×

zbMATH — the first resource for mathematics

On refined analysis of bifurcation buckling for the axially compressed circular cylinder. (English) Zbl 1167.74426
Summary: We present extensive numerical results of bifurcation buckling analysis of the axially compressed circular cylinder. The analysis is based on the modified displacement version of the non-linear theory of thin elastic shells developed by the authors [ibid. 46, 3103–3110 (2009; Zbl)]. To solve the buckling problem we apply the separation of variables and expansion of all fields into Fourier series in circumferential direction, with subsequent accurate calculations of eigenvalues of determinants of corresponding \(8 \times 8\) complicated matrices. The numerical analysis of the buckling load is performed for the cylinders with length-to-diameter ratio in the range (0.05, 60), with eight sets of incremental work-conjugate boundary conditions analogous to those used in the literature and partly summarized in the book by N. Yamaki [Elastic stability of circular cylindrical shells. North-Holland Series in Applied Mathematics and Mechanics 27. Amsterdam - New York - Oxford: North-Holland. XIII (1984; Zbl 0544.73062)], and additionally with six sets of boundary conditions not discussed in the literature yet. The results allow us to formulate several important conclusions, such as: (a) omission in the non-linear BVP small terms of the order of error introduced by the error of constitutive equations leads to overestimated buckling loads for long cylinders with clamped boundaries; (b) for some relaxed boundary conditions the buckling load decreases for short cylinders with decrease of the cylinder length; (c) the results for additional six sets of boundary conditions reveal existence of several new cases, in which by relaxing geometric boundary conditions the buckling load falls down to about one half of the classical value in a wide range of the cylinder length-to-diameter ratios.

