×

zbMATH — the first resource for mathematics

Finite groups. (English) Zbl 0285.20018

MSC:
20Dxx Abstract finite groups
20D99 Abstract finite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. N. Abramovskii, ?On groups in which the lattice of subgroups is a lattice with relative complements,? Algebra i Logika. Seminar, 6(1):5?8 (1967).
[2] S. P. Azletskii, ?On the theory of ?-special groups,? Sibirsk. Mat. Zh., 5(5):969?975 (1964).
[3] S. P. Azletskii, ?Some remarks on groups with a unique minimal system of Sylow classes,? Ukrain. Mat. Zh., 17(2):106?111 (1965). · Zbl 0145.02901 · doi:10.1007/BF02526498
[4] S. P. Azletskii, ?On a theorem on the minimal system of Sylow classes of a finite group,? Mat. Zap., Ural’skii Univ., 4(1):3?4 (1963).
[5] S. P. Azletskii, ?On minimal systems of Sylow classes of maximal invariant subgroups of a finite group,? Sibirsk. Mat. Zh., 7 (5):969?973 (1966).
[6] S. P. Azletskii, ?On certain characteristic subgroups of a finite group,? Ukrain. Mat. Zh., 16(2):220?225 (1964).
[7] S. P. Azletskii, ?On the factorization of finite groups,? Mat. Zap., Ural’skii Univ., 3(3):3?17 (1962).
[8] S. P. Azletskii, ?On the factorization of finite groups. II,? Mat. Zap., Ural’skii Univ., 5(3):3?14 (1966).
[9] S. P. Azletskii, ?On the number of minimal systems of Sylow classes of finite unsolvable groups,? Sibirsk. Mat. Zh., 6(1):230?233 (1965).
[10] S. P. Azletskii, ?On a theorem on the characteristic subgroups of a finite group,? Ukrain. Mat. Zh., 18(1):102?104 (1966). · Zbl 0264.20025 · doi:10.1007/BF02537718
[11] G. F. Bachurin, ?On one-layer p-groups possessing an increasing central series,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 5, 27?30 (1965).
[12] V. A. Belonogov, ?Finite groups with a unique class of noninvariant maximal subgroups,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 114?117 (1969).
[13] V. A. Belonogov, ?Finite groups with a unique class of nonnilpotent maximal subgroups,? Sibirsk. Mat. Zh., 5(5):987?995 (1964).
[14] V. A. Belonogov, ?Finite groups with a pair of nonconjugate nilpotent maximal subgroups,? Dokl. Akad. Nauk SSSR, 161(6):1255?1256 (1965).
[15] V. A. Belonogov, ?Finite solvable groups with nilpotent 2-maximal subgroups,? Mat. Zametki, 3(1):21?32 (1968).
[16] V. A. Belonogov, ?One test for the solvability of even-order groups,? Sibirsk. Mat. Zh., 7(2):458?459 (1966). · Zbl 0166.28901
[17] V. A. Belonogov, ?On finite groups saturated by (?, ??)-decomposable subgroups,? Sibirsk. Mat. Zh., 10(3):494?506 (1969). · Zbl 0197.30202
[18] Ya. G. Berkovich, ?Influence of the ?-properties of subgroups on the properties of a finite group,? Sibirsk. Mat. Zh., 5(1):14?21 (1964). · Zbl 0156.03002
[19] Ya. G. Berkovich, ?Quasinilpotent groups,? Sibirsk. Mat. Zh., 5(2):249?252 (1964). · Zbl 0126.05102
[20] Ya. G. Berkovich, ?Finite groups with large cores of maximal subgroups,? Sibirsk. Mat. Zh., 9(2):243?248 (1968).
[21] Ya. G. Berkovich, ?Finite groups with dispersive second maximal subgroups,? Dokl. Akad. Nauk SSSR, 158(5):1007?1009 (1964). · Zbl 0156.02904
[22] Ya. G. Berkovich, ?Finite groups satisfying weakened Jordan-Dedekind conditions relative to chains,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 14?23. · Zbl 0161.02201
[23] Ya. G. Berkovich, ?Finite groups in which all the n-th maximal subgroups are generalized Schmidt groups,? Mat. Zametki, 5(1):129?136 (1969). · Zbl 0179.04603
[24] Ya. G. Berkovich, ?Finite groups in which any two solvable subgroups of like order are isomorphic,? Sibirsk. Mat. Zh., 7(5):1194?1198 (1966). · Zbl 0183.03003
[25] Ya. G. Berkovich, ?Finite unsolvable groups with Abelian third maximal subgroups,? Izv. Vyssh. Uchebn. Zavedenii. Matematka, No. 7, 10?15 (1968).
[26] Ya. G. Berkovich, ?On Baer’s theorem on the maximal subgroups of finite groups,? Sibirsk. Mat. Zh., 6(4):934?937 (1965).
[27] Ya. G. Berkovich, ?On Carter’s theorem,? Uspekhi Mat. Nauk, 20(6):55?58 (1965).
[28] Ya. G. Berkovich, ?Certain criteria for the ?-solvability and ?-simplicity of finite groups,? Sibirsk. Mat. Zh., 5(3):493?499 (1964). · Zbl 0168.02104
[29] Ya. G. Berkovich, ?Normal divisors of finite groups,? Dokl. Akad. Nauk SSSR, 182(2):247?250 (1968).
[30] Ya. G. Berkovich, ?A generalization of the theorems of Carter and Wielandt,? Dokl. Akad. Nauk SSSR, 171(4):770?773 (1966). · Zbl 0189.31404
[31] Ya. G. Berkovich, ?On one class of finite groups,? Sibirsk. Mat. Zh., 8(4):734?740 (1967).
[32] Ya. G. Berkovich, ?On p-groups of finite order,? Sibirsk. Mat. Zh., 9(6):1284?1306 (1968).
[33] Ya. G. Berkovich, ?On solvable groups of finite order,? Mat. Sb., 74(1):75?92 (1967). · Zbl 0183.02901
[34] Ya. G. Berkovich, ?On the existence of noninvariant solvable subgroups in finite unsolvable groups,? Mat. Sb., 66(3):458?470 (1965).
[35] Ya. G. Berkovich, ?On the existence of subgroups in finite unsolvable groups,? Dokl. Akad. Nauk SSSR, 156(6):1255?1257 (1964).
[36] Ya. G. Berkovich, ?Subgroup characterization of certain finite groups,? Dokl. Akad. Nauk SSSR, 169(3):499?502 (1966). · Zbl 0192.11901
[37] Ya. G. Berkovich, ?The structure of a group and the structure of its subgroups,? Dokl. Akad. Nauk SSSR, 179(1):13?16 (1968). · Zbl 0175.30002
[38] Ya. G. Berkovich, ?The existence of nonnilpotent solvable subgroups in a finite unsolvable group,? Sibirsk. Mat. Zh., 7(1):206?211 (1966). · Zbl 0192.11802
[39] Ya. G. Berkovich, ?A theorem on nonnilpotent solvable subgroups of a finite group,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 24?39.
[40] Ya. G. Berkovich, ?Condition necessary for a group to coincide with the commutant,? Izv. Vyssh. Uchebn. Zavedenii. Matematika, No. 8, 11?17 (1968). · Zbl 0192.35404
[41] Ya. G. Berkovich and M. I. Kravchuk, ?Finite partially quasinilpotent groups,? Sibirsk. Mat. Zh., 6(3):477?483 (1965). · Zbl 0178.35101
[42] Ya. G. Berkovich and É. M. Pal’chik, ?On the representability of the subgroups of a finite group,? Sibirsk. Mat. Zh., 8(4):741?753 (1967).
[43] G. Ya. Binder, ?On the bases of a symmetric group,? Izv. Vyssh. Uchebn. Zavedenii, Matematika, No. 11, 19?25 (1968).
[44] V. M. Busarkin, ?Groups containing isolated subgroups,? Sibirsk. Mat. Zh., 9(4):752?756 (1968). · Zbl 0176.41003 · doi:10.1007/BF01041162
[45] V. M. Busarkin, ?On 2-isolated subgroups,? Mat. Zametki, 3(5):497?501 (1968).
