×

zbMATH — the first resource for mathematics

The Artin index of characters of finite faithful metacyclic groups. (English) Zbl 0361.20011

MSC:
20C15 Ordinary representations and characters
20C05 Group rings of finite groups and their modules (group-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Amitsur, S.A, Finite subgroups of division rings, Trans. amer. math. soc., 80, 361-386, (1955) · Zbl 0065.25603
[2] \scS. D. Herman, Representations of finite groups. Amer. Math. Soc. Transi. Ser. 2\bf64, 147-215.
[3] Berman, S.D, On Schur’s index, Uspehi mat. nauk, 16, 95-100, (1961) · Zbl 0102.27101
[4] Brauer, Untersuchungen uber die arithmetischen eigenshaften von gruppen linearer substitutionen, II, Math. Z., 31, 737-747, (1930) · JFM 56.0865.04
[5] Frobenius, F.G; Frobenius, F.G, Uber die charaktere der symmetrischen gruppe, (), 148-179, (1900) · JFM 31.0129.02
[6] Lam, T.Y, Artin exponent of finite groups, J. algebra, 9, 94-119, (1968) · Zbl 0277.20006
[7] Lorenz, F, Charaktere endlicher gruppen mit vorgegebenen schurschen indizes, Math. ann., 195, 315-320, (1972) · Zbl 0218.20007
[8] Mayer, S.J, On the irreducible characters of the Weyl groups, J. algebra, 33, 59-67, (1975) · Zbl 0296.20004
[9] Roquette, P, Realisierung von darstellungen endlicher nilpotenten gruppen, Arch. math., 10, 241-250, (1958) · Zbl 0083.25002
[10] Ritter, J, Ein induktionssatz fur rational charactere von nilpotenten gruppen, Crelle J., 254, 133-151, (1972) · Zbl 0242.20003
[11] Segal, G, Permutation representations of finite p-groups, Quart. J. math. Oxford (2), 23, 375-381, (1972) · Zbl 0338.20017
[12] Solomon, L, The representation of finite groups in algebraic number fields, J. math. soc. Japan, 13, 144-164, (1961) · Zbl 0101.26701
[13] Solomon, L, Rational character and permutation characters, () · Zbl 0297.20019
[14] Yamada, T, On the group algebras of metabelian groups over algebraic number fields, Osaka J. math., 6, 221-228, (1969) · Zbl 0184.05102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.