Fukuda, Ikki; Itasaka, Kenta Higher-order asymptotic profiles of the solutions to the viscous Fornberg-Whitham equation. (English) Zbl 07310965 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 204, Article ID 112200, 32 p. (2021). MSC: 35B40 35Q53 PDF BibTeX XML Cite \textit{I. Fukuda} and \textit{K. Itasaka}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 204, Article ID 112200, 32 p. (2021; Zbl 07310965) Full Text: DOI
Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, Luis Miguel Modulated equations of Hamiltonian PDEs and dispersive shocks. (English) Zbl 07303411 Nonlinearity 34, No. 1, 578-641 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35Q35 35C07 35C08 35B10 35B40 37K45 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 34, No. 1, 578--641 (2021; Zbl 07303411) Full Text: DOI
Ionescu, Carmen; Constantinescu, Radu; Stoicescu, Mihail Functional expansions for finding traveling wave solutions. (English) Zbl 07315110 J. Appl. Anal. Comput. 10, No. 2, 569-583 (2020). MSC: 35Q53 35Q51 65M70 PDF BibTeX XML Cite \textit{C. Ionescu} et al., J. Appl. Anal. Comput. 10, No. 2, 569--583 (2020; Zbl 07315110) Full Text: DOI
Nakao, Hiroya; Mezić, Igor Spectral analysis of the Koopman operator for partial differential equations. (English) Zbl 07287043 Chaos 30, No. 11, 113131, 14 p. (2020). MSC: 35K90 35K20 35K58 47D06 PDF BibTeX XML Cite \textit{H. Nakao} and \textit{I. Mezić}, Chaos 30, No. 11, 113131, 14 p. (2020; Zbl 07287043) Full Text: DOI
Mironchenko, Andrii; Prieur, Christophe Input-to-state stability of infinite-dimensional systems: recent results and open questions. (English) Zbl 1453.93207 SIAM Rev. 62, No. 3, 529-614 (2020). MSC: 93D25 93C35 93D30 93C15 93C20 93B35 93C43 93-02 PDF BibTeX XML Cite \textit{A. Mironchenko} and \textit{C. Prieur}, SIAM Rev. 62, No. 3, 529--614 (2020; Zbl 1453.93207) Full Text: DOI
Dunlap, Alexander Existence of stationary stochastic Burgers evolutions on \(\mathbf{R}^2\) and \(\mathbf{R}^3\). (English) Zbl 07278315 Nonlinearity 33, No. 12, 6480-6501 (2020). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{A. Dunlap}, Nonlinearity 33, No. 12, 6480--6501 (2020; Zbl 07278315) Full Text: DOI
A. Büyükaşık, Şirin; Bozacı, Aylin Dirichlet problem on the half-line for a forced Burgers equation with time-variable coefficients and exactly solvable models. (English) Zbl 1450.35099 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105059, 14 p. (2020). MSC: 35C05 35K20 35K58 PDF BibTeX XML Cite \textit{Ş. A. Büyükaşık} and \textit{A. Bozacı}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 105059, 14 p. (2020; Zbl 1450.35099) Full Text: DOI
Volkov, V. T.; Nefedov, N. N. Asymptotic solution of coefficient inverse problems for Burgers-type equations. (English. Russian original) Zbl 1450.35293 Comput. Math. Math. Phys. 60, No. 6, 950-959 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 975-984 (2020). MSC: 35R30 35B25 35K20 35K58 PDF BibTeX XML Cite \textit{V. T. Volkov} and \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 60, No. 6, 950--959 (2020; Zbl 1450.35293); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 6, 975--984 (2020) Full Text: DOI
Ahmed, Shams A.; Elbadri, Mohamed; Mohamed, Mohamed Z. A new efficient method for solving two-dimensional nonlinear system of Burger’s differential equations. (English) Zbl 07245167 Abstr. Appl. Anal. 2020, Article ID 7413859, 7 p. (2020). MSC: 65 34 PDF BibTeX XML Cite \textit{S. A. Ahmed} et al., Abstr. Appl. Anal. 2020, Article ID 7413859, 7 p. (2020; Zbl 07245167) Full Text: DOI
Buchstaber, V. M.; Bunkova, E. Yu. Lie algebras of heat operators in a nonholonomic frame. (English. Russian original) Zbl 1450.37064 Math. Notes 108, No. 1, 15-28 (2020); translation from Mat. Zametki 108, No. 1, 17-32 (2020). MSC: 37K20 37K30 14H52 14H42 14H45 14H70 PDF BibTeX XML Cite \textit{V. M. Buchstaber} and \textit{E. Yu. Bunkova}, Math. Notes 108, No. 1, 15--28 (2020; Zbl 1450.37064); translation from Mat. Zametki 108, No. 1, 17--32 (2020) Full Text: DOI
King, J. R. C.; Lind, S. J.; Nasar, A. M. A. High order difference schemes using the local anisotropic basis function method. (English) Zbl 1440.76113 J. Comput. Phys. 415, Article ID 109549, 24 p. (2020). MSC: 76M28 65N75 65M75 65M12 PDF BibTeX XML Cite \textit{J. R. C. King} et al., J. Comput. Phys. 415, Article ID 109549, 24 p. (2020; Zbl 1440.76113) Full Text: DOI
Hinz, Michael; Meinert, Melissa On the viscous Burgers equation on metric graphs and fractals. (English) Zbl 1445.35292 J. Fractal Geom. 7, No. 2, 137-182 (2020). MSC: 35R02 35K58 28A80 47A07 47B25 PDF BibTeX XML Cite \textit{M. Hinz} and \textit{M. Meinert}, J. Fractal Geom. 7, No. 2, 137--182 (2020; Zbl 1445.35292) Full Text: DOI