[46] V. M. Busarkin, ?The structure of isolated subgroups in finite groups,? Algebra i Logika. Seminar, 4(2):33?50 (1965).
[47] V. M. Busarkin and Yu. M. Gorchakov, Finite Decomposable Groups [in Russian], Nauka, Moscow (1968).
[48] Zh. E. Bukhovets, ?On ?-semidecomposable groups,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 40?48.
[49] Zh. E. Bukhovets, ??-Semispecial groups,? Dokl. Akad. Nauk BSSR, 8(9):557?559 (1964).
[50] Yu. P. Vasil’ev and A. N. Fomin, ?On groups close to Schmidt groups,? Mat. Zap., Ural’skii Univ., 5(3):35?39 (1966).
[51] V. A. Vedernikov, ?On finite groups with permuting subgroups,? Dokl. Akad. Nauk BSSR, 11(12):1057?1059 (1967).
[52] V. A. Vedernikov, ?On finite factorable groups,? Mat. Zametki, 3(2):201?210 (1968).
[53] V. A. Vedernikov, ?On tests for solvability and super solvability of finite groups,? Sibirsk. Mat. Zh., 8(6):1236?1244 (1967).
[54] V. A. Vedernikov and A. P. Kokhno, ?On the influence of subgroup chains on the properties of finite groups,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 75?81 (1967).
[55] Yu. M. Gorchakov and V. A. Sheriev, ?Finite groups all of whose noninvariant subgroups are complemented,? Sibirsk. Mat. Zh., 6(6):1234?1253 (1965).
[56] G. A. Davtyan, ?On the automorphisms of regular p-groups,? Aikakan SSR Gitutyunneri Akademiai Tegekagir. Matematika, 1(2):147?153 (1966).
[57] G. A. Davtyan, ?On the orders of elements in finite regular p-groups,? Aikakan SSR Gitutyunneri Akademiai Tegekagir. Matematika, 1(4):219?225 (1966).
[58] I. P. Doktorov, ?On a class of factorable groups,? Dokl. Akad. Nauk BSSR, 13(2):101?102 (1969). · Zbl 0194.50002
[59] P. E. Dyubyuk, ?On the number of subgroups of a finite Abelian group. II,? Tr. Vses. Zaochn. Énerg. Inst., No. 28, 5?18 (1965). · Zbl 0111.24403
[60] G. G. Dyadchenko, ?On an aspect of factorable groups,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 370?371 (1963).
[61] G. G. Dyadchenko, ?On finite groups with a quasi-invariant subgroup,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 369?370 (1963).
[62] Yu. G. Elkin, ?On cyclic permutation groups of order P1P2P3,? Proc. Fourth Scientific Conf. Math. Depts. Pedagog. Insts. of the Southern RSFSR [in Russian], Stavropol in the Caucasus (1963), pp. 25?30.
[63] É. M. Zhmud’, ?On isomorphisms of lattices of normal divisors of a finite nilpotent group,? Vestn. Khar’kovsk. Univ., Ser. Mekh.-Mat., No. 26, 3?7 (1967).
[64] É. M. Zhmud’, ?On finite groups possessing a unique minimal normal divisor and a unique class of isomorphic irreducible representations,? Vestn. Khar’kovsk. Univ., Ser. Mekh.-Mat., No. 26, 16?19 (1967).
[65] É. M. Zhmud’, ?On finite groups with uniquely generated normal divisors,? Mat. Sb., 72(1):135?147 (1967).
[66] O. M. Zub, ?Finite groups in which all nonclyclic subgroups have complements,? Dopovidi Akad. Nauk Ukrain. RSR, Ser. A, No. 10, 891?894 (1968).
[67] R. P. Ignat’eva, ?Theorem on the imbedding of subgroups in a finite group,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat., No. 22, 88?90 (1964).
[68] R. P. Ignat’eva, ?Theorems on the imbedding of subgroups in a finite group,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Mat., No. 30, 31?43 (1966).
[69] M. I. Kargapolov, Yu. I. Marzlyakov, and V. N. Remeslennikov, Foundations of the Theory of Groups, Part I [in Russian], Novosibirsk (1968).
[70] R. Carter, ?Simple groups and simple Lie algebras,? Matematika (Periodic collection of translations of foreign articles [in Russian]), 10(5):3?47 (1966). [Original in: J. London Math. Soc., 40:193?240 (1965)].
[71] P. G. Kontorovich, ?Three problems on the splitting of groups,? Colloq. Math., 17(2):207?208 (1967).
[72] P. G. Kontorovich, S. G. Ivanov, and G. P. Kondrashov, ?Distributive pairs of elements in a lattice,? Mat. Zap., Ural’skii Univ., 5(1):43?48 (1965). · Zbl 0294.06002
[73] L. F. Kosvintsev, ?On the quasinormalizers of the elements of a finite group,? Uch. Zap. Permsk. Univ., No. 131, 48?53 (1966).
[74] L. F. Kosvintsev, ?On finite groups with specified properties of the orders of classes of conjugate elements,? Uch. Zap. Permsk. Univ., No. 131, 135?139 (1966).
[75] A. I. Kostrikin, ?On specifying groups by generators and defining relations,? Izv. Akad. Nauk SSSR, Ser. Mat., 29(5):1119?1122 (1965).
[76] A. I. Kostrikin, ?Finite groups,? in: Algebra. Topology. Geometry. 1964 [in Russian], Itogi Nauki, VINITI AN SSSR, Moscow (1966), pp. 7?46.
[77] A. P. Kokhno, ?On a test for the supersolvability of finite groups,? Dokl. Akad. Nauk BSSR, 11(1):7?8 (1967).
[78] A. P. Kokhno, ?On system normalizers of ?-solvable groups,? Dokl. Akad. Nauk BSSR, 12(12):1069?1072 (1968).
[79] A. P. Kokhno, ?F-Subgroups of solvable groups,? Dokl. Akad. Nauk BSSR, 11(11):973?975 (1967).
[80] M. I. Kravchuk, ??p-quasinilpotent groups,? Sibirsk. Mat. Zh., 6(5):1185?1189 (1965).
[81] M. I. Kravchuk, ?On solvable and ?-solvable finite groups,? Dokl. Akad. Nauk BSSR, 11(2):97?100 (1967).
[82] M. I. Kravchuk, ?On a splittable extension,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 49?54.
[83] E. D. Kurasheva, ?Computation of upper bounds for the orders of groups with a given number of classes of conjugate elements,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 355?361 (1963).
[84] E. D. Kurasheva, ?Some generalizations of the theorems of Landau and Turkin on finite groups,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 361?366 (1963).
[85] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Publishers, New York (1962).
[86] M. P. Lel’chuk, ?Finite groups with a ?small? number of classes of solvable nonradical subgroups of equal order,? Sibirsk. Mat. Zh., 6(5):1037?1045 (1965).
[87] M. P. Lel’chuk, ?On unsolvable groups close in structure to solvable ones,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 55?71.
[88] F. M. Liman, ?Groups with invariant nonclycic subgroups,? Dopovidi Akad. Nauk Ukrain. RSR, Ser. A, No. 12, 1073?1075 (1965).
[89] F. M. Liman, ?2-Groups with invariant noncyclic subgroups,? Mat. Zametki, 4(1):75?83 (1968).
[90] F. M. Liman, ?p-groups all of whose Abelian noncyclic subgroups are invariant,? Dopovidi Akad. Nauk Ukrain. RSR, Ser. A, No. 8, 696?699 (1968).
[91] V. D. Mazurov, ?Finite groups whose Sylow 2-subgroups are direct products of quaternions,? Algebra i Logika. Seminar, 5(5):55?57 (1966).
[92] V. D. Mazurov, ?On finite groups with a given Sylow 2-subgroup,? Dokl. Akad. Nauk SSSR, 168(3):519?521 (1966). · Zbl 0199.06204
[93] V. D. Mazurov, ?On finite groups with metacyclic Sylow 2-subgroups,? Sibirsk. Mat. Zh., 8(5):966?982 (1967).
[94] V. D. Mazurov, ?On 2-signalizers of finite groups,? Algebra i Logika. Seminar, 7(3):60?62 (1968).
