×

zbMATH — the first resource for mathematics

Automorphisms in generalized spaces. (English) Zbl 0443.53012

MSC:
53B05 Linear and affine connections
53B10 Projective connections
53B20 Local Riemannian geometry
53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. A. Abakirov, ?On four-dimensional Riemannian spaces admitting intransitive groups of homothetic motions G5,? in: Motions in Spaces with Affine Connections [in Russian], Kazan Univ. (1965), pp. 202?203.
[2] B. A. Abakirov, ?Four-dimensional Riemannian spaces admitting solvable, simply transitive groups of homotheties with three-dimensional Abelian subgroups,? in: Materials of the Thirteenth Scientific Conference of the Professorial ?Instructorial Body of the Faculty of Physics-Mathematics of Kirghiz Univertisy. Mathematics Section [in Russian], Frunze (1965), pp. 6?9.
[3] B. A. Abakirov, ?Group of homothetic transformations H6 in spaces V4,? Tr. Kirg. Univ. Ser. Mat. Nauk, No. 6, 15?18 (1967).
[4] B. A. Abakirov, ?Transitive groups of homotheties H5 with simply transitive subgroups of motions in spaces V4,? Uch. Zap. Ryazansk. Pedagog. Inst.,67, 171?177 (1968).
[5] B. A. Abakirov, ?Transitive group of homotheties G5 with nontransitive normal subgroup G4 in spaces V4,? Tr. Kirg. Univ. Ser. Mat. Nauk, No. 5, 13?21 (1968).
[6] B. A. Abakirov, ?Some classes of spaces V4 by groups of homotheties H7,? Tr. Kirg. Univ. Ser. Mat. Nauk, No. 7, 175?179 (1970).
[7] B. A. Abakirov, ?Some tensorial characteristics of Riemannian spaces having fields of degeneracy,? Tr. Kirg. Univ. Ser. Mat. Nauk, No. 8, 39?44 (1973).
[8] B. A. Abakirov, ?Some questions on groups of conformal transformations of Riemannian spaces,? Sb. Tr. Aspirantov i Soiskatelei. Kirg. Univ. Ser. Mat. Nauk, No. 10, 3?7 (1973).
[9] B. A. Abakirov and D. Moldobaev, ?On some types of groups of conformai transformations of Riemannian spaces,? Tr. Kirg. Univ. Ser. Mat. Nauk, No. 8, 9?15 (1973).
[10] D. V. Alekseevskii, ?Groups of conformal transformations of Riemannian spaces,? Mat. Sb.,89, No. 2, 280?296 (1972).
[11] D. V. Alekseevskii, ?Sn and En are the only Riemannian spaces admitting the existence of conformal transformations,? Usp. Mat. Nauk,88, No. 5, 225?226 (1973).
[12] D. V. Alekseevskii, ?Classification of quaternionic spaces with transitive solvable groups of motions,? Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 2, 315?362 (1975).
[13] A. V. Aminova, ?Groups of projective motions in some gravitational fields,? Sb. Aspirantsk. Rabot. Kazansk. Univ. Tochn. Nauki. Mekh., Fiz., No. 2, 58?68 (1970).
[14] A. V. Aminova, ?Projective groups in gravitational fields. I,? in: Gravitation and Relativity Theory [in Russian], Vol. 8, Kazan Univ. (1971), pp. 3?13.
[15] A. V. Aminova, ?Projective groups in gravitational fields. II,? in: Gravitation and Relativity Theory [in Russian], Vol. 8, Kazan Univ. (1971), pp. 14?20.
[16] A. V. Aminova, ?Groups of projective and affine motions in spaces of the general theory of relativity. I,? Tr. Geometr. Sem. Vses. Inst. Nauchn. Tekh. Inf.,6, 317?346 (1974).
[17] A. V. Aminova, ?Projective-group properties of some Riemannian spaces,? Tr. Geometr. Sem. Vses. Inst. Nauchn. Tekh. Inf.,6, 295?316 (1974).
[18] A. M. Anchikov, ?On invariant tests for conformally reducible spaces,? in: Gravitation and the Theory of Relativity [in Russian], Vol. 2, Kazan Univ., (1965), pp. 97?106.
[19] V. V. Astrakhantsev, ?On the holonomy groups of four-dimensional pseudo-Riemannian spaces,? Mat. Zametki,9, 59?66 (1971).
[20] R. F. Bilyalov, ?On a class of conformal transformation groups in gravitational fields,? Uch. Zap. Kazansk. Univ.,123, No. 12, 52?58 (1963).
[21] R. F. Bilyalov, ?Transitive conformal transformation groups,? Uch. Zap. Kazansk. Univ.,123, No. 12, 3?20 (1963).
[22] R. F. Bilyalov, ?Groups of motions in conformal-flat gravitational fields,? in: Gravitation and the Theory of Relativity [in Russian], Vol. 2, Kazan Univ. (1965), pp. 52?71.
[23] V. I. Bliznikas, ?Finsler spaces and their generalizations,? in: Algebra. Topology. Geometry. 1967 [in Russian]. (Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR), Moscow (1969), pp. 73?125.
[24] V. I. Vedernikov and A. S. Fedenko, ?Symmetric spaces and their generalizations,? in: Algebra. Topology. Geometry [in Russian], Vol. 14 (Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR), Moscow (1976), pp. 249?280. · Zbl 0448.53037
[25] M. B. Vernikov, ?On motions in spaces with symplectic connections,? Sb. Statei po Mat. Chelyabinsk. Gos. Pedagog. Inst., No. 2, 132?136 (1970).
[26] V. T. Vodnev, ?On the spaces of D. B. Vedenyapin,? Vestsi Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauk Izv. Akad. Nauk BSSR. Ser. Fiz. Mat. Nauk, No. 1, 61?73 (1968).
[27] V. T. Vodnev, ?On motions of Riemannian generalized subprojective spaces,? in: Proceedings of the Second Republican Conference of Mathematicians of Belorussia [in Russian], Belorussk. Univ., Minsk (1969), pp. 63?67.
[28] V. T. Vodnev and A. S. Fedenko, ?Symmetric partially projective spaces,? in: Proceedings of the First Republican Conference of Mathematicians, Belorussia, 1964 [in Russian], Vysshaya Shkola, Minsk (1965), pp. 277?282.
[29] R. Vosilyus and A. Dreimanas, ?On the geometry of homogeneous spaces,? Liet. Mat. Rinkinys,11, No. 4, 773?782 (1971).
[30] G. Vranceanu, ?Global properties of spaces with affine connections and discrete groups,? in: Proceedings of the Fourth All-Union Mathematical Congress, 1961 [in Russian], Vol. 2, Nauka, Leningrad (1964), pp. 194?200.
[31] O. S. Germanov, ?Motions in irreducible spaces with affine connections,? Tr. Gor’kovsk. Politekh. Inst.,30, No. 3, 16?19 (1974).
[32] V. K. Golubev, ?On spaces with affine connection with simply transitive automorphism group,? Uch. Zap. Gor’kovsk. Univ., No. 105, 46?48 (1969).
[33] V. K. Golubev, ?On spaces with affine connection with simply transitive automorphism group,? Uch. Zap. Gor’kovsk. Univ., No. 113, 120?128 (1972).
[34] L. S. Gorshkova, ?Finsler spaces F4(x, x) admitting groups of motions,? Uch. Zap. Penz. Pedagog. Inst.,124, 31?35 (1971).
[35] L. S. Gorshkova, ?Four-dimensional Finsler spaces with groups of motions G4,? Uch. Zap. Penz. Pedagog. Inst.,124, 36?41 (1971).
[36] L. S. Gorshkova, ?Finsler spaces F4 admitting groups of motions with non-Abelian subgroups of order three,? Uch. Zap. Penz. Pedagog. Inst.,124, 42?46 (1971).
[37] L. S. Gorshkova, ?On Finsler spaces F4 admitting groups of motions of order five with Abelian subgroups G3,? Volzh. Mat. Sb., No. 23, 6?25 (1973).
[38] L. S. Gorshkova, ?On motions in Finsler spaces,? Volzh. Mat. Sb., No. 23, 3?6 (1973).
[39] V. I. Denisov, ?On a characteristic property of gravitational fields of zero scalar curvature admitting a group of motions,? Ukr. Geometr. Sb., No. 4, 20?21 (1967).
[40] A. I. Egorov, ?On some maximally mobile spaces,? Uch. Zap. Penz. Pedagog. Inst.,124, 47?50 (1971).
[41] A. I. Egorov, ?On maximally mobile spaces of linear and contravectorial elements with affine connection,? Uch. Zap. Penz. Pedagog. Inst.,124, 54?60 (1971).
[42] A. I. Egorov, ?On motions and homotheties in Riemannian spaces,? Uch. Zap. Penz. Pedagog. Inst.,124, 51?53 (1971).
[43] A. I. Egorov, ?On motions in spaces with general affine connections,? Dokl. Akad. Nauk SSSR,196, No. 6, 1266?1269 (1971).
[44] A. I. Egorov, ?On maximally mobile spaces of line elements with general affine connections,? in: Thesis Reports. Fifth All-Union Conference on Contemporary Problems of Geometry. Samarkand, Oct. 20?24, 1972 [in Russian], Samarkand Univ. (1972).
[45] A. I. Egorov and L. I. Egorova, ?On some spaces admitting groups of motions of maximal order,? Liet. Mat. Rinkinys,12, No. 2, 39?42 (1972).
[46] I. P. Egorov, ?On a class of kernel functions,? Volzh. Mat. Sb., No. 3, 145?148 (1965).
[47] I. P. Egorov, ?On homothetic kernel functions and metrics, invariant under pseudoconformal mappings,? Volzh. Mat. Sb., No. 4, 52?57 (1966).
[48] I. P. Egorov, ?Motions in spaces with affine connection,? in: Motions in Spaces with Affine Connection [in Russian], Kazan Univ. (1965), pp. 5?179.
[49] I. P. Egorov, On Generalized Spaces [in Russian], Znanie, Moscow (1970). · Zbl 0209.25201
[50] I. P. Egorov, ?On homothetic motions in Riemannian spaces and infinite surfaces,? in: Third Intercollegiate Scientific Conference on Problems of Geometry. Kazan, Sept. 14?19, 1967. Thesis Reports [in Russian], Kazan Univ. (1967), pp. 52?53.
[51] I. P. Egorov, ?Motions in generalized differential geometric spaces,? in: Algebra. Topology. Geometry. 1965 [in Russian], (Itogi Nauki VINITI Akad. Nauk SSSR), Moscow (1967), pp. 375?428.
[52] I. P. Egorov, ?On homothetically lacunary Riemannian spaces of different orders,? Volzh. Mat. Sb., No. 6, 62?67 (1968).