Küçükarslan Yüzbaşı, Zühal; Anco, Stephen C. Elastic null curve flows, nonlinear \(C\)-integrable systems, and geometric realization of Cole-Hopf transformations. (English) Zbl 1436.53079 J. Nonlinear Math. Phys. 27, No. 3, 357-392 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 53E99 14H70 37K10 37K06 PDF BibTeX XML Cite \textit{Z. Küçükarslan Yüzbaşı} and \textit{S. C. Anco}, J. Nonlinear Math. Phys. 27, No. 3, 357--392 (2020; Zbl 1436.53079) Full Text: DOI
Mukhtarov, O. Sh.; Yücel, M.; Aydemir, K. Treatment a new approximation method and its justification for Sturm-Liouville problems. (English) Zbl 1444.34034 Complexity 2020, Article ID 8019460, 8 p. (2020). MSC: 34A45 34B24 34A25 PDF BibTeX XML Cite \textit{O. Sh. Mukhtarov} et al., Complexity 2020, Article ID 8019460, 8 p. (2020; Zbl 1444.34034) Full Text: DOI
Singh, Aditi; Dahiya, Sumita; Singh, S. P. A fourth-order B-spline collocation method for nonlinear Burgers-Fisher equation. (English) Zbl 1452.65283 Math. Sci., Springer 14, No. 1, 75-85 (2020). MSC: 65M70 41A15 PDF BibTeX XML Cite \textit{A. Singh} et al., Math. Sci., Springer 14, No. 1, 75--85 (2020; Zbl 1452.65283) Full Text: DOI
Rogers, Colin; Broadbridge, Philip On transport through heterogeneous media: application of conjugated reciprocal transformations. (English) Zbl 1448.35313 Z. Angew. Math. Phys. 71, No. 3, Paper No. 86, 10 p. (2020). MSC: 35K59 35C05 76S05 35K57 PDF BibTeX XML Cite \textit{C. Rogers} and \textit{P. Broadbridge}, Z. Angew. Math. Phys. 71, No. 3, Paper No. 86, 10 p. (2020; Zbl 1448.35313) Full Text: DOI
Chatterjee, Sourav; Dunlap, Alexander Constructing a solution of the \((2+1)\)-dimensional KPZ equation. (English) Zbl 1434.60148 Ann. Probab. 48, No. 2, 1014-1055 (2020). MSC: 60H15 81T15 35R60 PDF BibTeX XML Cite \textit{S. Chatterjee} and \textit{A. Dunlap}, Ann. Probab. 48, No. 2, 1014--1055 (2020; Zbl 1434.60148) Full Text: DOI Euclid
Pan, Kejia; Wu, Xiaoxin; Yue, Xiaoqiang; Ni, Runxin A spatial sixth-order CCD-TVD method for solving multidimensional coupled Burgers’ equation. (English) Zbl 1449.65300 Comput. Appl. Math. 39, No. 2, Paper No. 76, 20 p. (2020). MSC: 65N06 65L06 65N12 35Q53 PDF BibTeX XML Cite \textit{K. Pan} et al., Comput. Appl. Math. 39, No. 2, Paper No. 76, 20 p. (2020; Zbl 1449.65300) Full Text: DOI
Arora, Shelly; Jain, Rajiv; Kukreja, V. K. Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines. (English) Zbl 1437.65164 Appl. Numer. Math. 154, 1-16 (2020). MSC: 65N08 65M06 65M12 65D07 35Q53 PDF BibTeX XML Cite \textit{S. Arora} et al., Appl. Numer. Math. 154, 1--16 (2020; Zbl 1437.65164) Full Text: DOI
Wang, Mingliang; Zhang, Jinliang; Li, Erqiang; Xin, Xiaofei The generalized Cole-Hopf transformation to a general variable coefficient Burgers equation with linear damping term. (English) Zbl 1439.35434 Appl. Math. Lett. 105, Article ID 106299, 6 p. (2020). MSC: 35Q53 37K10 PDF BibTeX XML Cite \textit{M. Wang} et al., Appl. Math. Lett. 105, Article ID 106299, 6 p. (2020; Zbl 1439.35434) Full Text: DOI
Arora, Shelly; Kaur, Inderpreet; Tilahun, Wudneh An exploration of quintic Hermite splines to solve Burgers’ equation. (English) Zbl 1434.65289 Arab. J. Math. 9, No. 1, 19-36 (2020). MSC: 65N35 65N12 35Q53 PDF BibTeX XML Cite \textit{S. Arora} et al., Arab. J. Math. 9, No. 1, 19--36 (2020; Zbl 1434.65289) Full Text: DOI
Chen, Changkai; Zhang, Xiaohua; Liu, Zhang A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of \(n\)-dimensional Burgers’ system. (English) Zbl 1433.65156 Appl. Math. Comput. 372, Article ID 125009, 28 p. (2020). MSC: 65M06 35K51 35Q53 65M70 PDF BibTeX XML Cite \textit{C. Chen} et al., Appl. Math. Comput. 372, Article ID 125009, 28 p. (2020; Zbl 1433.65156) Full Text: DOI
Kumari, Komal; Bhattacharya, Raktim; Donzis, Diego A. A unified approach for deriving optimal finite differences. (English) Zbl 1453.65225 J. Comput. Phys. 399, Article ID 108957, 28 p. (2019). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{K. Kumari} et al., J. Comput. Phys. 399, Article ID 108957, 28 p. (2019; Zbl 1453.65225) Full Text: DOI
Zeidabadi, Hamed; Pourgholi, Reza; Tabasi, Seyyed Hashem Solving a nonlinear inverse system of Burgers equations. (English) Zbl 1449.65232 Int. J. Nonlinear Anal. Appl. 10, No. 1, 35-54 (2019). MSC: 65M32 35K05 65D07 65M70 65M12 65M30 65J20 65M06 35Q53 PDF BibTeX XML Cite \textit{H. Zeidabadi} et al., Int. J. Nonlinear Anal. Appl. 10, No. 1, 35--54 (2019; Zbl 1449.65232) Full Text: DOI