[95] R. P. Medvedeva, ?Generalization of finite groups with transitivity properly for normal divisors,? Sibirsk. Mat. Zh., 6(5):1068?1073 (1965).
[96] R. P. Medvedeva, ?Finite solvable groups with a specified number of noninvariant subgroups in composition series,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 58?62 (1969).
[97] R. P. Medvedeva, ?On finite groups with transitivity of invariance,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 72?74.
[98] V. T. Nagrebetskii, ?Invariant coverings of subgroups,? Mat. Zap., Ural’skii Univ., 5(3):91?100 (1966).
[99] V. T. Nagrebetskii, ?Invariant coverings of subgroups,? Dokl. Akad. Nauk SSSR, 172(1):30?32 (1967).
[100] V. T. Nagrebetskii, ?Finite groups any nonnilpotent subgroup of which is invariant,? Mat. Zap., Ural’skii Univ., 6(3):45?49 (1968).
[101] V. T. Nagrebetskii, ?Finite nilpotent groups any non-Abelian subgroup of which is invariant,? Mat. Zap., Ural’skii Univ., 6(1):80?88 (1967).
[102] G. N. Nilov, ?Number of fourth-order subgroups of a symmetric group,? Uch. Zap. Kabardino-Bal-karsk. Univ., Ser. Fiz.-Mat. Nauk, No. 24, 191?193 (1965).
[103] G. N. Nilov, ?Number of cyclic subgroups of any order of a symmetric group,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 249?250 (1963).
[104] G. N. Nilov, ?Number of cyclic subgroups of order p3 of a symmetric group,? Uch. Zap. Kabardino-Balkarsk, Univ., No. 16, 54?56 (1962).
[105] É. M. Pal’chik, ?On b-quasinormal subgroups,? Dokl. Akad. Nauk BSSR, 11(11):967?969 (1967).
[106] É. M. Pal’chik, ?On groups all of whose ith-maximal subgroups permute with the Sylow subgroup,? Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 45?48 (1968).
[107] É. M. Pal’chik, ?On finite groups with permuting subgroups,? Dokl. Akad. Nauk BSSR, 11(5):391?392 (1967).
[108] É. M. Pal’chik and N. P. Kontorovich, ?On groups all of whose ith-maximal subgroups permute with the Sylow subgroup. II,? Izv. Akad. Nauk BSSR, Ser, Fiz.-Mat. Nauk, No. 3, 51?57 (1969).
[109] S. Piccard, ?On the bases of a symmetric group,? Kibernet. Sb., No. 1, 7?34 (1965).
[110] B. I. Plotkin, Automorphism Groups of Algebraic Systems [in Russian], Nauka, Moscow (1966), 603 pp.
[111] L. Ya. Polyakov, ?Finite groups with permuting subgroups,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 75?88.
[112] L. Ya. Polyakov, ?Maximal and normal series of finite groups,? Dokl. Akad. Nauk SSSR, 167(2):294?297 (1966).
[113] L. Ya. Polyakov, ?On a generalized Frattini subgroup of a finite group,? Sibirsk. Mat. Zh., 7(1):227?230 (1966).
[114] L. Ya. Polyakov, ?On one class of finite unsolvable groups,? Proc. Second Republicwide Conf. Belorussian Mathematicians, Belorussian Univ., Minsk (1969), pp. 7?9.
[115] L. Ya. Polyakov, ?On the influence of the properties of maximal subgroups on the solvability of a finite group,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 89?97.
[116] L. Ya. Polyakov, ?On solvable groups,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 43?46 (1968).
[117] L. Ya. Polyakov, ?On the connection between principal and maximal series in finite p-solvable groups,? Sibirsk. Mat. Zh., 8(2):467?470 (1967).
[118] I. B. Raskina, ?On the conjugacy of Hall ?*-bases in finite groups,? Sibirsk. Mat. Zh., 8(2):384?390 (1967). · Zbl 0223.20064 · doi:10.1007/BF02196421
[119] I. B. Raskina, ?The conjugacy of Hall ?*-bases in finite groups,? Sibirsk. Mat. Zh., 7(3):620?626 (1966). · Zbl 0166.28703
[120] I. B. Raskina, ?Existence and conjugacy of Hall subgroups and Hall bases for certain classes of finite groups,? Sibirsk. Mat. Zh., 7(1):159?166 (1966).
[121] A. V. Romanovskii, ?Groups with Hall normal divisors,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 98?115.
[122] A. V. Romanovskii, ?On invariant complements and imbeddings in finite groups,? Dokl. Akad. Nauk BSSR, 8(11):696?698 (1964).
[123] A. V. Romanovskii, ?Product of ?-decomposable subgroups of finite groups,? Dokl. Akad. Nauk BSSR, 13(2):103?106 (1969).
[124] A. V. Romanovskii, ?Properties of a finite group,? connected with the greatest prime divisor of its order,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 132?134 (1968).
[125] S. A. Rusakov, ?The nonsimplicity of certain classes of finite groups,? Dokl. Akad. Nauk BSSR, 8(7):429?431 (1964).
[126] S. A. Rusakov, ?On groups with maximal subgroups of given form,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 49?53 (1968).
[127] S. A. Rusakov, ?On factorable and some other classes of groups,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 116?127.
[128] A. I. Saksonov, ?On certain integral rings associated with a finite group,? Dokl. Akad. Nauk SSSR, 171(3):529?532 (1966).
[129] A. I. Saksonov, ?On an integral ring of characters of a finite group,? Vestsi Akad. Nauk BSSR, Ser, Fiz.-Mat. Nauk, No. 3, 69?76 (1968).
[130] S. A. Safonov, ?Structure of groups with a small number of classes of noncomposition subgroups,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 128?140.
[131] V. I. Sergienko, ?On a criterion for the factoring of finite groups,? Dokl. Akad. Nauk BSSR, 8(6):357?360 (1964).
[132] V. I. Sergienko, ?Nonnilpotent subgroups and their complexes,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 141?165.
[133] V. I. Sergienko, ?Permutability of a p-complement with p-subgroups,? Dokl. Akad. Nauk BSSR, 12(4):299?302 (1968).
[134] V. M. Sitnikov and A. D. Ustyuzhaninov, ?Finite groups with three classes of noninvariant subgroups,? Mat. Zap., Ural’skii Univ., 6(1):94?102 (1967).
[135] A. M. Skryago, ?On the Frobenius theorem on solvability in the group of the equation xn=a,? Nauchn. Tr. Krasnodarsk. Gos. Ped. Inst., No. 41, 119?126 (1965).
[136] A. I. Starostin, ?Finite groups close to splittable ones,? Dokl. Akad. Nauk SSSR, 173(4):773?776 (1967).
[137] A. I. Starostin, ?Finite groups with a centralizer condition,? Izv. Akad. Nauk SSSR, Ser. Mat., 31(2):305?334 (1967).
[138] A. I. Starostin, ?On groups with splittable centralizers,? Izv. Akad. Nauk SSSR, Ser. Mat., 29(3):605?614 (1965).
[139] A. I. Starostin, ?On minimal groups not possessing a given property,? Mat. Zametki, 3(1):33?37 (1968).
[140] A. I. Starostin, ?Kernel of a partition of locally finite groups,? Mat. Sb., 66(4):551?567 (1965).
[141] V. K. Suchkov, ?Influence of the properties of the n-th maximal ?-critical subgroups on the structure of a finite group,? Mat. Zap., Ural’skii Univ., 6(3):53?64 (1968).
[142] V. K. Suchkov, ?On one theorem of R. Baer on the norm,? Mat. Zap., Ural’skii Univ., 6(1):103?106 (1967).
[143] V. K. Suchkov, ?On the influence of the properties of certain maximal subgroups on the structure of a finite group,? Sibirsk. Mat. Zh., 9(6):1395?1401 (1968). · Zbl 0187.29502
[144] V. K. Suchkov, ?On maximal ?-critical subgroups of a finite group,? Izv. Vyssh. Uchebn. Zavedenii. Matematika, No. 1, 98?107 (1968).
[145] S. A. Syskin, ?On supersolvable groups of automorphisms of finite solvable groups,? Algebra i Logika. Seminar, 7(3):105?107 (1968).
