×

zbMATH — the first resource for mathematics

The mean square of Dirichlet L-functions. (A generalization of Balasubramanian’s method). (English) Zbl 0724.11039
Let \(\chi\) be a primitive Dirichlet character mod q, and L(s,\(\chi\)) the corresponding Dirichlet L-function. Let \[ E(T,\chi)=\int^{T}_{0}| L(1/2+it,\chi)|^ 2 dt-\frac{\phi (q)}{q}(\log \frac{qT}{2\pi}+2\gamma -1+2\sum_{p| q}\frac{\log p}{p-1})T \] denote the error term in the mean square formula for \(L(1/2+it,\chi)\), where \(\gamma\) is Euler’s constant and \(\phi\) is the Euler function. Y. Motohashi proved [Proc. Japan Acad., Ser. A 61, 313-316 (1985; Zbl 0583.10024)], among other things, that \[ E(T,\chi)\ll ((qT)^{1/3}+q^{1/2})(\log qT)^ 4 \] uniformly for \(T\geq 2\) and any q. His argument was a natural extension of the work of F. V. Atkinson [Acta Math. 81, 353-376 (1949; Zbl 0036.186)] on the mean square of the Riemann zeta-function. Prior to Motohashi’s work, the author [Proc. Japan Acad., Ser. A 58, 443-446 (1982; Zbl 0514.10030) and ibid. 65, 344 (1989; Zbl 0699.10059)], investigated the same problem by a different method. His basic idea was to combine the method of R. Balasubramanian [Proc. Lond. Math. Soc., III. Ser. 36, 540-576 (1978; Zbl 0375.10025)] with Weil’s estimate for Kloosterman sums. Unfortunately his argument contained a serious error, which led to an erroneous result.
In the article under review the author sketches the corrected argument, which gives \[ E(T,\chi)\ll (qT)^{1/3+\epsilon} \] when q is odd and \(T\gg q^{20}\). This is the right generalization of Balasubramanian’s theorem, although it is still weaker than Motohashi’s result. A lengthy manuscript exists, in which all the details of the proof are worked out.
Reviewer: A.Ivić (Beograd)

MSC:
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atkinson, F. V.: The mean-value of the Riemann zeta function. Acta Math., 81, 353-376 (1949). · Zbl 0036.18603 · doi:10.1007/BF02395027
[2] Balasubramanian, R.: An improvement on a theorem of Titchmarsh on the mean square of |C(l/2+i*)|. Proc. London Math. Soc, (3) 36, 540-576 (1978). · Zbl 0375.10025 · doi:10.1112/plms/s3-36.3.540
[3] Kober, H.: Eine Mittelwertformel der Riemannschen Zetafunktion. Compositio Math., 3, 174-189 (1936). · Zbl 0014.25804 · numdam:CM_1936__3__174_0 · eudml:88619
[4] Matsumoto, K.: The mean square of Dirichlet L-functions. Proc. Japan Acad., 58A, 443-446 (1982). · Zbl 0514.10030 · doi:10.3792/pjaa.58.443
[5] Matsumoto, K.: On the mean square of Dirichlet L-functions. Surikaiseki Kenkyusho Kokyuroku, 496, Res. Inst. Math. Sci. Kyoto Univ., 123-148 (1983) (in Japanese). · Zbl 0514.10030 · doi:10.3792/pjaa.58.443
[6] Matsumoto, K.: Corrections to the mean square of Dirichlet L-functions. Proc. Japan Acad., 65A, 344 (1989). · Zbl 0699.10059 · doi:10.3792/pjaa.65.344
[7] Matsumoto, K.: xhe mean square of Dirichlet L-functions (A generalization of Balasubramanian’s method). Manuscript, 288 pp. (1990). · Zbl 0724.11039
[8] Meurman, T.: A generalization of Atkinson’s formula to L-functions. Acta Arith., 47, 351-370 (1986). · Zbl 0561.10019 · eudml:206036
[9] Motohashi, Y.: A note on the mean value of the zeta and L-functions. II. Proc. Japan Acad., 61 A, 313-316 (1985). · Zbl 0583.10024 · doi:10.3792/pjaa.61.313
[10] Motohashi, Y.: On the mean square of L-functions. Manuscript, 42pp.+llpp. (1986).
[11] Titchmarsh, E. C.: On van der Corput’s method and the zeta-function of Rie-mann (V). Quart. J. Math., Oxford, 5, 195-210 (1934). · Zbl 0010.01002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.