Ghasemi, M. An efficient algorithm based on extrapolation for the solution of nonlinear parabolic equations. (English) Zbl 07168301 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 5, 527-541 (2019). MSC: 41A15 65M06 65M15 65M12 PDF BibTeX XML Cite \textit{M. Ghasemi}, Int. J. Nonlinear Sci. Numer. Simul. 20, No. 5, 527--541 (2019; Zbl 07168301) Full Text: DOI
Tahir, Shko Ali; Sari, Murat A B-spline-SSPRK54 method for advection-diffusion processes. (English) Zbl 1452.65031 Bull. Math. Anal. Appl. 11, No. 3, 1-10 (2019). MSC: 65D07 41A15 65D25 65D32 PDF BibTeX XML Cite \textit{S. A. Tahir} and \textit{M. Sari}, Bull. Math. Anal. Appl. 11, No. 3, 1--10 (2019; Zbl 1452.65031) Full Text: Link
Wei, Shiyin; Jin, Xiaowei; Li, Hui General solutions for nonlinear differential equations: a rule-based self-learning approach using deep reinforcement learning. (English) Zbl 07147408 Comput. Mech. 64, No. 5, 1361-1374 (2019). MSC: 74 PDF BibTeX XML Cite \textit{S. Wei} et al., Comput. Mech. 64, No. 5, 1361--1374 (2019; Zbl 07147408) Full Text: DOI
Fukuda, Ikki Asymptotic behavior of solutions to the generalized KdV-Burgers equation. (English) Zbl 1433.35337 Osaka J. Math. 56, No. 4, 883-906 (2019). MSC: 35Q53 35B40 35C06 35B65 PDF BibTeX XML Cite \textit{I. Fukuda}, Osaka J. Math. 56, No. 4, 883--906 (2019; Zbl 1433.35337) Full Text: Link
Fu, Fangyan; Li, Jiao; Lin, Jun; Guan, Yanjin; Gao, Fuzheng; Zhang, Cunsheng; Chen, Liang Moving least squares particle hydrodynamics method for Burgers’ equation. (English) Zbl 1429.65257 Appl. Math. Comput. 356, 362-378 (2019). MSC: 65M75 35Q53 PDF BibTeX XML Cite \textit{F. Fu} et al., Appl. Math. Comput. 356, 362--378 (2019; Zbl 1429.65257) Full Text: DOI
Gowrisankar, S.; Natesan, Srinivasan An efficient robust numerical method for singularly perturbed Burgers’ equation. (English) Zbl 1429.65182 Appl. Math. Comput. 346, 385-394 (2019). MSC: 65M06 35B25 35Q53 65M12 PDF BibTeX XML Cite \textit{S. Gowrisankar} and \textit{S. Natesan}, Appl. Math. Comput. 346, 385--394 (2019; Zbl 1429.65182) Full Text: DOI
Kontogiorgis, Stavros; Popovych, Roman O.; Sophocleous, Christodoulos Enhanced symmetry analysis of two-dimensional Burgers system. (English) Zbl 1423.35342 Acta Appl. Math. 163, No. 1, 91-128 (2019). MSC: 35Q53 35A30 PDF BibTeX XML Cite \textit{S. Kontogiorgis} et al., Acta Appl. Math. 163, No. 1, 91--128 (2019; Zbl 1423.35342) Full Text: DOI
Li, Jing; Zhang, Bing-Yu; Zhang, Zhixiong Well-posedness of the generalized Burgers equation on a finite interval. (English) Zbl 1423.35185 Appl. Anal. 98, No. 16, 2802-2826 (2019). MSC: 35K55 35A01 35C15 35D30 35Q35 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Anal. 98, No. 16, 2802--2826 (2019; Zbl 1423.35185) Full Text: DOI
Carillo, Sandra; Schiavo, Mauro Lo; Schiebold, Cornelia Abelian versus non-abelian Bäcklund charts: some remarks. (English) Zbl 1426.58010 Evol. Equ. Control Theory 8, No. 1, 43-55 (2019). MSC: 58J72 35Q53 35A30 PDF BibTeX XML Cite \textit{S. Carillo} et al., Evol. Equ. Control Theory 8, No. 1, 43--55 (2019; Zbl 1426.58010) Full Text: DOI
Fukuda, Ikki Asymptotic behavior of solutions to the generalized KdV-Burgers equation with slowly decaying data. (English) Zbl 1426.35031 J. Math. Anal. Appl. 480, No. 2, Article ID 123446, 35 p. (2019). MSC: 35B40 35Q53 35C06 PDF BibTeX XML Cite \textit{I. Fukuda}, J. Math. Anal. Appl. 480, No. 2, Article ID 123446, 35 p. (2019; Zbl 1426.35031) Full Text: DOI arXiv
Hosseini, Rasool; Tatari, Mehdi Some splitting methods for hyperbolic PDEs. (English) Zbl 07106402 Appl. Numer. Math. 146, 361-378 (2019). MSC: 70F PDF BibTeX XML Cite \textit{R. Hosseini} and \textit{M. Tatari}, Appl. Numer. Math. 146, 361--378 (2019; Zbl 07106402) Full Text: DOI
Delkhosh, Mehdi; Parand, Kourosh A hybrid numerical method to solve nonlinear parabolic partial differential equations of time-arbitrary order. (English) Zbl 1438.65247 Comput. Appl. Math. 38, No. 2, Paper No. 76, 31 p. (2019). MSC: 65M70 35K55 35K59 PDF BibTeX XML Cite \textit{M. Delkhosh} and \textit{K. Parand}, Comput. Appl. Math. 38, No. 2, Paper No. 76, 31 p. (2019; Zbl 1438.65247) Full Text: DOI
Nefedov, Nikolay The existence and asymptotic stability of periodic solutions with an interior layer of Burgers type equations with modular advection. (English) Zbl 1447.35030 Math. Model. Nat. Phenom. 14, No. 4, Paper No. 401, 14 p. (2019). MSC: 35B25 35B10 35K20 35K58 35B35 PDF BibTeX XML Cite \textit{N. Nefedov}, Math. Model. Nat. Phenom. 14, No. 4, Paper No. 401, 14 p. (2019; Zbl 1447.35030) Full Text: DOI
Uddin, Marjan; Taufiq, Muhammad Approximation of time fractional Black-Scholes equation via radial kernels and transformations. (English) Zbl 1438.65255 Fract. Differ. Calc. 9, No. 1, 75-90 (2019). MSC: 65M70 65M12 65M15 65M22 26A33 35R11 91G20 91G60 35Q91 65D32 44A10 PDF BibTeX XML Cite \textit{M. Uddin} and \textit{M. Taufiq}, Fract. Differ. Calc. 9, No. 1, 75--90 (2019; Zbl 1438.65255) Full Text: DOI