[146] P. I. Trofimov, ?A note of tests for supersolvability and solvability of finite groups,? Izv. Vyssh. Uchebn. Zavednii, Matematika, No. 6, 144?146 (1965).
[147] P. I. Trofimov, ?On the theory of finite factorable groups,? Dokl. Akad. Nauk SSSR, 167(3):523?524 (1966).
[148] Kh. Ya. Unachev, ?On a certain test for the nonsimplicity of finite groups,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 405?406 (1963).
[149] Kh. Ya. Unachev, ?On certain tests for the nonsimplicity of a finite group,? Uch. Zap. Kabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 406?409 (1963).
[150] L. P. Usol’tsev, ?Finite groups all of whose subgroups, besides one class, are Abelian,? Tr. Tomsk. Univ., 163:89?93 (1963).
[151] A. D. Ustyuzhaninov, ?Finite groups with invariant noncyclic subgroups,? Mat. Zap., Ural’skii Univ., 6(1):107?123 (1967).
[152] D. K. Faddeev, ?On the structure of groups of order pnq,? Dokl. Akad. Nauk SSSR, 58(4):533?534 (1947).
[153] A. N. Fomin, ?Finite solvable groups with cyclic nonprimary nilpotent subgroups,? Mat. Zap., Ural’skii Univ., 6(3):109?128 (1968).
[154] A. N. Fomin, ?On finite groups with cyclic nonprimary nilpotent subgroups,? Algebra i Logika. Seminar, 7(3):108?118 (1968). ?Periodic groups whose maximal Abelian subgroups are either invariant or invariantly complemented,? Mat. Zametki, 3(1):39?44 (1968).
[155] P. Hall, ?Nilpotent groups? Matematika (Periodic collection of translations offoreign articles [in Russian]), 12(1):3?36 (1968).
[156] P. Hall and G. Higman, ?The p-length of p-soluble groups and reduction theorems for Burnside’s problem,? Matematika (Periodic collection of translations of foreign articles [in Russian]), 13(2):64?104 (1969). [Original in: Proc. London Math. Soc. (3) 6:1?42 (1956).] · Zbl 0073.25503
[157] V. D. Chertok, ?Finite groups with composition subgroups,? Proc. Second Republicwide Conf. Belorussian Mathematicians, Belorussian Univ., Minsk (1969), pp. 10?13.
[158] V. D. Chertok, ?On Huppert’s theorem,? DOKL. Akad. Nauk BSSR, 10(12):920?922 (1966).
[159] V. D. Chertok, ?Noncomposition subgroups and the normal structure of finite groups,? Dokl. Akad. Nauk SSSR, 173(2):282?284 (1967). · Zbl 0207.33303
[160] V. D. Chertok, ?On the product of two ?-decomposable groups,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 166?171.
[161] V. D. Chertok, ?Generation of a finite group by systems of noncomposition subgroups,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 80?84 (1967).
[162] V. D. Chertok, ?On a class of p-solvable groups,? Sibirsk. Mat. Zh., 10(3):712?715 (1969). · Zbl 0197.29804
[163] S. A. Chunikhin, ?Indexials and normalizers,? Dokl. Akad. Nauk SSSR, 167(3):531?533 (1966). · Zbl 0166.02004
[164] S. A. Chunikhin, ?On indexials and normalizers,? Vestsi Akad. Nauk BSSR Ser. Fiz.-Mat. Nauk, No. 1, 5?11 (1968).
[165] S. A. Chunikhin, ?On separable divisors of the order of a group,? Dokl. Akad. Nauk SSSR, 172(6):1290?1292 (1967).
[166] S. A. Chunikhin, ?On the construction of subgroups in finite groups,? Dokl. Akad. Nauk SSSR, 177(5):1026?1029 (1967).
[167] S. A. Chunikhin, ?On normally separable sequences of elements of a group,? Dokl. Akad. Nauk BSSR, 9(10):641?642 (1965).
[168] S. A. Chunikhin, ?On the factoring of finite groups by using indexials,? Dokl. Akad. Nauk SSSR, 160(1):46?49 (1965).
[169] S. A. Chunikhin, Subgroups of Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1964).
[170] G. S. Shevtsov, ?On a class of solvable groups,? Uch. Zap. Permsk. Univ., No. 131, 130?134 (1966).
[171] L. A. Shemetkov, ?The D-structure of finite groups,? Mat. Sb., 67(3):384?407 (1965).
[172] L. A. Shemetkov, ?Isomorphic imbedding of subgroups in finite groups,? Dokl. Akad. Nauk BSSR, 12(4):303?306 (1968). · Zbl 0176.29902
[173] L. A. Shemetkov, ?On D. K. Faddeev’s theorem on finite solvable groups,? Mat. Zametki, 5(6):665?668 (1969).
[174] L. A. Shemetkov, ?A new D-theorem in the theory of finite groups,? Dokl. Akad. Nauk SSSR, 160(2):290?293 (1965). · Zbl 0154.26604
[175] L. A. Shemetkov, ?On finite solvable groups,? Izv. Akad. Nauk SSSR, Ser. Mat., 32(3);533?559 (1968).
[176] L. A. Shemetkov, ?On the normal structure of finite groups,? Dokl. Akad. Nauk SSSR, 167(3):534?537 (1966).
[177] L. A. Shemetkov, ?On the p-length of arbitrary finite groups,? Dokl. Akad. Nauk BSSR, 13(5):394?395 (1969). · Zbl 0212.04903
[178] L. A. Shemetkov, ?On the conjugacy and the imbedding of subgroups,? in: Finite Groups [in Russian], Nauka i Tekhnika, Minsk (1966), pp. 172?188.
[179] L. A. Shemetkov, ?On the conjugacy of subgroups in a finite group,? Dokl. Akad. Nauk BSSR, 8(5):286?288 (1964).
[180] L. A. Shemetkov, ?On partially solvable finite groups,? Mat. Sb., 72(1):97?107 (1967).
[181] L. A. Shemetkov, ?Subgroups of ?-supersolvable groups,? Dokl. Akad. Nauk BSSR, 8(8):495?496 (1964). · Zbl 0143.04101
[182] L. A. Shemetkov, ?Sylow properties of finite groups,? Mat. Sb., 76(2):271?287 (1968). · Zbl 0212.04902
[183] L. A. Shemetkov, ?A theorem on the indexials of finite groups,? Dokl. Akad. Nauk BSSR, 12(11):969?972 (1968).
[184] L. A. Shemetkov, ?Factoring of finite groups,? Dokl. Akad. Nauk SSSR, 178(3):559?562 (1968).
[185] V. A. Sheriev, ?Groups with complemented noninvariant subgroups,? Dokl. Akad. Nauk SSSR, 172(1):52?53 (1967).
[186] V. A. Sheriev, ?Finite 2-groups with complemented noninvariant subgroups,? Sibirsk. Mat. Zh., 8(1):195?212 (1967).
[187] L. I. Shilov, ?On certain properties of unsolvable finite groups,? Sakartveloc SSR Metsnierebata Akademiis Moambe, 36(3):531?538 (1964).
[188] L. I. Shilov, ?On the number of p-subgroups of finite groups,? Sb. Nauchn. Rabot Aspirantov Kabardino-Balkarsk. Univ., No. 1, 456?460 (1965).
[189] A. I. Shirshov, ?On certain positively definable group varieties,? Sibirsk. Mat. Zh., 8(5):1190?1192 (1967). · Zbl 0166.28205
[190] V. N. Shokuev, ?On the number of subgroups in finite p-groups,? Uch. Zap. Eabardino-Balkarsk. Univ., Ser. Fiz.-Mat. Nauk, No. 19, 299?300 (1963).
[191] V. N. Shokuev, ?Generalization of Hall’s principle of enumeration,? Mat. Zap., Ural’skii Univ., 6(1):124?143 (1967).
[192] V. N. Shokuev, ?On the number of subgroups of given order in finite p-groups,? Sb. Nauchn. Rabot Aspirantov Kabardino-Balkarsk. Univ., No. 1, 479?481 (1965).
