×

zbMATH — the first resource for mathematics

On the equilibrium of a cylindrical elastic solid: Comparisons with St. Venant’s theory. (English) Zbl 0668.73006
The author considers a linearly elastic cylinder of length 2h submitted to end tractions. In a first part, after establishing some identities on stress means, he derives a quadratic functional of the stress that has the property of being minimized by the stress of the Saint Venant solution. This functional is used to compute explicit lower bounds on the stored energy in terms of applied forces in the cases of extension, uniform flexion and torsion. In a second part, a general notion of “overall strain” is proposed, which is the least square rigid motion interpolate of the relative displacements of the ends of the cylinder. Explicit formulae for this overall strain in terms of applied forces are given. A comparison with Saint Venant’s theory is effected. It shows that, in some instances, these formulae agree with the latter theory when \(h\to \infty\).
Reviewer: H.Le Dret

MSC:
74B05 Classical linear elasticity
74G50 Saint-Venant’s principle
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Saint Venant, A. J. C. B., ”De la torsion des prismes”, Mémoires des Savants étrangers 14, 233 (1856). · JFM 10.0673.03
[2] Saint Venant, A. J. C. B., ”Mémoire sur la flexion des prismes”, Journal de Mathématiques de Liouville (II) 1, 89 (1856).
[3] Zanaboni, C., ”Sull’approssimazione dovuta al principio del De Saint Venant nei solidi prismatici isotropi”, Rend. Acc. Naz. dei Lincei 26, 340 (1937). · JFM 63.0742.04
[4] Toupin, R., ”Saint Venant’s principle”, Arch. Rational Mech. and Anal. 18, 2, 3 (1965). · Zbl 0203.26803 · doi:10.1007/BF00282253
[5] Fichera, G., ”Remarks on Saint Venant’s principle”, Analisi complessa e sue applicazioni (volume per il 70\(\deg\) compleanno di I. N. Vekua). · Zbl 0443.73002
[6] Day, W. A.,”Generalized torsion: the solution of a problem of Truesdell’s”, Arch. Rational Mech. and Anal. 76, 283 (1981). · Zbl 0488.73007 · doi:10.1007/BF00280463
[7] Podio Guidugli, P. P., ”Saint Venant formulae for generalized St. Venant problems” Arch. Rational Mech. and Anal. 81, 13 (1983). · Zbl 0509.73006 · doi:10.1007/BF00283165
[8] Grioli, G., ”Sul problema di Saint Venant nei solidi cristallini”, Rend. Sem. Mat. Univ. di Padova 21, 228 (1952). · Zbl 0048.17802
[9] Morgenstern, D. und Szabó, I., ”Vorlesungen über Theoretische Mechanik”, Die Grundlehren der Mathematischen Wissenschaften, Band 112, Springer-Verlag 126 (1961). · Zbl 0097.16404
[10] Iesan, D., ”On Saint Venant’s Problem”, Arch. Rational Mech. and Anal. 91, 363 (1985). · Zbl 0602.73005 · doi:10.1007/BF00282340
[11] Iesan, D., ”On Saint Venant’s Problem in Micropolar Elasticity”, Int. J. Eng. Sci. 9, 879 (1971). · Zbl 0232.73007 · doi:10.1016/0020-7225(71)90021-8
[12] Berglund, K., ”Generalization of Saint Venant’s Principle to Micropolar Continua”, Arch. Rational Mech. and Anal. 511, 1 (1976). · Zbl 0402.73014
[13] Sternberg, E. and Knowles, J. K., ”Minimum energy characterization of Saint Venant’s solution to the relaxed Saint Venant’s problem”, Arch. Rational Mech. and Anal. 21, 89 (1966). · Zbl 0149.43401 · doi:10.1007/BF00266569
[14] Truesdell, C., ”The rational mechanics of materials–past, present, future”, Appl. Mech. Reviews 12, 75 (1959).
[15] Grioli, G., ”Relazioni quantitative per lo stato tensionale di un qualunque sistema continuo e per la deformazione di un corpo elastico”, Ann. Mat. pura e appl. Sez. IV, 33, 239 (1952). · Zbl 0048.17803 · doi:10.1007/BF02418185
[16] Grioli, G., ”Mathematical Theory of Elastic Equilibrium (Recent Results)”, Erg. der Angewandten Mathematik, Springer, Heidelberg (1962). · Zbl 0102.17004
[17] Grioli, G., ”Proprietà di media ed integrazione del problema dell’elastostatica isoterma”, Ann. Mat. pura e appl. Ser. IV, 33, 263 (1952). · Zbl 0048.17804 · doi:10.1007/BF02418188
[18] Grioli, G., ”Sullo stato tensionale dei continui in equilibrio e sulle deformazioni nel caso elastico”, Conferenze del Sem. Mat. Univ. di Bari (1958). · Zbl 0089.40702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.