Sripacharasakullert, Pattira; Sawangtong, Wannika; Sawangtong, Panumart An approximate analytical solution of the fractional multi-dimensional Burgers equation by the homotopy perturbation method. (English) Zbl 07078728 Adv. Difference Equ. 2019, Paper No. 252, 12 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{P. Sripacharasakullert} et al., Adv. Difference Equ. 2019, Paper No. 252, 12 p. (2019; Zbl 07078728) Full Text: DOI
Carillo, Sandra KdV-type equations linked via Bäcklund transformations: remarks and perspectives. (English) Zbl 1420.35308 Appl. Numer. Math. 141, 81-90 (2019). MSC: 35Q53 37K10 37K15 37K35 35Q51 35P99 PDF BibTeX XML Cite \textit{S. Carillo}, Appl. Numer. Math. 141, 81--90 (2019; Zbl 1420.35308) Full Text: DOI
Kudryashov, Nikolay A. Rational and special solutions for some Painlevé hierarchies. (English) Zbl 1415.34132 Regul. Chaotic Dyn. 24, No. 1, 90-100 (2019). Reviewer: Thomas Dreyfus (Paris) MSC: 34M55 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Regul. Chaotic Dyn. 24, No. 1, 90--100 (2019; Zbl 1415.34132) Full Text: DOI
Bekiaris-Liberis, Nikolaos; Vazquez, Rafael Nonlinear bilateral output-feedback control for a class of viscous Hamilton-Jacobi PDEs. (English) Zbl 1415.93079 Automatica 101, 223-231 (2019). MSC: 93B18 93B52 93C20 93C10 90C20 PDF BibTeX XML Cite \textit{N. Bekiaris-Liberis} and \textit{R. Vazquez}, Automatica 101, 223--231 (2019; Zbl 1415.93079) Full Text: DOI arXiv
Chen, Yanli; Zhang, Tie A weak Galerkin finite element method for Burgers’ equation. (English) Zbl 1404.65164 J. Comput. Appl. Math. 348, 103-119 (2019). MSC: 65M60 35Q53 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{T. Zhang}, J. Comput. Appl. Math. 348, 103--119 (2019; Zbl 1404.65164) Full Text: DOI arXiv
Cherniha, Roman; Serov, Mykola; Pliukhin, Oleksii Lie and \(Q\)-conditional symmetries of reaction-diffusion-convection equations with exponential nonlinearities and their application for finding exact solutions. (English) Zbl 1423.35195 Symmetry 10, No. 4, Paper No. 123, 33 p. (2018). MSC: 35K57 35K55 35C05 92D25 PDF BibTeX XML Cite \textit{R. Cherniha} et al., Symmetry 10, No. 4, Paper No. 123, 33 p. (2018; Zbl 1423.35195) Full Text: DOI
Ersoy, O.; Dag, I.; Adar, N. Exponential twice continuously differentiable B-spline algorithm for Burgers’ equation. (English. Ukrainian original) Zbl 07107818 Ukr. Math. J. 70, No. 6, 906-921 (2018); translation from Ukr. Mat. Zh. 70, No. 6, 788-800 (2018). MSC: 65D 35Q PDF BibTeX XML Cite \textit{O. Ersoy} et al., Ukr. Math. J. 70, No. 6, 906--921 (2018; Zbl 07107818); translation from Ukr. Mat. Zh. 70, No. 6, 788--800 (2018) Full Text: DOI
Pereira, Enrique; Suazo, Erwin; Trespalacios, Jessica Riccati-Ermakov systems and explicit solutions for variable coefficient reaction-diffusion equations. (English) Zbl 1427.35127 Appl. Math. Comput. 329, 278-296 (2018). MSC: 35K57 35K55 35B40 35K58 35Q53 PDF BibTeX XML Cite \textit{E. Pereira} et al., Appl. Math. Comput. 329, 278--296 (2018; Zbl 1427.35127) Full Text: DOI
AL-Jawary, Majeed Ahmed; Azeez, Mustafa Mahmood; Radhi, Ghassan Hasan Analytical and numerical solutions for the nonlinear Burgers and advection-diffusion equations by using a semi-analytical iterative method. (English) Zbl 1419.65087 Comput. Math. Appl. 76, No. 1, 155-171 (2018). MSC: 65M99 35Q53 PDF BibTeX XML Cite \textit{M. A. AL-Jawary} et al., Comput. Math. Appl. 76, No. 1, 155--171 (2018; Zbl 1419.65087) Full Text: DOI
Nathan Kutz, J.; Proctor, J. L.; Brunton, S. L. Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. (English) Zbl 1409.37029 Complexity 2018, Article ID 6010634, 16 p. (2018). MSC: 37C30 37M10 68Q32 35Q56 35Q55 37L65 PDF BibTeX XML Cite \textit{J. Nathan Kutz} et al., Complexity 2018, Article ID 6010634, 16 p. (2018; Zbl 1409.37029) Full Text: DOI
Pudasaini, Shiva P.; Ghosh Hajra, Sayonita; Kandel, Santosh; Khattri, Khim B. Analytical solutions to a nonlinear diffusion-advection equation. (English) Zbl 1404.35244 Z. Angew. Math. Phys. 69, No. 6, Paper No. 150, 20 p. (2018). MSC: 35K55 35Q35 76R50 76S05 76T99 22E60 22E70 35A30 86A05 PDF BibTeX XML Cite \textit{S. P. Pudasaini} et al., Z. Angew. Math. Phys. 69, No. 6, Paper No. 150, 20 p. (2018; Zbl 1404.35244) Full Text: DOI
Barna, Imre F.; Pocsai, Mihály A.; Mátyás, L. Self-similarity analysis of the nonlinear Schrödinger equation in the Madelung form. (English) Zbl 1406.35344 Adv. Math. Phys. 2018, Article ID 7087295, 5 p. (2018). MSC: 35Q55 35Q31 35C06 35Q41 76Y05 PDF BibTeX XML Cite \textit{I. F. Barna} et al., Adv. Math. Phys. 2018, Article ID 7087295, 5 p. (2018; Zbl 1406.35344) Full Text: DOI