[193] V. P. Shunkov, ?On groups decomposable into a uniform product of their own p-subgroups,? Dokl. Akad. Nauk SSSR, 154(3):542?544 (1964). · Zbl 0134.02802
[194] J. E. Adney and W. E. Deskins, ?On automorphisms and subgroups of finite groups. II,? Mat., 18(1):1?7 (1967). · Zbl 0158.02801
[195] J. E. Adney and T. Yen, ?Automorphisms of a p-group,? Ill. J. Math., 9(1):137?143 (1965). · Zbl 0125.28803
[196] J. L. Alperin, ?A convergence theorem for factorizable groups,? Arch. Math., 19(1):34?36 (1968). · Zbl 0174.04802 · doi:10.1007/BF01898798
[197] J. S. Alperin, ?Large abelian subgroups of p-groups,? Trans. Amer. Math. Soc., 117(5):10?20 (1965). · Zbl 0132.27204
[198] J. L. Alperin, ?On a theorem of Manning,? Math. Z., 88(5):434?435 (1965). · Zbl 0138.02404 · doi:10.1007/BF01112226
[199] J. L. Alperin, ?Sylow intersections and fusion,? J. Albegra, 6(2):222?241 (1967).
[200] J. L. Alperin, ?The construction and characterization of some classes of finite groups,? Arch. Math., 18(4):349?354 (1967). · Zbl 0167.29203 · doi:10.1007/BF01898823
[201] J. L. Alperin and D. Gorenstein, ?The multiplicators of certain simple groups,? Proc. Amer. Math. Soc., 17(2):515?519 (1966). · Zbl 0151.02002 · doi:10.1090/S0002-9939-1966-0193141-8
[202] J. L. Alperin and D. Gorenstein, ?Transfer and fusion in finite groups,? J. Algebra, 6(2):242?255 (1967). · Zbl 0168.27203 · doi:10.1016/0021-8693(67)90006-3
[203] J. L. Alperin and Tzee-Nan Kuo, ?The exponent and the projective representations of a finite group,? Ill. J. Math., 11(3):410?413 (1967). · Zbl 0153.03703
[204] B. Alspach, ?A combinatorial proof of a conjecture of Goldberg and Moon,? Canad. Math. Bull., 11(5):655?661 (1968). · Zbl 0177.26902 · doi:10.4153/CMB-1968-078-3
[205] K. I. Appel and E. T. Parker, ?On unsolvable groups of degree p=4q+1, p and q primes,? Canad. J. Math., 19(3):583?589 (1967). · Zbl 0166.01903 · doi:10.4153/CJM-1967-051-2
[206] M. Arena, ?Su di una generalizzazione del sottogruppo di Hughes,? Boll. Unione Mat. Ital., 22(4):456?460 (1967).
[207] D. Asche, ?Some finite groups of even order,? Proc. London Math. Soc., 19(2):208?218 (1969). · Zbl 0176.29903 · doi:10.1112/plms/s3-19.2.208
[208] E. F. Assmus and H. F. Mattson, ?Disjoint Steiner systems associated with the Mathieu groups,? Bull. Amer. Math. Soc., 72(5):843?845 (1966). · Zbl 0158.01405 · doi:10.1090/S0002-9904-1966-11582-3
[209] E. F. Assmus and H. F. Mattson, ?Perfect codes and the Mathieu groups,? Arch. Math., 17(2):121?135 (1966). · Zbl 0144.26203 · doi:10.1007/BF01899857
[210] S. Bachmuth and H. Y. Mochizuki, Kostrikin’s theorem on Engel groups of prime power exponent., Pacif. J. Math., 26(2):197?213 (1968). · Zbl 0167.29401 · doi:10.2140/pjm.1968.26.197
[211] R. Baer, ?Die Zerlegung der Automorphismengruppe einer endlichen Gruppe durch eine Hallsche Kette,? J. Reine und Angew. Math., 220(2):45?62 (1965). · Zbl 0134.26201
[212] R. Baer, ?Endlich definierbare gruppentheoretische Funktionen,? Math. Z., 87(1):163?213 (1965). · Zbl 0132.01403 · doi:10.1007/BF01109940
[213] R. Baer, ?Group theoretical properties and functions,? Colloq. Math., Vol.14, 285?328 (1964).
[214] R. Baer, ?Principal factors, maximal subgroups and conditional identities of finite groups,? Ill. J. Math. 13(1):1?52 (1969). · Zbl 0202.02401
[215] R. Baer, ?Sylowturmgruppen. II,? Math. Z., 92(3):256?268 (1966). · Zbl 0136.28402 · doi:10.1007/BF01111189
[216] R. Baer, ?Vestreute Gruppen,? Abhandl. Math. Semin. Univ. Hamburg, 29(1?2):1?36 (1965). · Zbl 0132.26904 · doi:10.1007/BF02996309
[217] D. W. Barnes, ?Projectivities in finite groups,? J. Austral. Math. Soc., 4(3):308?326 (1964). · Zbl 0244.20016 · doi:10.1017/S1446788700024083
[218] D. W. Barnes and O. H. Kegel, ?Gashchütz functors on finite soluble groups,? Math. Z., 94(2):134?142 (1966). · Zbl 0143.04102 · doi:10.1007/BF01118976
[219] S. F. Bauman, ?A note on cover and avoidance properties in solvable groups,? Proc Amer. Math. Soc., 21(1):173?174 (1969). · Zbl 0174.30901 · doi:10.1090/S0002-9939-1969-0238950-4
[220] S. F. Bauman, ?Groups with p-length 1,? J. Algebra, 8(4):388?392 (1968). · Zbl 0157.35501 · doi:10.1016/0021-8693(68)90049-5
[221] S. F. Bauman, ?p-normality and p-length of a finite group,? Math. Z., 87(2):345?347 (1965). · Zbl 0125.28802 · doi:10.1007/BF01113204
[222] S. F. Bauman, ?The Klein group as an automorphism group without fixed point,? Pacif. J. Math., 18(1):9?13 (1966). · Zbl 0144.01702 · doi:10.2140/pjm.1966.18.9
[223] L. Baumgartner, Gruppentheorie. 4., erw. Aufl. Berlin (1964).
