×

zbMATH — the first resource for mathematics

On Shannon’s entropy, directed divergence and inaccuracy. (English) Zbl 0241.94020

MSC:
94A15 Information theory (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aczel, J.: On different characterizations of entropies, in Probability and Information theory, Proc. Internat. Symp. McMaster Univ., pp. 1-11. Berlin-Heidelberg-New York: Springer Lecture Notes in Math. No. 89, 1969.
[2] Aczel, J., Baker, J.A., Djokovic, D.Z., Kannappan, Pl., Rado, F.: Extensions of certain homomorphisms of subsemigroups to homomorphisms of groups. Aeq. Math. V6, 2/3, 263-271 (1971). · Zbl 0224.20036 · doi:10.1007/BF01819762
[3] Chaundy, T.W., Mcleod, J.B.: On a functional equation, Edin. Math. Notes 43, 7-8 (1960). · Zbl 0100.32703 · doi:10.1017/S0950184300003244
[4] Daroczy, Z.: über die Charakterisierung der Shannonschen Entropie, Proc. Colloq. of Information Theory, 1, János Bolyai Math. Soc., Budapest, 135-139 (1968). · Zbl 0181.22306
[5] Kannappan, Pl., Rathie, P.N.: On some axiomatic characterization of measures of inaccuracy and directed-divergence (to appear). · Zbl 0442.94003
[6] Kendall, D.G.: Functional Equation in Information Theory. Z. Wahrscheinlichkeitstheorie verw. Geb. 2, 225-229 (1963). · Zbl 0227.94009 · doi:10.1007/BF00533380
[7] Kerridge, D.F.: Inaccuracy and inference. J. Roy. Statist. Soc. B23, 184-194 (1961). · Zbl 0112.10302
[8] Kuliback, S.: Information Theory and Statistics. New York: Wiley 1959.
[9] Pintacuda, N.: Shannon entropy: A more general derivation. Statistica (Bologna) 26, 509-524 (1965).
[10] Rathie, P.N., Kannappan, Pl.: On a new characterization of directed divergence in information theory (to appear). · Zbl 0298.94032
[11] Rényi, A.: On measure of entropy and information. Proc. Fourth Berkeley Sympos. Statistics and Probability, 547-561 (1960).
[12] Shannon, C. E.: A mathematical theory of communication. Bell System Tech. J. 27, 379-423, 623-656 (1948). · Zbl 1154.94303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.