Mukundan, Vijitha; Awasthi, Ashish Numerical treatment of the modified Burgers’ equation via backward differentiation formulas of orders two and three. (English) Zbl 06987910 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 7-8, 669-680 (2018). MSC: 65 82 PDF BibTeX XML Cite \textit{V. Mukundan} and \textit{A. Awasthi}, Int. J. Nonlinear Sci. Numer. Simul. 19, No. 7--8, 669--680 (2018; Zbl 06987910) Full Text: DOI
Mittal, R. C.; Rohila, Rajni Traveling and shock wave simulations in a viscous Burgers’ equation with periodic boundary conditions. (English) Zbl 1405.65133 Int. J. Appl. Comput. Math. 4, No. 6, Paper No. 150, 15 p. (2018). MSC: 65M70 65D07 35Q35 35C07 65M06 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{R. Rohila}, Int. J. Appl. Comput. Math. 4, No. 6, Paper No. 150, 15 p. (2018; Zbl 1405.65133) Full Text: DOI
Gao, Qinjiao; Wu, Zongmin; Zhang, Shenggang Adaptive moving knots meshless method for simulating time dependent partial differential equations. (English) Zbl 1403.65065 Eng. Anal. Bound. Elem. 96, 115-122 (2018). MSC: 65M50 PDF BibTeX XML Cite \textit{Q. Gao} et al., Eng. Anal. Bound. Elem. 96, 115--122 (2018; Zbl 1403.65065) Full Text: DOI
Thirumalai, Sagithya; Seshadri, Rajeswari Spectral analysis on Burgers’ equation and its solutions using three different basis functions. (English) Zbl 1407.65227 Int. J. Appl. Comput. Math. 4, No. 3, Paper No. 93, 21 p. (2018). MSC: 65M70 35Q35 35Q53 65L06 35K55 76L05 41A10 41A50 42C10 33C45 PDF BibTeX XML Cite \textit{S. Thirumalai} and \textit{R. Seshadri}, Int. J. Appl. Comput. Math. 4, No. 3, Paper No. 93, 21 p. (2018; Zbl 1407.65227) Full Text: DOI
Ghasemi, M. An efficient algorithm based on extrapolation for the solution of nonlinear parabolic equations. (English) Zbl 1401.65114 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 37-51 (2018). MSC: 65M70 35K55 41A15 65D07 65M12 65M15 PDF BibTeX XML Cite \textit{M. Ghasemi}, Int. J. Nonlinear Sci. Numer. Simul. 19, No. 1, 37--51 (2018; Zbl 1401.65114) Full Text: DOI
Seydaoğlu, Muaz An accurate approximation algorithm for Burgers’ equation in the presence of small viscosity. (English) Zbl 06910431 J. Comput. Appl. Math. 344, 473-481 (2018). MSC: 65 76 PDF BibTeX XML Cite \textit{M. Seydaoğlu}, J. Comput. Appl. Math. 344, 473--481 (2018; Zbl 06910431) Full Text: DOI
Cyranka, Jacek; Mucha, Piotr Bogusław A construction of two different solutions to an elliptic system. (English) Zbl 1398.35049 J. Math. Anal. Appl. 465, No. 1, 500-530 (2018). MSC: 35J60 PDF BibTeX XML Cite \textit{J. Cyranka} and \textit{P. B. Mucha}, J. Math. Anal. Appl. 465, No. 1, 500--530 (2018; Zbl 1398.35049) Full Text: DOI arXiv
Foroutan, Mohammadreza; Ebadian, Ali Existence and uniqueness of mild solutions for the damped Burgers equation in weighted Sobolev spaces on the half line. (English) Zbl 1399.35315 Int. J. Anal. Appl. 16, No. 2, 264-275 (2018). MSC: 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{M. Foroutan} and \textit{A. Ebadian}, Int. J. Anal. Appl. 16, No. 2, 264--275 (2018; Zbl 1399.35315) Full Text: Link
Singh, Brajesh Kumar; Kumar, Pramod; Kumar, Vineet Homotopy perturbation method for solving time fractional coupled viscous Burgers’ equation in \((2+1)\) and \((3+1)\) dimensions. (English) Zbl 1382.65288 Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 38, 25 p. (2018). MSC: 65M22 35Q53 35R11 35C10 65M12 PDF BibTeX XML Cite \textit{B. K. Singh} et al., Int. J. Appl. Comput. Math. 4, No. 1, Paper No. 38, 25 p. (2018; Zbl 1382.65288) Full Text: DOI
Aryana, S.; Furtado, F.; Ginting, V.; Torsu, P. On series solution for second order semilinear parabolic IBVPs. (English) Zbl 1377.65141 J. Comput. Appl. Math. 330, 499-518 (2018). MSC: 65M99 35K58 35C10 35Q53 35P10 PDF BibTeX XML Cite \textit{S. Aryana} et al., J. Comput. Appl. Math. 330, 499--518 (2018; Zbl 1377.65141) Full Text: DOI
Maulik, Romit; San, Omer Explicit and implicit LES closures for Burgers turbulence. (English) Zbl 1451.76063 J. Comput. Appl. Math. 327, 12-40 (2018). MSC: 76F65 PDF BibTeX XML Cite \textit{R. Maulik} and \textit{O. San}, J. Comput. Appl. Math. 327, 12--40 (2018; Zbl 1451.76063) Full Text: DOI
Gao, Q.; Zou, M. Y. An analytical solution for two and three dimensional nonlinear Burgers’ equation. (English) Zbl 1446.35172 Appl. Math. Modelling 45, 255-270 (2017). MSC: 35Q53 PDF BibTeX XML Cite \textit{Q. Gao} and \textit{M. Y. Zou}, Appl. Math. Modelling 45, 255--270 (2017; Zbl 1446.35172) Full Text: DOI