[224] H. Bechtell, ?A generalization of Hall complementation in finite supersolvable groups,? Trans. Amer. Math. Soc., No. 140, 257?270 (1969). · doi:10.1090/S0002-9947-1969-0246966-1
[225] H. Bechtell, ?A note on finite solvable K-groups,? Proc. Amer. Math. Soc., 17(6):1447?1450 (1966). · Zbl 0245.20015
[226] H. Bechtell, ?Elementary groups,? Trans. Amer. Math. Soc., 114(2):355?362 (1965). · Zbl 0142.26004 · doi:10.1090/S0002-9947-1965-0175967-3
[227] H. Bechtell, ?Frattini subgroups and ?-central groups,? Pacif. J. Math., 18(1):15?23 (1966). · Zbl 0143.04002 · doi:10.2140/pjm.1966.18.15
[228] H. Bechtell, ?Pseudo-Frattini subgroups,? Pacif. J. Math., 14(4):1129?1136 (1964). · Zbl 0142.26101 · doi:10.2140/pjm.1964.14.1129
[229] H. Bechtell, ?Reduced partial products,? Amer. Math. Monthly, 72(8):881?882 (1965). · Zbl 0132.01802 · doi:10.2307/2315037
[230] H. Behr and J. Mennicke, ?A presentation of the groups PSL (2, p),? Canad. J. Math., 20(6):1432?1438 (1968). · Zbl 0172.03201 · doi:10.4153/CJM-1968-144-7
[231] J. C. Beidleman, ?On finite ?-free groups,? Boll. Unione Mat. Ital., 2(1):77?81 (1969). · Zbl 0172.02903
[232] J. C. Beidleman and T. K. Seo, ?Generalized Frattini subgroups of finite groups,? Pacif. J. Math., 23(3):441?450 (1967). · Zbl 0167.29503 · doi:10.2140/pjm.1967.23.441
[233] H. Bender, ?Die Nichtexistenz transitiver Erweiterungen gewisser Permutationsgruppen,? Arch. Math., 18(5):474?478 (1967). · Zbl 0153.03503 · doi:10.1007/BF01899486
[234] H. Bender, ?Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben,? Math., Z., 104(3):175?204 (1968). · Zbl 0172.02803 · doi:10.1007/BF01110287
[235] H. Bender, ?Überden grösstenp’-Normalteiler in p-auflösbaren Gruppen,? Arch. Math., 18(1):15?16 (1967). · Zbl 0144.01602 · doi:10.1007/BF01899467
[236] L. Beran, ?The investigation of the existence of maximal subgroups of some simple groups,? Casop. Péstov. Mat., 91(2):185?193 (1966). · Zbl 0151.02102
[237] R. Bercov, ?On groups with all composition factors isomorphic,? Canad. Math. Bull., 9(4):413?415 (1966). · Zbl 0139.25003 · doi:10.4153/CMB-1966-048-3
[238] R. Bercov, ?On groups without abelian composition factors,? J. Algebra, 5(1):106?109 (1967). · Zbl 0144.01502 · doi:10.1016/0021-8693(67)90029-4
[239] R. Bercov, ?The double transitivity of a class of permutation groups,? Canad. J. Math., 17(3):480?493 (1965). · Zbl 0132.27101 · doi:10.4153/CJM-1965-047-9
[240] R. Bercov and L. Moser, ?On abelian permutation groups,? Canad. Math. Bull., 8(5):627?630 (1965). · Zbl 0136.28103 · doi:10.4153/CMB-1965-045-6
[241] J. L. Berggren, ?Finite groups in which every element is conjugate to its inverse,? Pacif. J, Math., 28(2):289?293 (1969). · Zbl 0172.03101 · doi:10.2140/pjm.1969.28.289
[242] N. Blackburn, ?Automorphisms of finite p-groups,? J. Algebra, 3(1):28?29 (1966). · Zbl 0144.26403 · doi:10.1016/0021-8693(66)90017-2
[243] N. Blackburn, ?Finite groups in which the nonnormal subgroups have nontrivial intersection,? J. Algebra, 3(1):30?37 (1966). · Zbl 0141.02401 · doi:10.1016/0021-8693(66)90018-4
[244] J. Bla?ek, ?O dicmanové zobecnéní p-podgrupy a Sylowovy podgrupy,? Acta Univ. Carolinae. Math. et Phys., No. 2, 1?19 (1964).
[245] D. M. Bloom, ?The subgroups of PSL (3, q) for odd q,? Trans. Amer. Math. Soc., 127(1):150?178 (1967). · Zbl 0153.03702
[246] R. Brauer, ?Investigation on groups of even order. II,? Proc. Nat. Acad, Sci. U.S.A., 55(2):254?259 (1966). · Zbl 0133.28402 · doi:10.1073/pnas.55.2.254
[247] R. Brauer, ?On a theorem of Burnside,? Ill. J. Math., 11(3):349?352 (1967). · Zbl 0153.03501
[248] R. Brauer, ?On simple groups of order 5 \(\cdot\) 3a \(\cdot\) 2b,? Bull. Amer. Math. Soc., 74(5):900?903 (1968). · Zbl 0167.29004 · doi:10.1090/S0002-9904-1968-12073-7
[249] R. Brauer, ?Representations of finite groups,? Lectures in Modern Mathematics, Vol. 1, Wiley (1963), pp. 133?175.
[250] R. Brauer, ?Some applications of the theory of blocks of characters of finite groups. III,? J. Algebra, 3(2):225?255 (1966). · Zbl 0214.28201 · doi:10.1016/0021-8693(66)90013-5
[251] R. Brauer, ?Some results on finite groups whose order contains a prime to the first power,? Nagoya Math. J., 27(2):381?399 (1966). · Zbl 0139.25201 · doi:10.1017/S0027763000026246
[252] R. Brauer, ?Über endliche lineare Gruppen von Primzahlgrad,? Math. Ann., 169(1):73?96 (1967). · Zbl 0166.28903 · doi:10.1007/BF01399532
[253] R. Brauer and W. Feit, ?An analogue of Jordan’s theorem in characteristic p,? Ann. Math., 84(1):119?131 (1966). · Zbl 0142.26203 · doi:10.2307/1970514
[254] R. Brauer and P. Fong, ?A characterization of the Mathieu group M12,? Trans. Amer. Math. Soc., 122(1):18?47 (1966).
[255] W. Brauer, ?Zu den Sylowsätzen von Hall und Cunichin,? Arch. Math., 19(3):245?255 (1968). · Zbl 0174.05102 · doi:10.1007/BF01899500
[256] A. Brumer and M. Rosen, ?On the size of the Brauer groups,? Proc. Amer. Math. Soc., 19(3):707?711 (1968). · Zbl 0182.07602 · doi:10.1090/S0002-9939-1968-0225769-2
[257] R. A. Bryce, ?On metabelian groups of prime-power exponent,? Proc. Roy. Soc. London, A310(1502):393?399 (1969). · Zbl 0179.04304 · doi:10.1098/rspa.1969.0082
[258] J. Buckley, ?On the D-series of a finite group,? Proc. Amer. Math. Soc., 18(1):185?186 (1967). · Zbl 0166.02203
[259] F. Buekenhout and X. Hubaut, ?Groupes affins et projectifs,? Bull. Cl. Sci. Acad. Roy. Belg., 52(3):368?381 (1966). · Zbl 0145.03301
[260] N. Burgoyne and P. Fong, ?The Schur multipliers of the Mathieu groups,? Nagoya Math. J., 27(2):733?745 (1966). · Zbl 0171.28801 · doi:10.1017/S0027763000026519
[261] N. Burgoyne and P. Fong, ?A correction to ?The Schur multipliers of the Mathieu groups;? No. 31, pp. 297?304, (1968). · Zbl 0171.28801
[262] M. Burrow, Representation Theory of Finite Groups, New York, Acad. Press, No. IX, (1965), 185 pp. · Zbl 0192.12303
[263] A. R. Camina, ?Finite soluble hypernormalizing groups,? J. Algebra, 8(3):362?375 (1968). · Zbl 0155.05201 · doi:10.1016/0021-8693(68)90065-3
[264] A. R. Camina, ?Hyper-normalizing groups,? Math. Z., 100(1):59?68 (1967). · Zbl 0147.27102 · doi:10.1007/BF01111328
[265] H. Cardenas and E. Lluis, ?De los subgrupos de un p-grupo de Sylow del grupo simetrico Sp,? An. Inst. Mat. Univ. Nac. Autonoma Mexico, Vol. 1, pp. 19?25 (1961).
[266] H. Cardenas and E. Lluis, ?El normalizador del p-grupo de Sylow del grupo simetrico Sp2,? An. Inst. Mat. Univ. Nac. Autonoma Mexico, Vol. 2, pp. 1?7 (1962).
[267] H. Cardenas and E. Lluis, ?El normalizador del p-grupo de Sylow del grupo simetrico Sp2,? An. Inst. Mat. Univ. Nac. Autonoma Mexico, Vol. 3, p. 5 (1963).
[268] R. Carter, B. Fischer, and T. Hawkes, ?Extreme classes of finite soluble groups,? J. Algebra, 9(3):285?313 (1968). · Zbl 0177.03902 · doi:10.1016/0021-8693(68)90027-6
[269] R. Carter and T. Hawkes, ?The ?-normalizers of a finite soluble group,? J. Algebra, 5(2):175?202 (1967). · Zbl 0167.29201 · doi:10.1016/0021-8693(67)90034-8
[270] Bomshik Chang, ?The conjugate classes of Chevalley groups of type (G2),? J. Algebra, 9(2):190?211 (1968). · Zbl 0285.20043 · doi:10.1016/0021-8693(68)90020-3
[271] Chong-Yun Chao, ?A note on two set-transitive permutation groups,? Proc. Amer. Math. Soc., 17(4):953?955 (1966). · doi:10.1090/S0002-9939-1966-0197545-9
[272] M. R. Chowdhury, ?An isomorphism theorem in group theory,? Nieuw Arch. Wiskunde, 14(2):102 (1966).