[53] I. P. Egorov, ?On motions in Riemannian spaces and spaces with affine connections,? Uch. Zap. Penz. Pedagog. Inst.,124, 3?9 (1971).
[54] I. P. Egorov, ?On some problems in the theory of motions of Riemannian spaces,? Uch. Zap. Penz. Pedagog. Inst.,67, 187?191 (1967).
[55] I. P. Egorov, ?On motions and lacunarity problems in differential-geometric spaces,? in: Thesis Reports. Fifth All-Union Conference on Contemporary Problems of Geometry. Samarkand, Oct. 20?24, 1972 [in Russian], Samarkand Univ. (1972).
[56] I. P. Egorov and A. I. Egorov, ?On spaces with generalized affine connections,? Uch. Zap. Penz. Pedagog. Inst.,124, 10?12 (1971).
[57] L. I. Egorova, ?On maximally mobile homothetic spaces,? Uch. Zap. Penz. Pedagog. Inst.,124, 67?69 (1971).
[58] L. I. Egorova, ?Motions in two-dimensional spaces of line elements with affine connections with torsion,? Volzh. Mat. Sb., No. 29, 48?52 (1973).
[59] L. I. Egorova, ?Homothetic transformations of the first and second kinds in Finsler spaces,? in: AllUnion Scientific Conference on Noneuclidean Geometry ?150 Years of Lobachevskiian Geometry,? Kazan, Thesis Reports [in Russian], Moscow (1976).
[60] R. Zulanke and P. Vintgen, Differential Geometry and Bundles [Russian translation], Mir, Moscow (1975).
[61] N. Kh. Ibragimov, ?Generalized motions in Riemannian spaces,? Dokl. Akad. Nauk SSSR,178, No. 1, 27?30 (1968).
[62] N. Kh. Ibragimov, ?Groups of generalized motions,? Dokl. Akad. Nauk SSSR,187, No. 1, 25?28 (1969).
[63] G. G. Ivanov, ?Vacuum Einstein spaces of the third type with group of motions G2 Abelian and solvable groups G3,? in: Gravitation and the Theory of Relativity [in Russian], Vol. 8, Kazan Univ. (1971), pp. 92?99.
[64] In Shao-tzi, ?A certain class of homogeneous spaces of affine connections,? Fudan Daxue Xuebao, Acta Scient. Natur. Univ. Fudan,11, No. 2, 167?175 (1966).
[65] A. Ionushauskas, ?Existence of invariant Finsler metrics in homogeneous spaces with linear isotropy group of tensorial type,? Liet. Mat. Rinkinys,6, No. 1, 51?57 (1966).
[66] F. I. Kagan, ?On groups of pseudomotions in Finsler and Riemann spaces,? Volzh. Mat. Sb., No. 3, 190?196 (1965).
[67] F. I. Kagan, ?On the operation of infinitesimal S-extension with respect to a one-dimensional S-distribution given on Xn,? Volzh. Mat. Sb., No. 4, 103?108 (1966).
[68] F. I. Kagan, ?On Killing vectors and automorphisms of almost Kaehler structures in tangent bundles over Riemannian manifolds,? in: Differential Geometry [in Russian], Vol. 1, Saratov Univ. (1974), pp. 60?71.
[69] F. I. Kagan, ?Canonical decomposition of projective-Killing and affine-Killing vectors on tangent bundles,? Mat. Zametki,19, No. 12, 247?258 (1976). · Zbl 0327.53021
[70] V. R. Kaigorodov, ?Einstein spaces and groups of motions,? in: Gravitation and the Theory of Relativity [in Russian], Vol. 2, Kazan Univ. (1965), pp. 82?96.
[71] I. L. Kantor, A. I. Sirota, and A. S. Solodovnikov, ?A class of symmetric spaces with solvable group of motions and generalized Poincaré models,? Dokl. Akad. Nauk SSSR,173, No. 3, 511?514 (1967). · Zbl 0165.55505
[72] G. V. Kiotina, ?Quasigroups and groups of motions of some linear systems of collineations in P5,? Uch. Zap. Penz. Pedagog. Inst.,124, 73?82 (1971).
[73] B. P. Komrakov, ?Homogeneous spaces generated by automorphisms and invariant geometric structures,? in: Problems of Geometry [in Russian], Vol. 7 (Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR), Moscow (1975), pp. 81?104.
[74] A. T. Kondrat’ev, ?Homogeneous spaces of linear elements with affine connection A3(x, x) of high mobility,? Volzh. Mat. Sb., No. 4, 82?92 (1966).
[75] A. T. Kondrat’ev, ?On motions in general spaces of paths A3(x, x),? Ukr. Geometr. Sb., No. 2, 35?42 (1966).
[76] A. T. Kondrat’ev, ?Spaces of linear elements with affine connection A3(x, x) admitting groups of affine motions Gr (r ?3),? Volzh. Mat. Sb., No. 5, 152?157 (1966).
[77] A. T. Kondrat’ev, ?On motions in homogeneous three-dimensional general spaces of paths A3(x, x),? Uch. Zap. Ryazansk. Gos. Pedagog. Inst.,67, 193?207 (1968).
[78] A. T. Kondrat’ev, ?On a type of homothetic Riemannian space V4,? in: Materials of the 27th Intercollegiate Scientific Conference of the Mathematics Departments of the Pedagogical Institutes of the Ural Zone. 1969 [in Russian], Izhevsk (1969), pp. 239?240.
[79] A. T. Kondrat’ev, ?Homogeneous general spaces of paths A3(x, x) with groups of affine motions G5,? Ukr. Geometr. Sb., No. 8, 76?87 (1970).
[80] A. T. Kondrat’ev, ?On some transformations of general spaces of paths,? Uch. Zap. Penz. Pedagog. Inst.,124, 61?66 (1971).
[81] A. T. Kondrat’ev, ?Groups of motions in special two-dimensional spaces of paths,? Ukr. Geometr. Sb., No. 11, 47?52 (1971).
[82] A. T. Kondrat’ev, ?On normal affine connections and special motions in general spaces of paths,? Volzh. Mat, Sb., No. 23, 42?47 (1973).
[83] V. G. Kopp, ?Classification of bivectors and their bundles in four-dimensional Lorentz spaces,? in: Materials of the Scientific Conference of Kazan State Teaching Institute, 1962 [in Russian], Kazan (1963), pp. 410?411.
[84] V. G. Kopp, ?On infinitely small motions in four-dimensional pseudoeuclidean space of zero signature,? Uch. Zap. Kazansk. Univ.,125, No. 1, 100?107 (1965).
[85] V. G. Kopp, ?On groups of infinitely small rotations of k-dimensional euclidean and Lorentz spaces,? Uch. Zap. Kazansk. Univ.,128, No. 3, 31?42 (1968).
[86] V. G. Kopp, ?On isomorphisms existing between some subgroups of groups of small motions of Lorentz spaces and euclidean and Gallilean spaces,? in: Memoirs of the Seminar of the Geometry Department [in Russian], Vol. 7, Kazan Univ. (1974), pp. 61?67.
[87] V. G. Kopp, ’On subgroups of groups of rotations of Lorentz spaces,? in: Gravitation and the Theory of Relativity [in Russian], Vol. 6, Kazan Univ. (1969), pp. 52?59.
[88] A. T. Kondrat’ev, ?On groups of similarities of four-dimensional Lorentz space,? Uch. Zap. Kazansk. Univ.,129, No. 6, 79?86 (1970).
[89] G. I. Kruchkovich, ?Tests for almost semireducible Riemannian spaces,? Tr. Sem. Vektorn. Tenzorn. Anal. Prilozhen. Geometrii, Mekh., Fiz., Mosk. Univ., No. 13, 399?406 (1966).
[90] G. I. Kruchkovich, ?Investigation of the spaces V(K),? in: Third Intercollegiate Scientific Conference on the Problems of Geometry. Kazan, Sept. 14?19, 1967. Thesis Reports [in Russian], Kazansk. Univ., Kazan (1967), pp. 85?86.
[91] G. I. Kruchkovich, ?On the spaces V(K) and their geodesic maps,? Tr. Vses. Zaochn. Energ. Inst., No. 33, 3?18 (1967).
[92] G. I. Kruchkovich, ?Kagan spaces and nontransitive groups of motions,? Tr. Sem. Vektorn. Tenzorn. Anal. Prilozhen. Geometrii, Mekh., Fiz., Mosk. Univ., No. 14, 144?153 (1968). · Zbl 0169.53304
[93] B. L. Laptev, ?Lie differentiation,? in: Algebra. Topology. Geometry. 1965 [in Russian], (Itogi Nauki. VINITI Akad. Nauk SSSR), Moscow (1967), pp. 429?465.
[94] N. S. Lipatov, ?Three-dimensional Riemannian spaces admitting groups of nontrivial homothetic motions Gr (r ?3),? in: Motions in Spaces with Affine Connections [in Russian], Kazan Univ. (1965), pp. 190?201.
[95] N. S. Lipatov, ?Three-dimensional Riemannian spaces admitting groups of motions Gr (r ?4),? in: Motions in Spaces with Affine Connections [in Russian], Kazan Univ. (1965), pp. 190?201.
[96] N. S. Lipatov, ?Homotheties G in three-dimensional mobile Liouville spaces,? Volzh. Mat. Sb., No. 6, 104?115 (1968).
[97] N. S. Lipatov, ?Homotheties in three-dimensional mobile Liouville spaces,? Uch. Zap. Ryazansk. Gos. Pedagog. Inst.,67, 209?214 (1968).
[98] N. S. Lipatov, ?On maximally homothetically mobile four-dimensional Liouville spaces,? Volzh. Mat. Sb., No. 23, 39?42 (1973).
[99] A. A. Lovkov, ?General spaces of paths with projective connection P3(x, x) admitting groups of motions Gr (r ?3),? Volzh. Mat. Sb., No. 23, 53?60 (1973).
[100] A. A. Lovkov, ?On general spaces of paths with projective connection with nonsolvable groups of motions,? All-Union Scientific Conference on Noneuclidean Geometry. ?150 Years of Lobachevskiian Geometry.? Kazan, Thesis Reports [in Russian], Moscow (1976).
[101] Yu. Lumiste and K. Riives, ?Enumeration and orbits of subgroups of motions in euclidean space,? Uch. Zap. Tartusk. Univ., No. 22, 12?30 (1968).
[102] G. G. Markov and A. P. Norden, ?On holomorphic projective transformations,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 82?87 (1975).
[103] V. E. Mel’nikov, ?On groups of motions of Riemannian spaces with splittable isotropy groups,? Tr. Vses. Zaochn. Energ. Inst., No. 33, 29?44 (1967).
[104] V. E. Mel’nikov, ?On a theorem of Teleman,? Tr. Mosk. Inst. Radiotekh. Elektron. Avtomatiki, No. 46, 37?48 (1970).