Sinuvasan, R.; Tamizhmani, K. M.; Leach, P. G. L. Symmetries, travelling-wave and self-similar solutions of the Burgers hierarchy. (English) Zbl 1411.35239 Appl. Math. Comput. 303, 165-170 (2017). MSC: 35Q53 35A09 35A30 35B06 35C05 35C06 35C07 PDF BibTeX XML Cite \textit{R. Sinuvasan} et al., Appl. Math. Comput. 303, 165--170 (2017; Zbl 1411.35239) Full Text: DOI
Magagula, V. M.; Motsa, S. S.; Sibanda, P. A multi-domain bivariate pseudospectral method for evolution equations. (English) Zbl 1404.65198 Int. J. Comput. Methods 14, No. 4, Article ID 1750041, 27 p. (2017). MSC: 65M70 35Q53 PDF BibTeX XML Cite \textit{V. M. Magagula} et al., Int. J. Comput. Methods 14, No. 4, Article ID 1750041, 27 p. (2017; Zbl 1404.65198) Full Text: DOI
Zhao, Hai-qiong On a new semi-discrete integrable combination of Burgers and Sharma-Tasso-Olver equation. (English) Zbl 1387.37067 Chaos 27, No. 2, 023102, 7 p. (2017). MSC: 37K10 37K35 39A12 PDF BibTeX XML Cite \textit{H.-q. Zhao}, Chaos 27, No. 2, 023102, 7 p. (2017; Zbl 1387.37067) Full Text: DOI
Mittal, R. C.; Rohila, Rajni A study of one dimensional nonlinear diffusion equations by Bernstein polynomial based differential quadrature method. (English) Zbl 1384.65073 J. Math. Chem. 55, No. 2, 673-695 (2017). MSC: 65M70 35K55 35Q53 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{R. Rohila}, J. Math. Chem. 55, No. 2, 673--695 (2017; Zbl 1384.65073) Full Text: DOI
Venkatesh, S. G.; Ayyaswamy, S. K.; Raja Balachandar, S. An approximation method for solving Burgers’ equation using Legendre wavelets. (English) Zbl 1381.35148 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 87, No. 2, 257-266 (2017). MSC: 35Q35 35C10 42C40 PDF BibTeX XML Cite \textit{S. G. Venkatesh} et al., Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 87, No. 2, 257--266 (2017; Zbl 1381.35148) Full Text: DOI
Chung, Jaywan; Guo, Zihua; Kwon, Soonsik; Oh, Tadahiro Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrödinger equation on the circle. (English) Zbl 1386.35376 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 5, 1273-1297 (2017). MSC: 35Q55 PDF BibTeX XML Cite \textit{J. Chung} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 5, 1273--1297 (2017; Zbl 1386.35376) Full Text: DOI arXiv
Eggers, J.; Grava, T.; Herrada, M. A.; Pitton, G. Spatial structure of shock formation. (English) Zbl 1383.76321 J. Fluid Mech. 820, 208-231 (2017). MSC: 76L05 76N15 PDF BibTeX XML Cite \textit{J. Eggers} et al., J. Fluid Mech. 820, 208--231 (2017; Zbl 1383.76321) Full Text: DOI
Ahmad, Imtiaz; Siraj-ul-Islam; Khaliq, Abdul Q. M. Local RBF method for multi-dimensional partial differential equations. (English) Zbl 1375.65136 Comput. Math. Appl. 74, No. 2, 292-324 (2017). MSC: 65M70 35Q53 35K57 91G60 PDF BibTeX XML Cite \textit{I. Ahmad} et al., Comput. Math. Appl. 74, No. 2, 292--324 (2017; Zbl 1375.65136) Full Text: DOI
Sharma, Manju A robust numerical approach for singularly perturbed time delayed parabolic partial differential equations. (English) Zbl 1373.65060 Differ. Equ. Dyn. Syst. 25, No. 2, 287-300 (2017). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 35B25 35K10 65M12 65M15 35R10 PDF BibTeX XML Cite \textit{M. Sharma}, Differ. Equ. Dyn. Syst. 25, No. 2, 287--300 (2017; Zbl 1373.65060) Full Text: DOI
Humi, Mayer Solutions to Painlevé III and other nonlinear equations by a generalized Cole-Hopf transformation. (English) Zbl 1370.34005 Math. Methods Appl. Sci. 40, No. 11, 4092-4101 (2017). MSC: 34A05 34C20 35A22 PDF BibTeX XML Cite \textit{M. Humi}, Math. Methods Appl. Sci. 40, No. 11, 4092--4101 (2017; Zbl 1370.34005) Full Text: DOI
Gosse, Laurent; Zuazua, Enrique Filtered gradient algorithms for inverse design problems of one-dimensional Burgers equation. (English) Zbl 1375.35630 Gosse, Laurent (ed.) et al., Innovative algorithms and analysis. Based on the presentations at the workshop, Rome, Italy, May 17–20, 2016. Cham: Springer (ISBN 978-3-319-49261-2/hbk; 978-3-319-49262-9/ebook). Springer INdAM Series 16, 197-227 (2017). Reviewer: Elena V. Tabarintseva (Chelyabinsk) MSC: 35R30 35L65 65M30 PDF BibTeX XML Cite \textit{L. Gosse} and \textit{E. Zuazua}, Springer INdAM Ser. 16, 197--227 (2017; Zbl 1375.35630) Full Text: DOI
Holmes, John Well-posedness and regularity of the generalized Burgers equation in periodic Gevrey spaces. (English) Zbl 1367.35054 J. Math. Anal. Appl. 454, No. 1, 18-40 (2017). MSC: 35B65 35A01 35A02 35K58 PDF BibTeX XML Cite \textit{J. Holmes}, J. Math. Anal. Appl. 454, No. 1, 18--40 (2017; Zbl 1367.35054) Full Text: DOI