[273] C. Christensen, ?Groups with complemented normal subgroups,? J. London Math. Soc., 42(2):208?216 (1967). · Zbl 0153.03402 · doi:10.1112/jlms/s1-42.1.208
[274] E. Cline, ?A transfer theorem for small primes,? Math. Z., 107(1):49?52 (1968). · Zbl 0206.03203 · doi:10.1007/BF01111047
[275] E. Cline, ?On an embedding property of generalized Carter subgroups,? Pacif. J. Math., 29(3):491?519 (1969). · Zbl 0182.03605 · doi:10.2140/pjm.1969.29.491
[276] D. I. A. Cohen, ?On representations of the braid group,? J. Algebra, 7(2):145?151 (1967). · Zbl 0178.01604 · doi:10.1016/0021-8693(67)90051-8
[277] J. H. Conway, ?A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups,? Proc. Nat. Acad. Sci. U.S.A., 61(2):398?400 (1968). · Zbl 0186.32401 · doi:10.1073/pnas.61.2.398
[278] C. D. H. Cooper, ?Conformality and p-isomorphism in finite nilpotent groups,? J. Austral. Math. Soc., 7(2):165?171 (1967). · Zbl 0163.02503 · doi:10.1017/S1446788700005541
[279] C. D. H. Cooper, ?Power automorphism of a group,? Math. Z., 107(5):335?356 (1968). · Zbl 0169.33801 · doi:10.1007/BF01110066
[280] B. Corbas, ?On a class of transitive permutation groups,? Rend. Mat. e Applic, 26(1?2):153?162 (1967). · Zbl 0157.35303
[281] B. Corbas, ?Determinazione di una classe di gruppi di permutazioni semplicemente transitivi,? Atti Accad. Naz. Linzei. Rend. Cl. Sci. Fiz.,Mat. e Natur., 38(6):808?809 (1965). · Zbl 0199.06002
[282] K. A. Corrádi, ?A remark on finite groups,? Ann. Univ. Scient. Budapest. Sec. Math., Vol. 11, pp. 125?128 (1968).
[283] G. Corsi, ?Sui commutatori nei gruppi il cui derivato è prodotto diretto di gruppi ciclici,? Rend. Semin. Mat. Univ. Padova, 35(2), (1965). · Zbl 0135.04704
[284] C. Corsi, ?Sul problema della determinazione dei p-gruppi regolari il cui reticolo dei sottogruppi pienamente invarianti e un insieme semplicemente ordinato,? Matematiche, 19(1):50?62 (1964). · Zbl 0265.20017
[285] G. Corsi, ?Une caratterizzazione dei gruppi finiti a derivato nilpotente in cui ogni sottogruppo subnormale proprio ha sottogruppo di Frattini identico,? Matematiche, 22(1):19?23 (1967). · Zbl 0152.00404
[286] J. Cossey and S. O. Macdonald, ?A basis for the laws of PSL (2, 5),? Bull. Amer. Math. Soc., 74(3):602?606 (1968). · Zbl 0175.29602 · doi:10.1090/S0002-9904-1968-12028-2
[287] B. Csákány and G. Pollak, ?On the graph of a subgroup of a finite group,? Czech. Math. J., 19(2):241?247 (1969).
[288] C. W. Curtis, ?Central extensions of groups of Lie type,? J. Reine und Angew. Math., 220(3?4):174?185 (1965). · Zbl 0137.25701
[289] C. W. Curtis, ?Irreducible representations of finite groups of Lie type,? J.Reine und Angew. Math., 219(3?4):180?199 (1965). · Zbl 0132.02001
[290] C. W. Curtis, ?The classical groups as a source of algebraic problems,? Amer. Math. Monthly, 74(1):80?91 (1967). · Zbl 0245.20001 · doi:10.2307/2314870
[291] C. W. Curtis, ?The Steinberg character of a finite group with a (B, N)-pair,? J. Algebra, 4(3):433?441 (1966). · Zbl 0161.02203 · doi:10.1016/0021-8693(66)90033-0
[292] M. Curzio, ?Alcune congruenze del reticolo dei sottogruppi di composizione. Conf. Semin. Mat. Univ. Bari, No. 77 (1962), 24 pp. · Zbl 0113.02501
[293] M. Curzio, ?Gruppi risolubili finiti a sottogruppi sub-normali caratteristici,? Ricerche Mat., 18(1):75?82 (1969). · Zbl 0186.32502
[294] M. Curzio, ?Problemi di complementazione in teoria dei gruppi,? Sympos. Math. 1967-1968, Vol. 1 Gubbio (1969), pp. 195?208. · Zbl 0207.03501
[295] M. Curzio, ?Una caratterizzazione reticolare dei gruppi abeliani,? Rend. Mat. e Applic., 24(1?2):1?10 (1965). · Zbl 0171.28404
[296] M. Curzio and M. Giordano, ?Une proprieta reticolare di alcuni p-gruppi localmente finiti,? Matematiche, 21(1):18?22 (1966). · Zbl 0146.03602
[297] E. C. Dade, ?Answer to a question of R. Brauer,? J. Algebra, No. 1 pp. 1?4 (1964). · Zbl 0121.03303 · doi:10.1016/0021-8693(64)90002-X
[298] E. C. Dade, ?Blocks with cyclic defect groups,? Ann. Math., 84(1):20?48 (1966). · Zbl 0163.27202 · doi:10.2307/1970529
[299] E. C. Dade, ?Carter subgroups and Fitting heights of finite solvable groups,? Ill. J. Math., 13(3):449?514 (1969). · Zbl 0195.04003
[300] E. C. Dade, ?Counterexamples to a conjecture of Tamaschke,? J. Algebra, 11(3):353?358 (1969). · Zbl 0185.06701 · doi:10.1016/0021-8693(69)90063-5
[301] E. C. Dade, ?Degrees of modular irreducible representations of p-solvable groups,? Math. Z., 104(2):141?143 (1968). · Zbl 0157.06301 · doi:10.1007/BF01109875
[302] E. C. Dade, ?On Brauer’s second main theorem,? J. Algebra, 2(3):299?311 (1965). · Zbl 0178.35202 · doi:10.1016/0021-8693(65)90011-6
[303] E. C. Dade, ?Products of orders of centralizers,? Math. Z., 96(2):223?225 (1967). · Zbl 0189.31602 · doi:10.1007/BF01124080
[304] E. C. Dade, ?Some p-solvable groups,? J. Algebra, 2(4):395?401 (1965). · Zbl 0132.26802 · doi:10.1016/0021-8693(65)90001-3
[305] E. C. Dade, ?The maximal finite groups of 4 \(\times\) 4 integral matrices,? Ill. J. Math., 9(1):99?122 (1965). · Zbl 0123.02702
[306] P. Deligne, ?Congruences sur le nombre de sous-groupes d’ordre pk dans un groupe fini,? Bull. Soc. Math. Belg., 18(2):129?132 (1966). · Zbl 0154.02002
[307] P. Dembowski, ?Collineation groups containing perspectivities,? Canad. J. Math., 19(5):924?937 (1967). · Zbl 0149.38603 · doi:10.4153/CJM-1967-085-0
[308] P. Dembowski, ?Zur Geometrie der Suzukigruppen,? Math. Z., 94(2):106?109 (1966). · Zbl 0148.14702 · doi:10.1007/BF01118973
[309] P. Dembowski and T. G. Ostrom, ?Planes of order n with collineation groups of order n2,? Math. Z., 103(3):239?258 (1968). · Zbl 0163.42402 · doi:10.1007/BF01111042
[310] R. H. F. Denniston, ?Subplanes of the Hughes plane of order 9,? Proc. Cambridge Philos., 64(3):589?598 (1968). · Zbl 0164.20801 · doi:10.1017/S0305004100043255
[311] W. E. Deskins, ?On quasinormal subgroups. II,? Nagoya Math. J., 27(1):231?237 (1966). · Zbl 0144.01501 · doi:10.1017/S0027763000012034
[312] J. D. Dixon, ?Complements in finite groups,? Amer. Math. Monthly, 74(3):286?288 (1967). · Zbl 0166.02001 · doi:10.2307/2316026
[313] J. D. Dixon, ?Complements of normal subgroups in infinite groups,? Proc. London Math. Soc., 17(3):431?446 (1967); ?Corrigenda,? Proc. London Math. Soc., 18(4):768 (1968). · doi:10.1112/plms/s3-17.3.431
[314] J. D. Dixon, ?High speed computation of group characters,? Numer. Math., 10(5):446?450 (1967). · Zbl 0166.29001 · doi:10.1007/BF02162877
[315] J. D. Dixon, ?Normal p-subgroups of solvable linear groups,? J. Austral. Math. Soc., 7(4):545?551 (1967). · Zbl 0153.04002 · doi:10.1017/S1446788700004481
[316] J. D. Dixon, ?The Fitting subgroup of a linear solvable group,? J. Austral. Math. Soc., 7(4):417?424 (1967). · Zbl 0153.04001 · doi:10.1017/S1446788700004353
[317] J. D. Dixon, ?The maximum order of the group of a tournament,? Canad. Math. Bull., 10(4):503?505 (1967). · Zbl 0203.01501 · doi:10.4153/CMB-1967-048-9
[318] J. D. Dixon, ?The solvable length of a solvable linear group,? Math. Z., 107(2):151?158 (1968). · Zbl 0175.30302 · doi:10.1007/BF01111027
[319] V. Dlab, ?A remark to a paper of Gh. Pic,? Czech. Math. J., 17(3):467?468 (1967). · Zbl 0189.31201
[320] K. Doerk, ?Minimal nicht überauflösbare, endliche Gruppen,? Math. Z., 91(3):198?205 (1966). · Zbl 0135.05401 · doi:10.1007/BF01312426
[321] T. Donnelan, Lattice Theory, Pergamon Press (1968).