[105] V. E. Mel’nikov, ?On Riemannian spaces admitting a group of motions with splittable isotropy group,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 81?89 (1971).
[106] V. E. Mel’nikov, ?On homogeneous six-dimensional Riemannian spaces,? Tr. Mosk. Inst. Radiotekh. Elektron. Avtomatiki, No. 67, 41?49 (1973).
[107] E. V. Pavlov, ?On motions in Riemannian B-spaces,? Sb. Aspirantsk. Rabot. Kazansk. Univ. Tochnye Nauki. Mat. Mekh. Kazan, 55?60 (1975).
[108] I. V. Parnasskii, ?Motions in semi-Riemannian spaces,? Uch. Zap. Kursk. Gos. Pedagog. Inst.,66, No. 1, 148?161 (1970).
[109] A. Z. Petrov, New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966).
[110] P. I. Petrov, ?Characterizations of types of conformal-flat Riemannian spaces of four dimensions,? Ukr. Mat. Zh.,18, No. 2, 42?49 (1966). · Zbl 0156.20403 · doi:10.1007/BF02537777
[111] P. I. Petrov, ?Characterizations of Riemannian manifolds,? Ukr. Mat. Zh.,17, No. 4, 55?62 (1965). · Zbl 0178.25102 · doi:10.1007/BF02526566
[112] N. M. Pisareva, ?Weyl spaces admitting a transitive group of motions with splittable stationary (linear) subgroups,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 124?129 (1965).
[113] N. M: Pisareva, ?On a test for reducibility of spaces in Cartesian compositions (almost reducible spaces),? Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 69?72 (1970).
[114] P. K. Rashevskii, ?On the structure of tensors admitting a given invariance group,? Dokl. Akad. Nauk SSSR,177, No. 2, 275?276 (1967).
[115] K. Riives, ?Lie subgroups of motions of euclidean space R5 and their orbits. 1,? Tartu Ulikooli Ioimetised, Uch. Zap, Tartusk. Univ., No. 253, 96?126 (1970).
[116] K. Riives and A. Flyaisher, ?Homogeneous quotient spaces of the group of motions of euclidean space R4,? Tartu Ulikooli Toimetized, Uch. Zap. Tartusk. Univ., No. 372, 23?40 (1975).
[117] B. A. Rozenfel’d and I. I. Tyurina, ?Maximally mobile spaces of constant curvature and their representations with the help of algebra,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 74?87 (1967).
[118] D. I. Rozenfel’d and E. Z. Gorbatyi, ?On geodesic mappings of Riemannian spaces onto conformal-flat Riemannian spaces,? Ukr. Geometr. Sb., No. 12, 115?124 (1972).
[119] L. V. Sabinin, ?Homogeneous Riemannian spaces with (n?1)-dimensional mirrors,? in: Some Boundary-Value Problems of Ordinary Differential Equations [in Russian], Moscow (1970), pp. 116?126.
[120] L. V. Sabinin, ?Reductive spaces with absolute projective connections,? in: Some Boundary-Value Problems of Ordinary Differential Equations [in Russian], Moscow (1970), pp. 127?139.
[121] V. S. Sazanov, ?On Riemannian spaces with intransitive automorphism groups,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 83?96 (1968).
[122] V. S. Sazanov, ?On a class of spaces L n 0 with completely reducible isotropy group,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 101?108 (1967).
[123] N. S. Sinyukov, ?Almost geodesic mappings of affine and Riemannian spaces,? in: Scientific Conference Devoted to a Century of Odessa University. 1965. Mechanics-Mathematics Faculties [in Russian], Odessa (1965), p. 65.
[124] N. S. Sinyukov, ?On the theory of geodesic mappings of Riemannian spaces,? Dokl. Akad. Nauk SSSR,169, No. 4, 770?772 (1966). · Zbl 0148.42301
[125] N. S. Sinyukov, ?Infinitely small almost-geodesic transformations of affinely connected and Riemannian spaces. I,? Ukr. Geometr. Sb., No. 9, 86?95 (1970).
[126] N. S. Sinyukov, ?Infinitely small almost-geodesic transformations of affinely connected and Riemannian spaces. II,? Ukr. Geometr. Sb., No. II, 87?95 (1971).
[127] A. S. Solodovnikov, ?Group of projective transformations in a complete analytic Riemannian space,? Dokl. Akad. Nauk SSSR,186, No. 6, 1262?1265 (1969).
[128] A. Ya. Sultanov, ?Automorphisms in three-dimensional spaces with projective connections,? in: AllUnion Scientific Conference on Non-Euclidean Geometry. ?150 Years of Lobachevskiian Geometry.? Kazan, Thesis Reports [in Russian], Moscow (1976).
[129] N. N. Surina, ?Motions in two-dimensional spaces with centroprojective connections,? Uch. Zap. Mosk. Pedagog. Inst. im. V. I. Lenina, No. 271, 181?196 (1967).
[130] N. N. Surina, ?On motions in two-dimensional spaces with centroprojective connections,? Uch. Zap. Smolensk. Gos. Pedagog. Inst., No. 23, 39?45 (1970).
[131] N. V. Talantova and A. P. Shirokov, ?Groups of order three of linear fractional substituions of dual variables as affine collineations,? Tr. Geometr. Sem. Kazansk. Univ., No. 9, 105?113 (1976). · Zbl 0441.53014
[132] I. A. Undalova, ?One-parameter groups of automorphisms of type ?B? in spaces with affine connections,? Uch. Zap. Gor’kovsk. Univ., No. 80, Part 2, 107?120 (1967).
[133] I. A. Undalova, ?On one-parameter projective groups of transformations of spaces with affine connections,? Uch. Zap. Gor’kovsk. Univ., No. 80, Part 2, 121?131 (1967).
[134] I. A. Undalova, ?On stationary groups of automorphisms of spaces with affine connections,? Uch. Zap. Gor’kovsk. Univ., No. 80, Part 2, 140?143 (1967).
[135] I. A. Undalova, ?On types of one-parameter groups of projective transformations of spaces with affine connections,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 96?106 (1970).
[136] I. A. Undalova and G. R. Eranova, ?One-parameter groups of homotheties of Riemannian spaces,? Sb. St. Gor’kovsk. Univ., No. 2, 105?109 (1975).
[137] A. P. Urbonas, ?Automorphisms of spaces of tensorial support elements,? Sb. Aspirantsk. Rabot. Kazansk. Univ. Tochn. Nauki. Mat., Mekh. Fiz. Kazan, 101?107 (1968).
[138] A, P. Urbonas, ?On motions in spaces of hyperplane elements with general affine connections,? Liet. Mat. Rinkinys,9, No. 2, 388 (1969).
[139] A. P. Urbonas, ?Maximally mobile spaces of hyperplane elements with affine connections,? Liet. Mat. Rinkinys,9, No. 2, 153?179 (1969).
[140] A. P. Urbonas, ?On motions in spaces of hyperplane elements,? Liet. Mat. Rinkinys,11, No. 2, 397?400 (1971).
[141] A. P. Urbonas, ?Motions in spaces of line elements with general affine connections,? Liet. Mat. Rinkinys,12, No. 4, 225?230 (1972).
[142] A. S. Fedenko, ?On limit groups and homogeneous spaces,? in: Memoirs of the Second Republican Conference of Mathematicians of Belorussia [in Russian], Belorussk. Univ., Minsk (1969), pp. 144?146.
[143] S. I. Fedishchenko, ?Infinitely small transformations preserving curvature of a Riemannian space,? Mat. Zametki,6, No. 4, 371?380 (1969).
[144] A. S. Ferzaliev, ?A projective map and special types of spaces of linear elements,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 126?130 (1975).
[145] Z. N. Chetyrkina, ?Homotheties and motions in two-dimensional Finsler spaces,? Volzh. Mat. Sb., No. 5, 366?373 (1966).
[146] Z. N. Chetyrkina, ?On conformal transformations in Finsler spaces,? Ukr. Geometr. Sb., No. 11, 95?98 (1971). · Zbl 0237.53025
[147] Ai-Khe Chzhan, ?Riemannian spaces admitting a group of conformal displacements,? Shuxue Jin Zhan,9, No. 3, 306?309 (1966).
[148] Ya. L. Shapiro, ?Simply transitive groups of motions in affinely connected spaces,? An Stünt. Univ. Iasin, Sec. 1a, II, 383?395 (1965).
[149] Ya. L. Shapiro, ?On a classification of one-parameter groups of motions of a Riemannian space,? Tr. Sem. Vektorn. Tenzorn. Anal. Prilozhen. Geometrii, Mekh. Fiz., Mosk. Univ.,13, 456?466 (1966).
[150] Ya. L. Shapiro, ?On spaces with affine connections with group of affine homotheties,? Tr. Sem. Vektorn. Tenzorn. Anal. Prilozhen. Geometrii, Mekh. Fiz., Mosk. Univ., Moscow,13, 447?455 (1966).
[151] Ya. L. Shapiro and P. Temirov, ?On the question of motions in Riemannian spaces with reducible isotropy group,? Sib. Mat. Zh.,6, No. 6, 1407?1414 (1965). · Zbl 0132.16301
[152] A. P. Shirokov, ?Structures on differentiable manifolds,? in: Algebra. Topology. Geometry [in Russian], Vol. 2, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1974), pp. 153?207.
[153] V. L. Shtukar’, ?Homogeneous ?-spaces of groups of motions of Euclidean space,? Vestn. Belorus. Univ., Ser. 1, No. 1, 81?83 (1976).
[154] A. Kh. Shul’man, ?Motions in two-dimensional almost-complex spaces with connection,? Sb. Aspirantsk. Rabot. Kazansk. Univ. Tochn. Nauki. Mat., Mekh., Kazan, 109?116 (1974).
[155] A. Kh. Shul’man, ?Motions in four-dimensional almost-complex spaces with connection,? Sb. Aspirantsk. Rabot. Kazansk. Univ. Tochn. Nauki. Mat., Mekh., Kazan, 27?35 (1975).
[156] D. M. Yablokov, ?Some applications of Lie differentiation to spaces of pairs of linear elements,? Uch. Zap. Kazansk. Univ.,126, No. 1, 103?116 (1966).
[157] D. M. Yablokov, ?Lie derivatives and their application to the study of automorphisms of spaces of pairs of linear elements,? Uch. Zap. Kazansk. Univ.,128, No. 3, 166?174 (1968).
[158] Sh. A. Yafarov, ?Invariant test of moving Weyl surfaces W2,? Sb. Aspirantsk. Rabot. Kazansk. Univ. Mat., Mekh., Fiz. Bionika. Kazan, Kazansk. Univ., 65?70 (1966).
[159] Sh. A. Yafarov, ?Invariant tests of moving quasieuclidean spaces \=W2,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 107?116 (1967).
