiques appliquees - universite de Bordeaux 1 (2005)
[22] Nord, G., Esteves, M.: Psem_2d: a physically based model of erosion processes at the plot scale. Water Resour. Res. 41(8) (2005). doi:10.1029/2004WR003690
[23] Pudjaprasetya, SR; Magdalena, I, Momentum conservative scheme for shallow water flows, East Asian J. Appl. Math. (EAJAM), 4, 152-165, (2014) · Zbl 1309.76138 · doi:10.4208/eajam.290913.170314a
[24] Rijn, LCv, Sediment transport, part ii: suspended load transport, J. Hydraul. Eng., 110, 1613-1641, (1984) · doi:10.1061/(ASCE)0733-9429(1984)110:11(1613)
[25] Rzadkiewicz, SA; Mariotti, C; Heinrich, P, Numerical simulation of submarine landslides and their hydraulic effects, J. Waterw. Port Coast. Ocean Eng., 123, 149-157, (1997) · doi:10.1061/(ASCE)0733-950X(1997)123:4(149)
[26] Simpson, G; Castelltort, S, Coupled model of surface water flow, sediment transport and morphological evolution, Comput. Geosci., 32, 1600-1614, (2006) · doi:10.1016/j.cageo.2006.02.020
[27] Stelling, G; Duinmeijer, S, A staggered conservative scheme for every Froude number in rapidly varied shallow water flows, Int. J. Numer. Methods Fluids, 43, 1329-1354, (2003) · Zbl 1062.76541 · doi:10.1002/fld.537
[28] Stelling, G; Zijlema, M, An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, Int. J. Numer. Methods Fluids, 43, 1-23, (2003) · Zbl 1032.76645 · doi:10.1002/fld.595
[29] Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer (2009) · Zbl 1227.76006
[30] Van Rijn, LC, Sediment transport, part i: bed load transport, J. Hydraul. Eng., 110, 1431-1456, (1984) · doi:10.1061/(ASCE)0733-9429(1984)110:10(1431)
[31] Wu, W; Wang, SS, One-dimensional modeling of dam-break flow over movable beds, J. Hydraul. Eng., 133, 48-58, (2007) · doi:10.1061/(ASCE)0733-9429(2007)133:1(48)
[32] Yang, J.: Assimilation de donnees variationnelle pour les problemes de transport des sediments en riviere. Universite Joseph-Fourier-Grenoble I, Ph.D. thesis (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.