×

zbMATH — the first resource for mathematics

A stochastic functional equation. (English) Zbl 0359.39001

MSC:
39B99 Functional equations and inequalities
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Athreya, K. B.,Stochastic iteration. MRC Technical Summary Report No. 973, University of Wisconsin, Madison, 1974. · Zbl 0334.60035
[2] Athreya, K. B. andKarlin, S.,On branching processes with random environments: I Extinction probabilities. Ann. Math. Statist.42 (1971), 1499–1520. · Zbl 0228.60032 · doi:10.1214/aoms/1177693150
[3] Athreya, K. B. andNey, P. E.,Branching processes. Springer-Verlag, Berlin, New York, 1972.
[4] Bellman, R.,Stochastic transformations and functional equations. I.R.E. Trans. AC-7,120 (Oct. 1962). · Zbl 0147.15902
[5] Doob, J. L.,Stochastic processes. Wiley, New York, 1970. · Zbl 0203.50102
[6] Harris, T. E.,The theory of branching processes. Springer-Verlag, Berlin, 1963. · Zbl 0117.13002
[7] Karlin, S. andMcGregor, J.,Spectral theory of branching processes. I The case of discrete spectrum. Z. Wahrscheinlichkeitstheorie und Verw. Gebicte5 (1966), 6–33. · Zbl 0139.33804 · doi:10.1007/BF00532810
[8] Karlin, S. andMcGregor, J.,Embeddability of discrete time simple branching processes into continuous time branching processes. Trans. Amer. Math. Soc.132 (1968), 115–136. · Zbl 0159.46102 · doi:10.1090/S0002-9947-1968-0222966-1
[9] Kuczma, M.,Functional equations in a single variable. Polish Scientific Publishers, Warszawa, 1968. · Zbl 0196.16403
[10] Siegel, C. L.,Iteration of analytic functions. Ann. of Math.43 (1942), 607–616. · Zbl 0061.14904 · doi:10.2307/1968952
[11] Smith, W. L. andWilkinson, W. E.,On branching processes with random environments. Ann. Math. Statist.40 (1969), 814–827. · Zbl 0184.21103 · doi:10.1214/aoms/1177697589
[12] Szekeres, G.,Regular iteration of real and complex functions. Acta Math.100 (1958), 203–258. · Zbl 0145.07903 · doi:10.1007/BF02559539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.