[160] Shingo Abe, ?On space-times with a nonsymmetric fundamental tensor, admitting a six-parameter group of motions,? Tensor,18, No. 3, 289?300 (1967). · Zbl 0161.46401
[161] Shingo Abe, ?An addendum to ?On spacetimes with a nonsymmetric fundamental tensor, admitting a sixparameter group of motions?,? Tensor,20, No. 2, 210?212 (1969).
[162] Shingo Abe, ?Finite generalized motions in X4. I,? Tensor,28, No. 1, 107?113 (1974). · Zbl 0269.53018
[163] Shingo Abe, ?The generalized Killing vectors of the groups of generalized motions in X4 (I; G6) and X4(II; G6). II,? Tensor,21, No. 1, 101?116 (1970).
[164] Shingo Abe, ?Finite generalized motions in X4. II,? Tensor,28, No. 3, 293?302 (1974). · Zbl 0293.53011
[165] Shingo Abe and Mineo Ikeda, ?On groups of motions in the space-time with a nonsymmetric fundamental tensor g v u . II,? Tensor,17, No. 3, 288?299 (1966). · Zbl 0077.15001
[166] Noill H. Ackerman and C. C. Hsiung, ?Isometry of Riemannian manifolds to spheres. II,? Can. J. Math.,28, No. 1, 63?72 (1976). · Zbl 0333.53032 · doi:10.4153/CJM-1976-007-7
[167] Tyuzi Adati and Seiichi Yamaguchi, ?On some transformations in Riemannian recurrent spaces,? Tru Math.,3, 8?12 (1967). · Zbl 0364.53006
[168] Hassan Akbar-Zadeh, ?Sur les transformations infinitésimales projectives des variétés finslériennes compactes,? C. R. Acad. Sci.,280, No. 9, A591-A593 (1975). · Zbl 0307.53037
[169] Hassan Akbar-Zadeh, ?Sur les homothéties infinitésimales des variétés finslériennes,? C. R. Acad. Sci.,AB262, No. 19, A1058-A1060 (1966).
[170] Hassan Akbar-Zadeh, ?Sur les invariants conformes des variétés finslériennes,? C. R. Acad. Sci.,268, No. 7, A402-A404 (1969). · Zbl 0174.25201
[171] Hassan Akbar-Zadeh, ?Transformations infinitésimales projectives des variétés finslériennes compactes,? C. R. Acad. Sci.,280, No. 10, A661-A663 (1975). · Zbl 0309.53059
[172] Hassan Akbar-Zadeh, ?Transformations infinitésimales conformes des variétés finslériennes compactes,? C. R. Acad. Sci.,281, No. 5, A655-A657 (1975). · Zbl 0318.53060
[173] D. Asimov, ?Finite groups as isometry groups,? Trans. Am. Math. Soc.,216, 389?391 (1976). · Zbl 0316.53039 · doi:10.2307/1997706
[174] Gheorghe Atanasiu, ?Asupra extinderii notiunii de miscare conforma,? Bul. Inst. Politeh. Brasov,A13, 11?15 (1971).
[175] André Avez, ?Transformations conformes des variétés riemannienes compactes,? C. R. Acad. Sci.,260, No. 6, 1550?1553 (1965).
[176] André Avez, ?Remarques sur les automorphismes infinitésimaux des variétés symplectiques compactes,? Rend. Sem. Math. Univ. Politecn. Torino,33, 5?12 (1974?1975) (1976),
[177] Nath Prasad Baij, ?Curvature collineations in Finsler space,? Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis., Mat. Natur.,49, No. 3?4, 194?197 (1970).
[178] Augustin Banyaga, ?Sur le groupe des difféomorphismes qui préservent une forme de contact réguliere,? C. R. Acad. Sci.,281, No. 16, A707-A709 (1975). · Zbl 0315.58013
[179] Constantino M. de Barros, ?Variétés presque horcomplexes,? C. R. Acad. Sci.,260, No. 6, 1543?1546 (1965).
[180] A. Batbedat, ?Sur la conjecture de A. Lichnerowicz,? Publs. Dep. Math.,11, No. 3, 51?57 (1974). · Zbl 0311.53060
[181] John K. Beem, ?Motions in two-dimensional indefinite Finsler spaces,? Indiana Univ. Math. J.,21, No. 6, 551?555 (1971). · doi:10.1512/iumj.1972.21.21044
[182] John K. Beem, ?On the indicatrix and isotropy group in Finsler spaces with Lorentz signature,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,54, No. 3, 385?392 (1973). · Zbl 0285.53023
[183] K. Bélteky, ?Über spezielle bahntreue Abbildungen,? Pubis. Math.,15, No. 4, 189?202 (1968). · Zbl 0176.51202
[184] Beverly K. Berger, ?Homothetic and conformal motions in spacelike slices of solutions of Einstein’s equations,? J. Math. Phys.,17, No. 7, 1268?1273 (1976). · doi:10.1063/1.523052
[185] Valentin Boju and Mariana Popescu, ?Changements conformes de metrique de point de vue global,? Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,57, No. 5, 346?349 (1974) (1975). · Zbl 0325.53038
[186] W. Byers, ?Isometry groups of manifolds of negative curvature,? Proc. Am. Math. Soc.,54, 281?285 (1976). · Zbl 0321.53034 · doi:10.1090/S0002-9939-1976-0390960-6
[187] M. Cahen, ?On a class of homogeneous spaces in general relativity,? Bull. Cl. Sci. Acad. R. Belg.,50, No. 9, 972?990 (1964). · Zbl 0132.43103
[188] M. Cahen and N. Wallach, ?Lorentzian symmetric spaces,? Bull. Am. Math. Soc.,76, No. 3, 585?591 (1970). · Zbl 0194.53202 · doi:10.1090/S0002-9904-1970-12448-X
[189] Aurelian Cochina, ?Asupra grupului de automorfisme ale unui spatiu cu conexiume afina projectiv euclidian,? Stud. Cerc. Mat.,22, No. 6, 841?844 (1970).
[190] C. D. Collinson, ?Curvature collineations in empty space-times,? J. Math. Phy.,11, No. 3, 818?819 (1970). · doi:10.1063/1.1665215
[191] C. D. Collinson, ?Special subprojective motions in a Riemannian space,? Tensor,28, No. 2, 218?220 (1974).
[192] B. K. Datta, ?Nonstatic electromagnetic fields in general relativity,? Nuovo Cimento,A47, No. 3, 568?572 (1967). · doi:10.1007/BF02738750
[193] D. K. Datta, ?Notes on Ricci-recurrent spaces,? Rend. Circolo Mat. Palermo,14, No. 3, 281?286 (1965) (1966). · Zbl 0146.43502 · doi:10.1007/BF02844031
[194] L. Defrise-Carter, ?Conformal groups and conformally equivalent isometry groups,? Commun. Math. Phys.,40, No. 3, 273?282 (1975). · Zbl 0322.53008 · doi:10.1007/BF01610003
[195] Ryszard Deszcz, ?Uwagi o koloneacjach rzutowych w pewnych klasach przestrzeni Riemanna,? Pr. Nauk. Inst. Mat. Fiz. Teor. PWr, No. 8, 3?9 (1973).
[196] Ioana Draghici, ?Spatii Riemann V4 si, V5 local euclidene, cu conexiune constanta,? An. Univ. Bucuresti. Ser. Stiint. Natur. Mat.-Mecan.,14, No. 2, 59?97 (1965).
[197] Ioana Draghici, ?Asupra grupurilor liniare comutative si local tranzitive cu 2, 3, si 4 Parametri,? An. Univ. Bucurest. Mat.-Mec.,18, No. 1, 29?46 (1969).
[198] Viorel Dumitras, ?Asupra spatiilor An care admit o omotetie,? Studii si Cercetari Mat. Acad. RSR,18, No. 10, 1529?1532 (1966).
[199] Viorel Dumitras, ?Asupra spatiilor An cu grup separabil care admit o rotatie,? Studii si Ceroetari Mat. Acad. RSR,19, No. 1, 33?39 (1967).
[200] Viorel Dumitras, ?Determinarea spattilor An cu ?p? forme Pfaff invariante cu grup maxim de miscari,? Studii si Cercetari Mat. Acad. RSR,19, No. 5, 701?705 (1967).
[201] P. Enghis, ?Grupul de miscari al spatillor K 3 * ,? Stud. Univ. Babes-Bolyai Mat., 20, 16?20 (1975).
[202] David Leroy Farnsworth, ?Homogeneous dust filled cosmological models,? Doct. Diss. Univ. Texas, 1967, Ref. Dissert. Abstrs.,B28, No. 5, 2024 (1967).
[203] Franco Fava, ?Varieta con connessioni tensoriali dotate di autoparallele e loro movimenti,? Rend. Sem. Mat. Univ. e Politech. Torino,23, 57?73 (1963?1964).
[204] P. M. Gadea and Luis A. Cordero, ?On the automorphism group ?(4,2)-manifolds,? Tensor,29, No. 2, 161?165 (1975). · Zbl 0303.53038
[205] Andrzej Gebarowski, ?On conformal collineations in Riemannian spaces,? Pr. Nauk, Inst. Mat. Fiz. Teor. PWr, No. 8, 11?17 (1973). · Zbl 0263.53031
[206] Robert Geroch and Rong Soo Jang, ?Motion of a body in general relativity,? J. Math. Phys.,16, No. 1, 65?67 (1975). · doi:10.1063/1.522416
[207] Hubert Goenner and John Stachel, ?Einstein tensor and three-parameter groups of isometries with twodimensional orbits,? J. Math. Phys.,11, No. 12, 3358?3370 (1970). · Zbl 0204.57703 · doi:10.1063/1.1665136
[208] Eftimie Grecu, ?Asupra spatiilor lui Riemann cu conexiune constanta,? Studdi si Cercetari Mat. Acad. RSR,17, No. 10, 1583?1585 (1965).
[209] Eftimie Grecu, ?Spatiul reprezentativ al grupului preudoortogonal,? Stud, si Cerc. Mat.,23, No. 6, 853?863 (1971).
[210] Eftimie Grecu, ?Cimpuri de vectori paraleli spatii Riemann cu conexiune constanta,? Studii si Cercetari Mat. Acad. RSR,18, No. 6, 869?877 (1966).
[211] Joseph Grifone, ?Sur les transformations infinitésimales conformes d’une variété finslérienne,? C. R. Acad. Sci.,280, No. 9, A583-A585 (1975). · Zbl 0311.53071
[212] Theodor Hangan, ?Variétés et transformations infinitésimales homographiques,? C. R. Acad. Sci.,281, No. 20, A859-A861 (1975).