MSC:
74G60 Bifurcation and buckling
74K25 Shells
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almroth, B. O.: Influence of edge conditions on the stability of axially compressed cylindrical shells, AIAA journal 4, No. 1, 134-140 (1966)
[2] Amabili, M.: Nonlinear vibrations and stability of shells and plates, (2008) · Zbl 1154.74002
[3] Arbocz, J.; Babcock, C. D.: The effect of general imperfections on the buckling of cylindrical shells, Journal of applied mechanics 36, No. 1, 28-38 (1969) · Zbl 0175.22904 · doi:10.1115/1.3564582
[4] Arbocz, J.; Starnes, J. H.: Future directions and challenges in shell stability analysis, Thin-walled structures 40, No. 9, 729-754 (2002)
[5] Babcock, C. D.: Shell stability, Journal of applied mechanics 50, 935-940 (1983)
[6] Brush, D. O.; Almroth, B. O.: Buckling of bars plates and shells, (1975) · Zbl 0352.73040
[7] Buchwald, V. T.: Some problems of thin circular cylindrical shells. I. the equations, Journal of mathematics and physics 46, 237-252 (1967) · Zbl 0179.54601
[8] Buchwald, V. T.: Some problems of thin circular cylindrical shells. Ii. the infinite crack, Journal of mathematics and physics 47, 57-66 (1968) · Zbl 0179.54601
[9] Budiansky, B.: Notes on non-linear shell theory, Journal of applied mechanics 35, No. 2, 393-401 (1968)
[10] Bushnell, D.: Buckling of shells-pitfall for designers, AIAA journal 19, No. 9, 1183-1226 (1981)
[11] Chróścielewski, J., Makowski, J., Pietraszkiewicz, W., 2004. Statics and Dynamics of Multifold Shells: Nonlinear Theory and the Finite Element Method (in Polish). Wydawnictwo IPPT PAN, Warszawa.
[12] Donnell, L.H., 1933. Stability of thin-walled tubes under torsion. Report NACA Rep. No. 479.
[13] Dym, C. L.: On the buckling of cylinders in axial compression, Journal of applied mechanics 40, No. 2, 565-568 (1973)
[14] Flügge, W.: Die stabilität der kreiszylinderschale, Ingenieur archiv, No. 3, 463-506 (1932) · JFM 58.1285.02
[15] Grigolyuk, E. I.; Kabanov, V. V.: Stability of shells, (1978)
[16] Hoff, N. J.; Brooklyn, N. Y.: The accuracy of Donnell’s equations, Journal of applied mechanics 22, No. 3, 329-334 (1955) · Zbl 0064.42402
[17] Hoff, N. J.; Rehfield, L. W.: Buckling of axially compressed circular cylindrical shells at stresses smaller than the classical critical value, Journal of applied mechanics 32, 542-546 (1965)
[18] Kármán, T.; Tsien, H. S.: The buckling of thin cylindrical shells under axial compression, Journal of the aeronautical sciences 8, No. 8, 303-312 (1941) · Zbl 0060.42403
[19] Knight, N.F., Starnes, J.H., 1997. Developments in cylindrical shell stability analysis. AIAA Paper (AIAA-97-1076), pp. 1933 – 1948.
[20] Koiter, W.T., 1960. A cosistent first approximation in the general theory of shells. In: The Theory of Thin Elastic Shells, Proceedings of the IUTAM Symposium, Delft, 1959. North Holland, Amsterdam, pp. 12 – 33. · Zbl 0109.43002
[21] Koiter, W.T., 1967. General equations of elastic stability for thin shells, Appendix: The danger of omitting (supposedly) small buckling terms. In: Proceedings of a Symposium on the Theory of Shells to Honor L.H. Donnell. University of Houston, pp. 225 – 227.
[22] Lorenz, R.: Die nicht achsensymmetrische knickung dünnwandiger hohlzylinder, Physikalische zeitschrift 12, No. 7, 241-260 (1911) · JFM 42.0879.02
[23] Mandal, P.; Calladine, C. R.: Buckling of thin cylindrical shells under axial compression, International journal of solids and structures 37, No. 33, 4509-4525 (2000) · Zbl 0952.74522 · doi:10.1016/S0020-7683(99)00160-2
[24] Mushtari, K.M., Galimov, K.Z., 1957. Nonlinear theory of elastic shells (in Russian). Tatknigoizdat, Kazan’, (English Trans.: The Israel Program for Sci. Trans., Monson, Jerusalem 1961).
[25] Ohira, H., 1961. Local buckling theory of axially compressed cylinders. In: Proceedings of the Eleventh Japan National Congress of Applied Mechanics. Tokyo, pp. 37 – 40.
[26] Opoka, S., Pietraszkiewicz, W., 2009. On modified displacement version of the non-linear theory of thin shells. International Journal of Solids and Structures, 46, 3103 – 3110. · Zbl 1167.74494 · doi:10.1016/j.ijsolstr.2009.03.029
[27] Pietraszkiewicz, W., 1977. Introduction to the Nonlinear Theory of Shells. Ruhr-Universität, Inst. für Mech., Mitt. 10, Bochum.
[28] Pietraszkiewicz, W.: Lagrangian description and incremental formulation in the non-linear theory of thin shells, International journal of non-linear mechanics 19, No. 2, 115-140 (1984) · Zbl 0537.73050 · doi:10.1016/0020-7462(84)90002-7
[29] Pietraszkiewicz, W.: Explicit Lagrangian incremental and buckling equations for the non-linear theory of thin shells, International journal of non-linear mechanics 28, No. 2, 209-220 (1993) · Zbl 0776.73043 · doi:10.1016/0020-7462(93)90058-S
[30] Pietraszkiewicz, W.; Szwabowicz, M. L.: Entirely Lagrangian nonlinear theory of thin shells, Archives of mechanics 33, No. 2, 273-288 (1981) · Zbl 0467.73084
[31] Pircher, M.; Berry, P. A.; Ding, X.; Bridge, R. Q.: The shape of circumferential weld-induced imperfections in thin-walled steel silos and tanks, Thin-walled structures 39, No. 12, 999-1014 (2001)
[32] Riks, E.: Buckling analyses of elastic structures: a computational approach, Advances of applied mechanics 34, 1-76 (1998) · Zbl 0889.73032
[33] Sanders, J. L.: Nonlinear theories for thin shells, Quarterly of applied mathematics 21, No. 1, 21-36 (1963)
[34] Simitses, G. J.: Buckling and postbuckling of imperfect cylindrical shells: a review, Applied mechanics reviews 39, No. 10, 1517-1524 (1986)
[35] Simmonds, J. G.; Danielson, D. A.: New results for the buckling loads of axially compressed cylindrical shells subject to relaxed boundary conditions, Journal of applied mechanics 37, No. 1, 93-100 (1970)
[36] Singer, J.; Arbocz, J.; Weller, T.: Buckling experiments: experimental methods in buckling of thin-walled structures, Buckling experiments: experimental methods in buckling of thin-walled structures 2 (2002) · Zbl 0935.74005
[37] Sobel, L. H.: Effects of boundary conditions on the stability of cylinders subject to lateral and axial pressures, AIAA journal 2, No. 8, 1437-1440 (1964) · Zbl 0127.40102 · doi:10.2514/3.2572
[38] Stumpf, H.: On the nonlinear buckling and postbuckling analysis of thin elastic shells, International journal of non-linear mechanics 19, No. 3, 195-215 (1984) · Zbl 0552.73031 · doi:10.1016/0020-7462(84)90008-8
[39] Tovstik, P.; Smirnov, A. L.: Asymptotic methods in the buckling theory of elastic shells, (2001) · Zbl 1066.74500
[40] Vol’mir, A. S.: Stability of deformable systems, (1967)
[41] Weingarten, V. I.; Morgan, E. J.; Seide, P.: Elastic stability of thin-walled cylindrical and conical shells under axial compression, AIAA journal 3, No. 3, 500-505 (1965)
[42] Wriggers, P.: Nonlinear finite element methods, (2008) · Zbl 1153.74001
[43] Yamaki, N.: Elastic stability of circular cylindrical shells, (1984) · Zbl 0544.73062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.