Tsai, Chih-Ching; Shih, Yin-Tzer; Lin, Yu-Tuan; Wang, Hui-Ching Tailored finite point method for solving one-dimensional Burgers’ equation. (English) Zbl 1364.65219 Int. J. Comput. Math. 94, No. 4, 800-812 (2017). MSC: 65M99 35Q35 35K55 PDF BibTeX XML Cite \textit{C.-C. Tsai} et al., Int. J. Comput. Math. 94, No. 4, 800--812 (2017; Zbl 1364.65219) Full Text: DOI
Ashpazzadeh, Elmira; Han, Bin; Lakestani, Mehrdad Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation. (English) Zbl 1357.65182 J. Comput. Appl. Math. 317, 510-534 (2017). MSC: 65M70 35Q53 65T60 65M06 PDF BibTeX XML Cite \textit{E. Ashpazzadeh} et al., J. Comput. Appl. Math. 317, 510--534 (2017; Zbl 1357.65182) Full Text: DOI
Sahoo, S.; Ray, S. Saha A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. (English) Zbl 1361.35200 Math. Methods Appl. Sci. 40, No. 1, 106-114 (2017). MSC: 35R11 35Q53 35A01 PDF BibTeX XML Cite \textit{S. Sahoo} and \textit{S. S. Ray}, Math. Methods Appl. Sci. 40, No. 1, 106--114 (2017; Zbl 1361.35200) Full Text: DOI
Tamsir, Mohammad; Srivastava, Vineet K.; Jiwari, Ram An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation. (English) Zbl 1410.65414 Appl. Math. Comput. 290, 111-124 (2016). MSC: 65M99 35Q53 PDF BibTeX XML Cite \textit{M. Tamsir} et al., Appl. Math. Comput. 290, 111--124 (2016; Zbl 1410.65414) Full Text: DOI
Guo, Yan; Shi, Yu-feng; Li, Yi-min A fifth-order finite volume weighted compact scheme for solving one-dimensional Burgers’ equation. (English) Zbl 1410.65342 Appl. Math. Comput. 281, 172-185 (2016). MSC: 65M08 65M12 35Q53 PDF BibTeX XML Cite \textit{Y. Guo} et al., Appl. Math. Comput. 281, 172--185 (2016; Zbl 1410.65342) Full Text: DOI
Yun, Dong Fa; Hon, Y. C. Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. (English) Zbl 1403.65106 Eng. Anal. Bound. Elem. 67, 63-80 (2016). MSC: 65M70 PDF BibTeX XML Cite \textit{D. F. Yun} and \textit{Y. C. Hon}, Eng. Anal. Bound. Elem. 67, 63--80 (2016; Zbl 1403.65106) Full Text: DOI
Belal, Mohammad; Hasan, Nadeem Solution of viscous Burgers equation using a new flux based scheme. (English) Zbl 1366.76069 Cushing, Jim M. (ed.) et al., Applied analysis in biological and physical sciences. ICMBAA, Aligarh, India, June 4–6, 2015. New Delhi: Springer (ISBN 978-81-322-3638-2/hbk; 978-81-322-3640-5/ebook). Springer Proceedings in Mathematics & Statistics 186, 227-241 (2016). MSC: 76M25 35Q35 PDF BibTeX XML Cite \textit{M. Belal} and \textit{N. Hasan}, in: Applied analysis in biological and physical sciences. ICMBAA, Aligarh, India, June 4--6, 2015. New Delhi: Springer. 227--241 (2016; Zbl 1366.76069) Full Text: DOI
Watanabe, Shinya; Matsumoto, Sohei; Higurashi, Tomohiro; Ono, Naoki Burgers equation with no-flux boundary conditions and its application for complete fluid separation. (English) Zbl 1364.35201 Physica D 331, 1-12 (2016). MSC: 35L72 35L20 76D10 PDF BibTeX XML Cite \textit{S. Watanabe} et al., Physica D 331, 1--12 (2016; Zbl 1364.35201) Full Text: DOI
Bhatt, H. P.; Khaliq, A. Q. M. Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation. (English) Zbl 1351.35167 Comput. Phys. Commun. 200, 117-138 (2016). MSC: 35Q53 65M06 PDF BibTeX XML Cite \textit{H. P. Bhatt} and \textit{A. Q. M. Khaliq}, Comput. Phys. Commun. 200, 117--138 (2016; Zbl 1351.35167) Full Text: DOI
Gaur, Manoj; Singh, K. Symmetry classification and exact solutions of a variable coefficient space-time fractional potential Burgers’ equation. (English) Zbl 1349.35399 Int. J. Differ. Equ. 2016, Article ID 4270724, 8 p. (2016). MSC: 35R11 35Q53 PDF BibTeX XML Cite \textit{M. Gaur} and \textit{K. Singh}, Int. J. Differ. Equ. 2016, Article ID 4270724, 8 p. (2016; Zbl 1349.35399) Full Text: DOI
Yang, Xiao-Jun; Machado, J. A. Tenreiro; Hristov, Jordan Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. (English) Zbl 1354.35180 Nonlinear Dyn. 84, No. 1, 3-7 (2016). MSC: 35R11 35Q35 35K57 35Q79 PDF BibTeX XML Cite \textit{X.-J. Yang} et al., Nonlinear Dyn. 84, No. 1, 3--7 (2016; Zbl 1354.35180) Full Text: DOI
Carillo, Sandra; Lo Schiavo, Mauro; Schiebold, Cornelia Bäcklund transformations and non-abelian nonlinear evolution equations: a novel Bäcklund chart. (English) Zbl 1386.37070 SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 087, 17 p. (2016). MSC: 37K35 35A30 35Q53 PDF BibTeX XML Cite \textit{S. Carillo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 087, 17 p. (2016; Zbl 1386.37070) Full Text: DOI arXiv
Gupta, Vikas; Kadalbajoo, Mohan K. Qualitative analysis and numerical solution of Burgers’ equation via B-spline collocation with implicit Euler method on piecewise uniform mesh. (English) Zbl 1339.65148 J. Numer. Math. 24, No. 2, 73-94 (2016). MSC: 65M12 65M15 65M50 65M70 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{M. K. Kadalbajoo}, J. Numer. Math. 24, No. 2, 73--94 (2016; Zbl 1339.65148) Full Text: DOI