[213] E. Heil and D. Laugwitz, ?Finsler spaces with similarity are Minkowski spaces,? Tensor,28, No. 1, 59?62 (1974). · Zbl 0251.53046
[214] Hitosi Hiramatu, ?On a conformal transformation of a Riemannian manifold,? Kodai Math. Sem. Repts.,22, No. 2, 138?141 (1970). · Zbl 0194.52904 · doi:10.2996/kmj/1138846110
[215] Hitosi Hiramatu, ?On essentially iosmetric conformal transformations groups,? Kodai Math. Sem. Repts.,24, No. 2, 212?216 (1972). · Zbl 0237.53036 · doi:10.2996/kmj/1138846523
[216] Hitosi Hiramatu, ?On Riemannian manifolds admitting a one-parameter conformal transformation group,? Tensor,28, No. 1, 19?24 (1974). · Zbl 0294.53031
[217] Chuan-Chih Hsiung, ?Vector fields and infinitesimal transformations on Riemannian manifolds with boundary,? Bull. Soc. Math. France,92, No. 4, 411?434 (1964) (1965). · Zbl 0137.14801 · doi:10.24033/bsmf.1614
[218] Chuan-Chih Hsiung, ?On the group of conformal transformations of a compact Riemannian manifold,? Proc. Nat. Acad. Sci. USA,54, No. 6, 1509?1513 (1965). · Zbl 0129.35802 · doi:10.1073/pnas.54.6.1509
[219] Chuan-Chih Hsiung, ?On the group of conformal transformations of a compact Riemannian manifold. III,? J. Different. Geometr.,2, No. 2, 185?190 (1968). · Zbl 0167.50404 · doi:10.4310/jdg/1214428254
[220] Hou-sung Hu, ?On the lacunal of complete groups of motions of homogeneous Riemannian spaces,? Sci. Sinica,14, No. 1, 134?136 (1965).
[221] Hou-sung Hu, ?A Finslerian product of two Riemannian spaces,? Sci. Res.,3, No. 10, 446?448 (1959). · Zbl 0087.36901
[222] Takanori Igarashi, ?On Lie derivatives in areal spaces,? Tensor,18, No. 2, 205?211 (1967). · Zbl 0147.40803
[223] Mineo Ikeda and Yoshio Nishino, ?On groups of scalar-preserving isometries in Riemannian spaces, with application to dynamical systems,? Tensor,27, No. 3, 295?305 (1973). · Zbl 0281.53011
[224] Hans-Christoph Im Hof, ?Über die Isometrie gruppe bei kompakten Mannigfaltigkeiten negativer Krümmung,? Comment. Math. Helv.,48, No. 1, 14?30 (1973). · Zbl 0258.53040 · doi:10.1007/BF02566108
[225] Susumi Ishikawa, ?The infinitesimal automorphisms on the tangent bundles of order 2,? Rend. Accad. Naz.,40, 24?25, 265?274 (1973?(1974) (1975).
[226] Antoni Jacubowicz, ?On certain type of Einstein’s space-time,? Tensor,22, No. 1, 73?76 (1971).
[227] Garry R. Jensen, ?Homogeneous Einstein spaces of dimension four,? J. Different. Geom.,3, No. 3, 309?349 (1969). · Zbl 0194.53203 · doi:10.4310/jdg/1214429056
[228] Garry R. Jensen, ?Homogeneous Einstein spaces,? Doct. Diss., Berkeley, Univ. Calif., 1968; Ref. Dissert. Abstrs.,B29, No. 9, 3396 (1969).
[229] Sh. Kashiwabara, ?A fibering of Riemannian manifolds admitting I-parameter groups of motions,? Tohoku Math. J.,17, No. 3, 266?270 (1965). · Zbl 0132.16402 · doi:10.2748/tmj/1178243548
[230] Y. Katsurada, ?On the isoperimetric problem in a Riemann space,? Comment. Math. Helv.,41, No. 1, 18?29 (1966). · Zbl 0148.15801 · doi:10.1007/BF02566866
[231] G. H. Katzin and J. Levine, ?General conformal motions in conformally related spaces,? Tensor,17, No. 3, 249?252 (1966). · Zbl 0297.53009
[232] G. H. Katzin and J. Levine, ?Note on the equations of projective collineations,? Tensor,19, No. 2, 162?164 (1968). · Zbl 0173.24205
[233] G. H. Katzin and J. Levine, ?Special curvature collineations in a flat space,? Tensor,22, No. 1, 64?68 (1971). · Zbl 0214.20501
[234] G. H. Katzin, J. Levine, and William R. Davis, ?Groups of curvature collineations in Riemannian space-time which admit fields of parallel vectors,? J. Math. Phys.,11, No. 5, 1578?1580 (1970). · Zbl 0194.58604 · doi:10.1063/1.1665297
[235] G. H. Katzin, J. Levine, and William R. Davis, ?Curvature collineations in conformally flat spaces. I,? Tensor,21, No. 1, 51?61 (1970). · Zbl 0216.43602
[236] Y. Kerbrat, ?Existence d’homotheties infinitesimales sur une variete munie d’une connexion lineaire symetrique complete,? C. R. Acad. Sci.,280, No. 9, A587-A589 (1975). · Zbl 0297.53018
[237] Sh. Kobayashi, Transformation Groups in Differential Geometry [Ergeb. Math., 70], Springer-Verlag, Berlin (1972).
[238] Cz. Konopka, ?A note on some infinitesimal conformal transformations in locally product Riemannian spaces,? Pr. Nauk. Inst. Mat. Fiz., Teor. PWr. Ser. Stud, Imater., No. 1, 25?52 (1970). · Zbl 0253.53038
[239] Cz. Konopka, ?Curvature collineations in separately Einstein space,? Pr. Nauk Inst. Mat. Fiz. Teor. PWr, No. 8, 33?40 (1973).
[240] Cz. Konopka, ?On some transformations in separately Einstein spaces,? Pr, Nauk Inst. Mat. Fiz. Teor. PWr, No. 8, 25?32 (1973).
[241] R. S. Kuikarni, ?Curvature structures and conformal transformations,? Bull. Am. Math. Soc.,75, No. 1, 91?94 (1969). · Zbl 0192.58601 · doi:10.1090/S0002-9904-1969-12155-5
[242] Soo Chang Kun, ?Gruppi di moto nella teoria del campo g2V-unificato di Einstein. I,? Rend. Mat., No. 2, 257?266 (1973). · Zbl 0272.53029
[243] G. M. Lancaster, ?On conformally euclidean spaces of class one,? Doct. Diss. Univ. Saskatchewan, 1967; Ref. Diss. Abstrs.,B28, No. 10, 4202 (1968).
[244] G. M. Lancaster, ?A characterization of certain conformally euclidean spaces of class one,? Proc. Am. Math. Soc.,21, No. 3, 623?628 (1969). · Zbl 0175.19003 · doi:10.1090/S0002-9939-1969-0240744-0
[245] A. J. Ledger, ?Espaces de Riemann symetrique generalises,? C. R. Acad. Sci.,264, No. 22, A947-A948 (1967). · Zbl 0147.40601
[246] A. J. Ledger and Morio Obata, ?Compact Riemannian manifolds with essential groups of conformorphisms,? Trans. Am. Math. Soc.,150, No. 2, 645?651 (1970).
[247] J. Lefebvre, ?Transformations conformes et automorphismes de certaines structures presque symplectiques,? C. R. Acad. Sci.,AB262, No. 13, A752-A754 (1966). · Zbl 0192.28001
[248] Jack Levine and G. H. Katzin, ?Curvature collineations in conformally flat spaces. II,? Tensor,21, No. 3, 319?329 (1970). · Zbl 0216.43701
[249] A. Lichnerowicz, ?Sur l’algebre de Lie des automorphismes infinitésimaux d’une variété unimodulaire,? C. R. Acad. Sci.,276, No. 3, A199-A203 (1973). · Zbl 0253.53033
[250] A. Lichnerowicz, ?Automorphismes infinitésimaux d’une structure subordonnée a une structure unimodulaire,? C. R. Acad. Sci.,A278, No. 22, 1425?1429 (1974). · Zbl 0282.53026
[251] Jong-diing Liu, ?The group of conformal transformations of a compact Riemannian manifold,? Doct. Diss. Lehigh Univ., 1967; Ref. Dissert. Abstrs.,B28, No. 5, 2032?2033 (1967).
[252] Mu-Chou Liu, ?Affine maps on tangent bundles,? Indiana Univ. Math. J.,23, No. 7, 593?605 (1974). · Zbl 0282.53031 · doi:10.1512/iumj.1974.23.23050
[253] Masao Maeda, ?The isometry groups of compact manifolds with nonpositive curvature,? Proc. Jpn. Acad.,51, Suppl., 790?794 (1975). · Zbl 0341.53026 · doi:10.3792/pja/1195518435
[254] F. Marcus, ?Quelques résultats sur les surfaces a groupes continus de transformations projéctiveconformes en elles memes,? Bull. Cl. Sci. Acad. Belg.,50, No. 8, 863?868 (1964).
[255] F. Marcus, ?Sulla classificazione degli spazii V4 secondo i gruppi di movimento,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,39, No. 1?2, 45 (1965). · Zbl 0136.17505
[256] I. Matei, ?Asupra unor invarianti in spatiile A4 cu torsiune,? Stud. Cere. Mat. Acad. RSR,18, No. 10, 1579?1596 (1966).
[257] I. Matei, ?Clasificarea grupurilor lui Lie reale neintegrabile cu cini parametri,? Stud. Cerc. Mat. Acad. RSR,20, No. 2, 223?235 (1968).
[258] I. Matei, ?Asupra subgupurilor grupului centro-afin in trei variabile,? Stud. Cerc. Mat. Acad. RSR,20, No. 10, 1497?1500 (1968).
[259] I. Matei, ?Asupra grupului de stabilitate al unui spatiu A3 omogen,? Stud. Cerc. Mat. Acad. RSR,21, No. 1, 97?99 (1969).
[260] I. Matei, ?Asupra clasificaru lui Sophus Lie a subgrupilor grupului centro-afin in trie variabile,? Stud. Cerc. Mat.,26, No. 7, 979?1002 (1974).
[261] Makoto Matsumoto, ?Intrinsic transformations of Finsler metrics and connections,? Tensor,19, No. 3, 303?313 (1968). · Zbl 0164.22501
[262] Makoto Matsumoto, ?V-transformations of Finsler spaces. I. Definition, infinitesimal transformations and isometries,? J. Math. Kyoto Univ.,12, No. 3, 479?512 (1972). · Zbl 0251.53045 · doi:10.1215/kjm/1250523477
[263] Makoto Matsumoto, ?On C-reducible Finsler spaces,? Tensor,24, 29?37 (1972).
[264] Masatsune Matsumoto, ?On Riemannian spaces with recurrent projective curvature,? Tensor,19, No. 1, 11?18 (1968). · Zbl 0168.19405
[265] F. M. Meher, ?Projective motion in a symmetric Finsler space,? Tensor,23, No. 3, 275?278 (1972). · Zbl 0256.53032
[266] F. M. Meher, ?An SHR-Fn admitting an affine motion. II,? Tensor,27, No. 2, 208?210 (1973). · Zbl 0279.53033
[267] R. Miron, ?Espace de Finsler ayant un groupe de Lie comme groups d’invariance,? Rev. Roumaine Math. Purest Appl.,13, No. 9, 1409?1412 (1968).
[268] R. Miron, ?Mouvements conformes dans les espaces Wn et Nn,? Tensor,19, No. 1, 33?41 (1968).
[269] R. B. Misra, ?The projective transformation in a Finsler space,? Ann. Soc. Scient. Bruxelles, Ser. 1,80, No. 3, 227?239 (1966). · Zbl 0154.21801
[270] R. B. Misra, ?The generalized Killing equation in Finsler space,? Rend. Circ. Mat. Palermo,18, No. 1, 99?102 (1969). · Zbl 0231.53048 · doi:10.1007/BF02888950
[271] R. B. Misra and F. M. Meher, ?Projective motion in an RNP-Finsler space,? Tensor,22, No. 1, 117?120 (1971). · Zbl 0206.50901
[272] R. B. Misra, ?An SHR-Fn admitting an affine motion,? Acta Math. Hung.,22, No. 3?4, 423?429 (1972). · Zbl 0238.53021 · doi:10.1007/BF01896439
[273] R. B. Misra and F. M. Meher, ?Lie differentiation and projective motion in the projective Finsler space,? Tensor,23, No. 1, 57?65 (1972). · Zbl 0228.53016
[274] R. B. Misra and F. M. Meher, ?A Finsler space with special concircular projective motion,? Tensor,24, 288?292 (1972). · Zbl 0245.53057
[275] R. B. Misra and F. M. Meher, ?On the existence of affine motion in an HR-Fn,? Indian J. Pure Appl. Math.,3, No. 2, 219?225 (1972). · Zbl 0237.53022
[276] R. B. Misra and R. S. Mishra, ?The Killing vector and the generalized Killing equation in Finsler space,? Rend. Circolo Mat. Palermo,15, No. 2, 216?222 (1966). · Zbl 0168.43203 · doi:10.1007/BF02849437
[277] R. B. Misra and K. S. Pande, ?On the Finsler space admitting a holonomy group,? Ann. Mat. Pura Appl., No. 85, 327?346 (1970). · Zbl 0194.53502 · doi:10.1007/BF02413543
[278] R. S. Mishra and H. D. Pande, ?Certain projective changes in Finsler space,? Rev. Mat. Hisp.-Am.,28, No. 1?2, 49?55 (1968). · Zbl 0182.55503
[279] Teturo Miyazawa, ?On conformal transformations of Riemannian spaces with recurrent conformal curvature,? Tru Math.,3, 19?24 (1967).
[280] A. Moor, ?Linienelementräume mit nicht-symmetrischem Fundamentaltensor,? Publs. Math.,11, No. 1?4, 245?256 (1964). · Zbl 0133.15205
[281] A. Moor, ?Uber spezielle Bahnengeometrien dritter Ordnung,? Ann. Polon. Mat.,17, No. 3, 261?271 (1966). · Zbl 0138.42903
[282] Boleslaw Mrozowski, ?On infinitesimal conformal transformations in Ricci-recurrent spaces,? Zesz. Nauk Politech. Wroclowski, No. 197, 81?86 (1968).
[283] Hans Robert Müller, ?Zur Bewegungsgeometrie in Räumen höherer dimension,? Monatsh. Math.,70, No. 1, 45?57 (1966). · Zbl 0141.37902 · doi:10.1007/BF01306999
[284] V. Murgescu, ?Invarianti la transport paralel in spatii 4-dimensionale cu torsiune. I,? Bul. Inst. Politeh. Jasi,11, No. 3?4, 49?60 (1965).
[285] J. Navez, ?Le groupe de mouvements des espaces du type Robertson Walker,? Bull. Soc. R. Sci. Liege,38, No. 1?12, 629?638 (1969). · Zbl 0194.53302
[286] J. Navez, ?Le groupe de mouvements des espaces de Gödel,? Bull. Soc. R. Sci. Liege,39, No. 9?10, 470?473 (1970). · Zbl 0206.50602
[287] J. Navez, ?Recherches sur les propriétés géométriques de certaines variétés a quatre dimensions,? Mem. Soc. R. Sci. Liege,1, No. 1 (1971).
[288] J. Navez, ?The groups of motions of spacetimes admitting a parallel null vector field,? Bull. Soc. R. Sci. Liege,41, No. 9?10, 484?502 (1972). · Zbl 0265.53023
[289] Katsumi Nomizu and Kentaro Yano, ?Some results related to the equivalence problem in Riemannian geometry,? Mat. Z.,97, No. 1, 29?37 (1967). · Zbl 0148.15602 · doi:10.1007/BF01111120
[290] Katsumi Nomizu and Kentaro Yano, ?Some results related to the equivalence problem in Riemannian geometry,? in: Proc. US-Japan Seminar Different. Geometry, Kyoto, 1965, Hyoronsha Co. Ltd., Tokyo (1966), pp. 95?100. · Zbl 0273.53039
[291] V. Obadeanu and D. Opris, ?Asupra unor varietati neolonome dintr in spatiu Riemannian R3,? An. Univ. Timisoara. Ser. Stunte Mat.-Fiz.,3, 219?226 (1965).
[292] Morio Obata, ?The conjectures on conformal transformations of Riemannian manifolds,? J. Different. Geom.,6, No. 2, 247?258 (1971). · Zbl 0236.53042 · doi:10.4310/jdg/1214430407
[293] Morio Obata, ?A noncompact Riemannian manifold admitting a transitive group of conforphisms,? Tohoku Math. J.,25, No. 4, 553?556 (1973). · Zbl 0284.53036 · doi:10.2748/tmj/1178241290
[294] Takushiro Ochiai, ?Transformation groups on Riemannian symmetric spaces,? J. Different. Geom.,3, No. 2, 231?236 (1969). · Zbl 0187.19203 · doi:10.4310/jdg/1214428827
[295] Chen-kuo Pa, ?The characteristics of the spaces of constant curvature considered as the conformally separable Riemannian spaces,? Sci. Abstrs. China Math. Phys. Sci.,3, No. 3 (1965).
[296] H. D. Pande, ?The projective transformation in a Finsler space,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,43, No. 6, 480?484 (1967) (1968). · Zbl 0157.52401
[297] H. D. Pande, ?Projective invariants in a Finsler space,? Bull. Math. Soc. Math. RSR,12, No. 4, 163?169 (1968) (1969). · Zbl 0169.53601
[298] H. D. Pande, ?Some identities in conformal Finsler space,? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. Natur.,45, No. 5, 278?282 (1968) (1969). · Zbl 0172.23503
[299] H. D. Pande, ?Some theorems on the projective derivative of certain entities in conformal Finsler spaces,? Czechosl. Mat. J.,19, No. 2, 323?348 (1969). · Zbl 0183.26502 · doi:10.1007/BF01712869
[300] H. D. Pande, ?The conformal transformation in a Finsler space,? Math. Nach.,41, No. 4?6, 247?252 (1969). · Zbl 0181.50204 · doi:10.1002/mana.19690410406
[301] H. D. Pande and A. Kumar, ?The effect of conformal change over some entities in Finsler space,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,53, No. 1?2, 60?70 (1972) (1973). · Zbl 0257.53030
[302] H. D. Pande and A. Kumar, ?Conformal motion in a recurrent Finsler space,? Instabul. Univ. Fen Fak. Mecm., Rev. Fac. Sci. Univ. Istanbul,A39, 63?67 (1974) (1975).
[303] H. D. Pande and A. Kumar, ?Special infinitesimal projective transformation in a Finsler space,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,57, No. 3?4, 190?193 (1974) (1975). · Zbl 0317.53030
[304] H. D. Pande and R. S. Mishra, ?Conformal identities,? Istanbul Univ. Fen. Fac. Mecm. Rev. Fac. Sci.,A31, 39?48 (1966) (1969).
[305] H. D. Pande and R. S. Mishra, ?General projective geometry of geodesics in a Finsler space,? Rend. Circolo Mat. Palermo,16, No. 2, 239?246 (1967). · Zbl 0174.25102 · doi:10.1007/BF02843756
[306] H. D. Pande and B. Singh, ?The special infinitesimal projective transformation in an n-dimensional special Kawaguchi space,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,57, No. 6, 570?575 (1974) (1975). · Zbl 0325.53028
[307] Govind Pandey, ?Projective motion in a non-Riemannian K*-space,? Rev. Fac. Cien. Univ. Lisboa,A14, No. 2, 157?164 (1972) (1973). · Zbl 0259.53018
[308] Pierre Pigeaud and Moussa Sakoto, ?Transformations infinitesimales conformes fermees des varietes riemanniennes,? C. R. Acad. Sci.,274, No. 19, A1406-A1408 (1972). · Zbl 0241.53018
[309] N. Prakash, ?Some remarks on recurrent and Ricci-recurrent spaces,? G.,12, No. 2 (1961). · Zbl 0133.14902
[310] Mileva Prvanovic, ?Neke teoreme o konformnim transformacijama jedne klase kompaktnih Riemann-ovih prostora,? Godishn? ak Filoz. Fak. Novom Sadu,63, No. 7, 235?242 (1962).
[311] Mileva Prvanovic, ?Une connexion nonsymetrique associese a l’espace Riemannien,? Publs, Inst. Math.,10, 55?64 (1970).
[312] I. Robinson and I. D. Zund, ?A theorem on geodesic mappings? Tensor,19, No. 3, 300?302 (1968). · Zbl 0164.22103
[313] W. Roter, ?Some remarks on infinitesimal projective transformations in recurrent and Ricci-recurrent spaces,? Colloq. Math.,15, No. 1, 121?127 (1966). · Zbl 0163.43403
[314] W. Roter, ?A note on infinitesimal projective transformations in recurrent spaces of second order,? Zesz. Nauk. Politech. Wroclawsk, No. 197, 87?94 (1968).
[315] W. Roter, ?A note on infinitesimal conformal transformations in recurrent spaces of second order,? Zesz. Nauk. Politech. Wroclawsk, No. 197, 95?100 (1968).
[316] A. N. Roy Chowdhury, ?Some theorems on recurrent spaces of second order,? Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron., Phys.,15, No. 3, 171?176 (1967).