Backi, C. J.; Bendtsen, J. D.; Leth, J.; Gravdahl, J. T. A heat equation for freezing processes with phase change: stability analysis and applications. (English) Zbl 1338.93282 Int. J. Control 89, No. 4, 833-849 (2016). MSC: 93D05 35K59 35Q53 93B07 93C20 PDF BibTeX XML Cite \textit{C. J. Backi} et al., Int. J. Control 89, No. 4, 833--849 (2016; Zbl 1338.93282) Full Text: DOI
Geiser, Jürgen Multiscale modelling of solute transport through porous media using homogenization and splitting methods. (English) Zbl 1339.93017 Math. Comput. Model. Dyn. Syst. 22, No. 3, 221-243 (2016). MSC: 93A30 76S05 35Q35 PDF BibTeX XML Cite \textit{J. Geiser}, Math. Comput. Model. Dyn. Syst. 22, No. 3, 221--243 (2016; Zbl 1339.93017) Full Text: DOI
Boritchev, Alexandre Multidimensional potential Burgers turbulence. (English) Zbl 1338.60153 Commun. Math. Phys. 342, No. 2, 441-489 (2016); erratum ibid. 344, No. 1, 369-370 (2016). Reviewer: Martin Ondreját (Praha) MSC: 60H15 35R60 76F55 PDF BibTeX XML Cite \textit{A. Boritchev}, Commun. Math. Phys. 342, No. 2, 441--489 (2016; Zbl 1338.60153) Full Text: DOI arXiv
Leach, J. A. The large-time solution of Burgers’ equation with time-dependent coefficients. I: The coefficients are exponential functions. (English) Zbl 1332.35329 Stud. Appl. Math. 136, No. 2, 163-188 (2016). MSC: 35Q53 35C20 35B40 PDF BibTeX XML Cite \textit{J. A. Leach}, Stud. Appl. Math. 136, No. 2, 163--188 (2016; Zbl 1332.35329) Full Text: DOI
Zeng, Yanni; Chen, Jiao Pointwise time asymptotic behavior of solutions to a general class of hyperbolic balance laws. (English) Zbl 1342.35048 J. Differ. Equations 260, No. 8, 6745-6786 (2016). MSC: 35B40 35L65 35L45 35L60 PDF BibTeX XML Cite \textit{Y. Zeng} and \textit{J. Chen}, J. Differ. Equations 260, No. 8, 6745--6786 (2016; Zbl 1342.35048) Full Text: DOI
Angulo, Jesús Generalised morphological image diffusion. (English) Zbl 1349.94015 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 134, 1-30 (2016). MSC: 94A08 35Q94 PDF BibTeX XML Cite \textit{J. Angulo}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 134, 1--30 (2016; Zbl 1349.94015) Full Text: DOI
Seydaoğlu, M.; Erdoğan, U.; Öziş, T. Numerical solution of Burgers’ equation with high order splitting methods. (English) Zbl 1329.65112 J. Comput. Appl. Math. 291, 410-421 (2016). MSC: 65J08 65M06 65M70 PDF BibTeX XML Cite \textit{M. Seydaoğlu} et al., J. Comput. Appl. Math. 291, 410--421 (2016; Zbl 1329.65112) Full Text: DOI
Chakrone, Omar; Diyer, Okacha; Sbibih, Driss Numerical solution of Burger’s equation based on cubic B-splines quasi-interpolants and matrix arguments. (English) Zbl 1412.41006 Bol. Soc. Parana. Mat. (3) 33, No. 2, 109-119 (2015). MSC: 41A15 65D07 65D25 65D32 PDF BibTeX XML Cite \textit{O. Chakrone} et al., Bol. Soc. Parana. Mat. (3) 33, No. 2, 109--119 (2015; Zbl 1412.41006) Full Text: Link
Vaneeva, O. O.; Sophocleous, C.; Leach, P. G. L. Lie symmetries of generalized Burgers equations: application to boundary-value problems. (English) Zbl 1398.35208 J. Eng. Math. 91, 165-176 (2015). MSC: 35Q53 35A30 37K20 PDF BibTeX XML Cite \textit{O. O. Vaneeva} et al., J. Eng. Math. 91, 165--176 (2015; Zbl 1398.35208) Full Text: DOI arXiv
Kuo, Chun-Ku; Lee, Sen-Yung A new exact solution of Burgers’ equation with linearized solution. (English) Zbl 1394.35421 Math. Probl. Eng. 2015, Article ID 414808, 7 p. (2015). MSC: 35Q53 35C05 35B32 PDF BibTeX XML Cite \textit{C.-K. Kuo} and \textit{S.-Y. Lee}, Math. Probl. Eng. 2015, Article ID 414808, 7 p. (2015; Zbl 1394.35421) Full Text: DOI
Mukundan, Vijitha; Awasthi, Ashish Efficient numerical techniques for Burgers’ equation. (English) Zbl 1410.65322 Appl. Math. Comput. 262, 282-297 (2015). MSC: 65M06 65L06 65M20 35Q53 PDF BibTeX XML Cite \textit{V. Mukundan} and \textit{A. Awasthi}, Appl. Math. Comput. 262, 282--297 (2015; Zbl 1410.65322) Full Text: DOI
Sibilla, Stefano An algorithm to improve consistency in smoothed particle hydrodynamics. (English) Zbl 1390.76765 Comput. Fluids 118, 148-158 (2015). MSC: 76M28 65M75 PDF BibTeX XML Cite \textit{S. Sibilla}, Comput. Fluids 118, 148--158 (2015; Zbl 1390.76765) Full Text: DOI
Seadawy, A. R.; El-Rashidy, K. Classification of multiply travelling wave solutions for coupled Burgers, combined KdV-modified KdV, and Schrödinger-KdV equations. (English) Zbl 1356.35208 Abstr. Appl. Anal. 2015, Article ID 369294, 7 p. (2015). MSC: 35Q53 35C07 35Q55 34L40 35B35 PDF BibTeX XML Cite \textit{A. R. Seadawy} and \textit{K. El-Rashidy}, Abstr. Appl. Anal. 2015, Article ID 369294, 7 p. (2015; Zbl 1356.35208) Full Text: DOI