[317] P. Sandovici, P. Enghis, and M. Tarina, ?Crupul de miscari al spatiilor V4 care admit doua cimpuri de vectori izotropi paraleli,? Stud. Univ. Babes-Bolyai. Ser. Math.-Phys.,11, No. 2, 51?57 (1966).
[318] A. Sanini, ?Transformazioni pseudoaffini di una varieta differenziabilile,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,56, No. 4, 512?517 (1974).
[319] Kojiro Sato, ?Infinitesimal affine transformations of the tangent bundles with Sasaki metric,? Tohoku Math. J.,26, No. 3, 353?361 (1974). · Zbl 0292.53038 · doi:10.2748/tmj/1178241129
[320] B. Schmidt, ?Isometry groups with surface-orthogonal trajectories,? Z. Naturforsch.,22a, No. 9, 1351?1355 (1967). · Zbl 0149.46102
[321] Kouei Sekigawa and Shûkichi Tanno, ?Sufficient conditions for a Riemannian manifold to be locally symmetric,? Pac. J. Math.,34, No. 1, 157?162 (1970). · Zbl 0189.22103 · doi:10.2140/pjm.1970.34.157
[322] C. Simionescu, ?Tensori armonici ai spatiilor Riemann eu grup de miscari simplu tranzitiv,? Stud. Cerc. Math. Acad. RSR,21, No. 4, 465?651 (1969).
[323] C. Simionescu, ?Clas i fucarea grupurilor G4 integrabile,? Stud. Mat.,22, No. 6, 919?929 (1970).
[324] C. Simionescu, ?Asupra spatiilor lui Riemann asociate unei forme cubice,? Stud. Cerc. Mat. Acad. RSR,22, No. 2, 331?334 (1970).
[325] Om. P. Singh, ?On the projective motion in a projective Finsler space of recurrent curvature,? Mat. Vesn.,10, No. 2, 105?110 (1973). · Zbl 0268.53009
[326] Om. P. Singh, ?On the homothetic transformations in a real spaces of the submetric class,? Publs. Math.,20, No. 1?2, 1?12 (1973).
[327] Om. P. Singh, ?A remark on the projective motion in a projective Finsler space of recurrent curvature,? Yokahama Math. J.,23, No. 1?2, 1?14 (1975). · Zbl 0328.53017
[328] S. S. Singh, ?Conharmonic transformations of Einstein ?Kahler spaces with Bochner curvature tensor,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,57, No. 6, 559?564 (1974) (1975).
[329] U. P. Singh and B. N. Prasad, ?Special curvature collineations in Finsler space,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,50, No. 2, 122?127 (1971). · Zbl 0226.53012
[330] B. B. Sinha, ?On projective mapping in a Finsler space,? Tensor,22, No. 3, 326?328 (1971). · Zbl 0227.53039
[331] R. S. Sinha, ?Projective curvature tensors of a Finsler space,? Bull. Cl. Sci. Acad. R. Belg.,54, No. 3, 272?279 (1968). · Zbl 0159.24101
[332] R. S. Sinha, ?Affine motions in recurrent Finsler spaces,? Tensor,20, No. 3, 261?264 (1969). · Zbl 0184.25402
[333] R. S. Sinha, ?On projective motions in a Finsler space with recurrent curvature,? Tensor,21, No. 1, 124?126 (1970). · Zbl 0191.20203
[334] R. S. Sinha, ?Infinitesimal conformal transformation in Finsler space,? Rev. Univ. Nav. Tucuman,A21, No. 1?2, 283?287 (1971). · Zbl 0281.53025
[335] D. Smaranda, ?Sur les groupes discrets des espaces du type Gödel,? Bull. Soc. R. Sci. Liege,36, No. 1?2, 20?24 (1967). · Zbl 0149.18703
[336] D. Smaranda, ?On the Riemann spaces with intransitive group of motions,? Tensor,28, No. 3, 273?274 (1974). · Zbl 0295.53022
[337] D. Smaranda, ?Sur les groupes discrets de l’espace affin A3,? Bull. Soc. R. Sci. Liege,36, No. 1?2, 25?31 (1967). · Zbl 0154.02303
[338] P. Sommers, ?On Killing tensor and constants of motion,? J. Math. Phys.,14, No. 6, 787?790 (1973). · doi:10.1063/1.1666395
[339] F. Speranza, ?Sui gruppi d’olonomia degli spazi a connessioni proiettiva o affine generalizzati,? Boll. Unione Mat. Ital.,21, No. 1, 48?64 (1966). · Zbl 0142.19701
[340] R. C. Srivastava, ?On generalizations of harmonic and Killing vectors,? Bull. Cl. Sci. Acad. R. Belg.,53, No. 3, 200?216 (1967). · Zbl 0147.40801
[341] S. C. Srivastava and K. S. Sinha, ?Projective transformation in recurrent and Ricci-recurrent Finsler spaces,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,57, No. 3?4, 181?186 (1974) (1975). · Zbl 0312.53018
[342] M. I. Stoka, ?Connexions invariantes sur un espace riemannian V3. I,? Bull. Cl. Sci. Acad. R. Belg.,50, No. 11, 1244?1251 (1964).
[343] M. I. Stoka, ?Connexions invariantes sur un espace riemannien V,? Rev. Roumaine Mat. Pures Appl.,10, No. 9, 1281?1300 (1965). · Zbl 0138.42705
[344] M. I. Stoka, ?Su gli spazi riemanniani dalla metrica indefinite e dalla curvatura costante,? Math. Notae,20, No. 3?4, 65?86 (1965). · Zbl 0147.40602
[345] M. I. Stoka, ?Connexions invariantes sur un espace riemannien V3. II,? Rev. Roumaine Math. Pures Appl.,10, No. 8, 1247?1254 (1965).
[346] M. I. Stoka, ?Asupra grupurilor izomorfe cu grupul transformarilor ortogonale din planul euclidian,? Stud. Cer. Mat. Acad. RSR,18, No. 6, 771?781 (1966).
[347] M. I. Stoka, ?Determinarea subgrupurilor grupului \(X_\alpha f({{\partial f} \mathord{\left/ {\vphantom {{\partial f} {\partial x^\alpha }}} \right. \kern-\nulldelimiterspace} {\partial x^\alpha }}) + 2x^\alpha ({{\partial f} \mathord{\left/ {\vphantom {{\partial f} {\partial x^\alpha }}} \right. \kern-\nulldelimiterspace} {\partial x^\alpha }}) (\alpha = 1, 2), X_3 f = x^1 ({{\partial f} \mathord{\left/ {\vphantom {{\partial f} {\partial x^2 }}} \right. \kern-\nulldelimiterspace} {\partial x^2 }}) - x^2 ({{\partial f} \mathord{\left/ {\vphantom {{\partial f} {\partial x^1 }}} \right. \kern-\nulldelimiterspace} {\partial x^1 }})\) ,? Stud. Cere. Mat. Acad. RSR,18, No. 3, 397?405 (1966). · Zbl 0148.42103
[348] M. I. Stoka, ?Asupra subgrupurilor izomorfe cu grupul transformarilor ortoggonale diu spatiul E3 si cu subgrupurile lui,? Stud. Cerc. Mat. Acad. RSR,19, No. 2, 177?204 (1967).
[349] M. I. Stoka, ?Asupra subgrupurilor grupului transformarilor ortogonale din spatiul E3,? Stud. Cerc. Mat. Acad. RSR,19, No. 3, 339?362 (1967).
[350] M. I. Stoka, ?Determinarea subgrupurilor grupului transformarilor afine din plan,? Stud. Cerc. Mat. Acad. RSR,19, No. 6, 897?925 (1967).
[351] M. I. Stoka, ?Connessioni invarianti sur spazi riemanniani,? Rend. Sem. Mat. Fis. Milano,39, 151?170 (1969). · Zbl 0218.53036 · doi:10.1007/BF02924134
[352] T. Suguri and S. Ueno, ?Some notes on infinitesimal conformal transformations,? Tensor,24, 253?260 (1972). · Zbl 0251.53015
[353] Shun-ichi Tachibana, ?On the geodesic projective transformation in Riemannian spaces,? Hokkaido Math. J.,1, No. 1, 87?94 (1972). · Zbl 0246.53047 · doi:10.14492/hokmj/1381759040
[354] Shun-ichi Tachibana, ?On Riemannian spaces admitting geodesic conformal transformations,? Tensor,25, 323?331 (1972). · Zbl 0233.53008
[355] Hitoshi Takagi, ?Conformally flat Riemannian manifolds admitting a transitive group of isometries,? Tohoku Math. J.,27, No. 1, 103?110 (1975). · Zbl 0311.53062 · doi:10.2748/tmj/1178241040
[356] Hitoshi Takagi, ?Conformally flat Riemannian manifolds admitting a transitive group of isometries. II,? Tohoku Math. J.,27, No. 3, 445?451 (1975). · Zbl 0323.53037 · doi:10.2748/tmj/1203529254
[357] Kazuo Takano, ?Recurrent affine motion in S-AKN spaces,? Tensor,17, No. 3, 321?326 (1966). · Zbl 0184.25101
[358] Kazuo Takano, ?On the existence of affine motion in a space with recurrent curvature,? Tensor,17, No. 1, 68?73 (1966). · Zbl 0184.25101
[359] Kazuo Takano, ?On the existence of affine motion in a space with recurrent curvature. II,? Tensor,17, No. 2, 212?216 (1966). · Zbl 0184.25101
[360] Kazuo Takano and Tyuiti Imai, ?On some types of affine motions in birecurrent spaces. II,? Tensor,23, No. 3, 309?313 (1972). · Zbl 0259.53019
[361] Kazuo Takano and Tyuiti Imai, ?On some types of affine motions in birecurrent spaces,? Tensor,24, 93?100 (1972). · Zbl 0251.53011
[362] Yoshiya Takemura, ?On automorphism groups of quaternion Kähler manifolds,? Kodai Math. Sem. Repts.,27, No. 3, 353?361 (1976). · Zbl 0364.53028 · doi:10.2996/kmj/1138847261
[363] Hyoitiro Takeno and Shin-ichi Kitamura, ?On the theory of spherically symmetric space ?time. V,? Tensor,18, No. 2, 190?204 (1966). · Zbl 0339.53017
[364] Hyoitiro Takeno, ?On the theory of spherically symmetric space ?time. VI,? Tensor,17, No. 3, 266?278 (1966). · Zbl 0498.53017
[365] Hyoitiro Takeno and Shin-ichi Kitamura, ?Group of motions in the space ?time. V.I,? Res. Inst. Theor. Phys. Hiroshima Univ., N RRK-20 (1972). · Zbl 0246.53023
[366] Hyoitiro Takeno and Shin-ichi Kitamura, ?Group of motions in the space ?time. V. II,? Tensor,27, No. 3, 265?275 (1973). · Zbl 0271.53027
[367] Hyoitiro Takeno and Shin-ichi Kitamura, ?Group of motions in the space ?time. V. II,? Res. Inst. Theor. Phys. Hiroshima Univ., N RRK-1 (1973). · Zbl 0271.53027
[368] Hyoitiro Takeno and Shin-ichi Kitamura, ?Group of motions in the space ?time. V. I,? Tensor,27, No. 2, 197?207 (1973). · Zbl 0265.53024
[369] Hyoitiro Takeno and Shin-ichi Kitamura, ?Group of motions in the space -time. V. III,? Tensor,28, No. 1, 25?33 (1974). · Zbl 0266.53025
[370] Masaru Takeuchi, ?On the fundamental group and the group of isometries of a symmetric space. I,? Fac. Sci. Univ. Tokyo, Sec. 1,10, No. 2, 88?123 (1964). · Zbl 0196.54605
[371] Shukichi Tanno, ?Strongly curvature preserving transformations of pseudo-Riemannian manifolds,? Tohoku Math. J.,19, No. 3, 245?250 (1967). · Zbl 0156.41902 · doi:10.2748/tmj/1178243275
[372] Shukichi Tanno, ?Transformations of pseudo-Riemannian manifolds,? J. Math. Soc. Jpn.,21, No. 2, 270?281 (1969). · Zbl 0175.19005 · doi:10.2969/jmsj/02120270
[373] M. Tarina, ?Spatil An care admit m n forme Pfaff invariante,? Studia Univ. Babes-Bolyai. Ser. Math. Phys., No. 1, 31?39 (1965).
[374] M. Tarina, ?Despre mobilitatea spatiilor An fara torsiune care admit cimpuri de vectori paraleli,? An. Univ. Timisoara, Ser. Stiinte Mat.-Fiz.,3, 343?351 (1965).
[375] Yoshihiro Tashiro, ?On concircular scalar fields,? Proc. Acad.,41, No. 8, 641?644 (1965). · Zbl 0188.26501 · doi:10.3792/pja/1195526764
[376] C. Teleman, ?Asupra unei clase de spatii Riemann omogene,? Stud. Cerc. Mat. Acad. RSR,17, No. 10, 1529?1537 (1965).
[377] N. Teleman, ?Clasificares spatiilor riemanniene V4 omogene de tip relativist,? Stud. Cerc. Mat. Acad. RSR,20, No. 1, 67?125 (1968).
[378] N. N. Teodorescu, ?Asupra grupului de miscari ale spatiilor conform euclidiene,? Stud. Cerc. Mat. Acad. RSR,21, No. 3, 483?498 (1969).
[379] N. N. Teodorescu and Ch. N. Rizescu, ?Asupra unei teoreme privind tensorul de curbura,? Stud. Cerc. Mat. Acad. RSR,18, No. 9, 1351?1356 (1966).
[380] A. H. Thompson, ?A note on Zund’s classes of conformal transformations,? Tensor,20, No. 1, 35?36 (1969). · Zbl 0181.49803
[381] M. Tzarina, ?Variétés An homogenes a groupe maximum et quelques propriétés globales de leurs courbes atuparalleles,? Rev. Roumaine Mat. Pures Appl.,10, No. 9, 1317?1322 (1965). · Zbl 0139.15502
[382] M. Tzarina, ?Sur Le groupe homogene d’holonomie des espaces projectivement euclidiens,? An. Univ. Bucuresti Mat.-Mec.,19, No. 2, 153?159 (1970). · Zbl 0221.53025
[383] M. Tzarina, ?Espaces An sous-projecties a groupe maximum de mouvements,? Rev. Roum. Math. Pures Appl.,16, No. 6, 987?988 (1971). · Zbl 0218.53028
[384] C. N. Udriste, ?Grupuri de miscari in spatii Riemann de clasa unu,? Stud. Cerc. Mat. Acad. RSR,21, No. 3, 515?524 (1969).
[385] C. N. Udriste, ?Grupuri de miscari si directiile liniilor de curbura,? Bul. Inst. Politehn. Gheorghiu-Dej, Bucuresti,32, No. 4, 29?34 (1970).
[386] J. Vilms, ?Totally geodesic maps,? J. Different. Geom.,4, No. 1, 73?79 (1970). · Zbl 0194.52901 · doi:10.4310/jdg/1214429276
[387] W. O. Vogel, ?Kreistreue Transformationen in Riemannschen Räumen,? Arch. Math.,21, No. 6, 641?645 (1971). · Zbl 0218.53055 · doi:10.1007/BF01220977
[388] G. Vranceanu, ?Despre corespondenta izometrica a doua spatii riemanniene de categoria N?1,? Stud. Cerc. Mat. Acad. RSR,16, No. 10, 1207?1209 (1964).
[389] G. Vranceanu, ?Grupuri discrete in spatiul euclidian,? Stud. Cerc. Mat. Acad. RSR,17, No. 1, 119?129 (1965).
[390] G. Vranceanu, ?Groupes discrets dans A3,? Rev. Roumaine Math. Pures Appl.,10, No. 5, 523?527 (1965).
[391] G. Vranceanu, ?Gruppi discreti e connessioni affini,? in: Semin. 1962?1963 Anal., Algebra, Geometria e Topol., Vol. I, Roma (1965), pp. 1?16.
[392] G. Vranceanu, ?Conexiuni afine invariante fata de grupuri discrete,? An. Stiint Univ. Iasi, Sec. Ia, IIb, 363?381 (1965).
[393] G. Vranceanu, ?Sur quelques théoremes de géométrie différentielle globale,? Rev. Roumaine Math. Pures Appl.,10, No. 2, 11?124 (1965).
[394] G. Vranceanu, ?Sur les groups de Lie de range zéro,? Rev. Roumaine Math. Pures Appl.,11, No. 3, 265?267 (1966).
[395] Hsien-Chung Wang, ?On invariant connections over a principal fiber bundle,? Nagoya Math. J.,13, 1?19 (1958). · Zbl 0086.36502 · doi:10.1017/S0027763000023461
[396] Hsien-Chung Wang, ?On Finsler spaces with completely integrable equations of Killing,? J. Lond. Math. Soc.,22, 5?9 (1947). · Zbl 0029.16604 · doi:10.1112/jlms/s1-22.1.5
[397] Kazunari Yamauchi, ?On infinitesimal projective transformations,? Hokkaido Math. J.,3, No. 2, 262?270 (1974). · Zbl 0299.53028 · doi:10.14492/hokmj/1381758806
[398] Hiroshi Yanamoto, ?The automorphism groups of the tangent bundles equipped with almost Kählerian structure,? Nagaoka Koge Koto Semmon Gakko Kenkyu Kië, Res. Repts. Nagaoka Techn. Coll.,9, No. 3, 121?126 (1973). · Zbl 0272.53023
[399] Kentaro Yano, ?On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group,? Proc. Nat. Acad. Sci. USA,55, No. 3, 472?476 (1966). · Zbl 0137.41301 · doi:10.1073/pnas.55.3.472
[400] Kentaro Yano, ?Notes on hypersurfaces in a Riemannian manifold,? Can. J. Math.,19, No. 2, 439?446 (1967). · Zbl 0166.17406 · doi:10.4153/CJM-1967-036-6
[401] Kentaro Yano, ?Riemannian manifolds admitting a conformal transformation group,? Proc. Nat. Acad. Sci. USA,62, No. 2, 314?319 (1969). · Zbl 0183.50402 · doi:10.1073/pnas.62.2.314
[402] Kentaro Yano, ?Conformal transformations in Riemannian manifolds,? Ber. Math. Forschungsinst. Oberwolfach, No. 4, 339?351 (1971). · Zbl 0221.53050
[403] Kentaro Yano, ?Notes on isometries,? Colloq. Math.,26, 1?7 (1972). · Zbl 0223.53018
[404] Kentaro Yano and Shoshichi Kobayashi, ?Prolongations of tensor fields and connections to tangent bundles. II. Infinitesimal automorphisms,? J. Math. Soc. Jpn.,18, No. 3, 236?246 (1966). · Zbl 0147.21501 · doi:10.2969/jmsj/01830236
[405] Kentaro Yano and Sumio Sawaki, ?Notes on conformal changes of Riemannian metrics,? Kodai Math. Sem. Repts.,22, No. 4, 480?500 (1970). · Zbl 0215.23102 · doi:10.2996/kmj/1138846223
[406] Kentaro Yano, ?Riemannian manifolds admitting an infinitesimal conformal transformation,? Kodai Math. Sem. Repts.,22, No. 3, 272?300 (1970). · Zbl 0216.43802 · doi:10.2996/kmj/1138846164
[407] Kentaro Yano and M. Obata, ?Conformal changes of Riemannian metrics,? J. Different. Geom.,4, No. 1, 53?72 (1970). · Zbl 0203.54602 · doi:10.4310/jdg/1214429275
[408] Kentaro Yano and Hitosi Hiramatu, ?Riemannian manifolds admitting an infinitesimal conformal transformation,? J. Different. Geom.,10, No. 1, 23?28 (1975). · Zbl 0307.53024 · doi:10.4310/jdg/1214432673
[409] Kentaro Yano and Hitosi Hiramatu, ?On conformal changes of Riemannian metrics,? Kodai Math. Sem. Repts.,27, No. 1?2, 19?41 (1976). · Zbl 0328.53031 · doi:10.2996/kmj/1138847160
[410] Kentaro Yano and Shigeru Ishihara, Tangent and Cotangent Bundles. Differential Geometry, Marcel Dekker, New York (1973). · Zbl 0262.53024
[411] Seiichi Yamaguchi, ?On some transformations in locally product Riemannian spaces,? Tensor,18, No. 2, 227?238 (1967). · Zbl 0154.21602
[412] Seiichi Yamaguchi, ?On infinitesimal projective transformations in non-Riemannian recurrent spaces,? Tensor,18, No. 3, 271?278 (1967). · Zbl 0149.18901
[413] Seiichi Yamaguchi and Kozi Matumoti, ?Notes on infinitesimal affine transformations in AKn-spaces,? Tru Math.,2, 42?45 (1966).
[414] Seiichi Yamaguchi and Kozi Matumoti, ?On Ricci-recurrent spaces,? Tensor,19, No. 1, 64?68 (1968).
[415] Hiroshi Yasuda, ?Subspaces of semisimple group spaces. II,? Tensor,13, 180?185 (1963).
[416] S. T. Yau, ?Remarks on conformal transformations,? J. Different. Geom.,8, No. 3, 369?381 (1973). · Zbl 0274.53047 · doi:10.4310/jdg/1214431798
[417] Shinsuke Yorozu, ?Notes on harmonic transformations,? Tohoku Math. J.,24, No. 3, 441?447 (1972). · Zbl 0246.53045 · doi:10.2748/tmj/1178241483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.