[322] L. Dornhoff, ?M-groups and 2-groups,? Math. Z., 100(2):226?256 (1967). · Zbl 0157.35503 · doi:10.1007/BF01109806
[323] L. Dornhoff, ?The rank of primitive solvable permutation groups,? Math. Z., 109(3):205?210 (1969). · Zbl 0172.02901 · doi:10.1007/BF01111405
[324] L. Dornhoff and E. L. Spitznagel, ?Density of finite simple group orders,? Math. Z., 106(3):175?177 (1968). · Zbl 0159.31103 · doi:10.1007/BF01110127
[325] A. Duncan, ?An automorphism of the symplectic group Spn(2n),? Proc. Cambridge Philos. Soc., 64(1):5?9 (1968). · doi:10.1017/S0305004100042481
[326] J. R. Durbin, ?Commutativity and n-Abelian groups,? Math. Z., 98(2):89?92 (1967). · Zbl 0152.00505 · doi:10.1007/BF01112718
[327] J. R. Durbin, ?Finite supersolvable wreath products,? Proc. Amer. Math. Soc., 17(1):215?218 (1966). · Zbl 0136.28404 · doi:10.1090/S0002-9939-1966-0186734-5
[328] R. H. Dye, ?The characters of a collineation group in seven dimensions,? J. London Math. Soc., 44(1):169?174 (1969). · Zbl 0164.34102 · doi:10.1112/jlms/s1-44.1.169
[329] R. H. Dye, ?The simple group FH (8, 2) of order 212 \(\cdot\) 35 \(\cdot\) 52 \(\cdot\) 7 and the associated geometry of triality,? Proc. London Math. Soc., 18(3):521?562 (1968). · Zbl 0159.31104 · doi:10.1112/plms/s3-18.3.521
[330] M. Emaldi and G. Zacher, ?I gruppi risolubili relativamente complementati,? Ricerche Mat., 14(1):3?8 (1965). · Zbl 0128.25303
[331] B. P. van Emde and D. Kruyswijk, ?A combinatorial problem on finite Abelian groups,? Rept. Math. Centrum, ZW, No. 9 (1967). · Zbl 0189.31703
[332] M. Enguehard, ?Formations dans les groupes?-résolubles,? C. R. Acad. Sci., 268(17):A937-A940 (1969). · Zbl 0198.04403
[333] L. Evens, ?On a theorem of Thompson on fixed points of groups acting on p-groups,? Math. Z., 93(2):105?108 (1966). · Zbl 0144.01601 · doi:10.1007/BF01111029
[334] R. J. Faudree, ?Subgroups of the multiplicative group of a division ring,? Trans. Amer. Math. Soc., 124(1):41?48 (1966). · Zbl 0141.02205 · doi:10.1090/S0002-9947-1966-0201508-9
[335] V. Fedri, ?Sugli amalgami di p-gruppi finiti non immergibili in un p-gruppo finito,? Rend. Semin. Mat. Univ. Padova, Vol. 37, pp. 98?103 (1967). · Zbl 0178.02002
[336] B. Fein, ?Lifting modular representations of finite groups,? Proc. Amer. Math. Soc., 19(1):217?221 (1968). · Zbl 0155.05601 · doi:10.1090/S0002-9939-1968-0219638-1
[337] B. Fein, ?Representations of direct products of finite groups,? Pacif. J. Math., 20(1):45?58 (1967). · Zbl 0154.26701 · doi:10.2140/pjm.1967.20.45
[338] W. Feit, Characterers of Finite Groups, Vol. 8, Benjamin (1967).
[339] W. Feit, ?Groups with a cyclic Sylow subgroup,? Nagoya Math. J., 27(2):571?584 (1966). · Zbl 0146.03704 · doi:10.1017/S0027763000026398
[340] W. Feit, ?On finite linear groups,? J. Algebra, 5(3):378?400 (1967). · Zbl 0228.20019 · doi:10.1016/0021-8693(67)90049-X
[341] V. Felsch and J. Neubüser, ?Über ein Programm zur Berechnung der Automorphismengruppe einer endlichen Gruppe,? Numer. Math., 11(3):277?292 (1968). · Zbl 0157.05703 · doi:10.1007/BF02161849
[342] A. Festraets, ?Sur les involutions du groupe alterne d’un ensemble fini,? Bull. Cl. Sci. Acad. Roy. Belg., 50(3):287?293 (1964). · Zbl 0149.27103
[343] B. Fischer, ?A characterization of the symmetric groups on 4 and 5 letters,? J. Algebra, 3(1):88?98 (1966). · Zbl 0139.25004 · doi:10.1016/0021-8693(66)90020-2
[344] B. Fischer, ?Die Brauersche Charakterisierung der Charaktere endlicher Gruppen,? Math. Ann., 149(3):226?231 (1963). · Zbl 0108.02902 · doi:10.1007/BF01470873
[345] B. Fischer, ?Ein Auflösbarkeitskriterium für endliche Gruppen,? Arch. Math., 17(6):481?484 (1966). · Zbl 0145.24607 · doi:10.1007/BF01899417
[346] B. Fischer, ?Eine Kennzeichnung der symmetrischen Gruppen vom Grade 6 und 7,? Math. Z., 95(4):288?298 (1967). · Zbl 0139.25101 · doi:10.1007/BF01111081
[347] B. Fischer, ??-Gruppen endlicher Ordnung,? Arch. Math., 16(4?5):330?336 (1965). · Zbl 0136.28602 · doi:10.1007/BF01220038
[348] B. Fischer, ?Finite groups admitting a fixed-point-free automorphism of order 2 p,? J. Algebra, 3(1):99?114 (1966). · Zbl 0146.03903 · doi:10.1016/0021-8693(66)90021-4
[349] B. Fischer, ?Finite groups admitting a fixed-point-free automorphism of order 2p. II,? J. Algebra, 5(1):25?40 (1967). · Zbl 0152.00502 · doi:10.1016/0021-8693(67)90023-3
[350] B. Fischer, ?Frobeniusautomorphismen endlicher Gruppen,? Math. Ann., 163(4):273?298 (1966). · Zbl 0136.28603 · doi:10.1007/BF02052513
[351] B. Fischer, W. Gaschütz, and B. Hartley, ?Injektoren endlicher auflösbarer Gruppen,? Math. Z., 102(5):337?339 (1967). · Zbl 0183.02902 · doi:10.1007/BF01111070
[352] W. Fluch, ?Gruppen ohne endlich-dimensionale Darstellungen,? Math. Scand., 16(2):164?168 (1965). · Zbl 0145.03103 · doi:10.7146/math.scand.a-10756
[353] P. Fong, ?Some Sylow subgroups of order 32 and a characterization of u (3, 3),? J. Algebra, 6(1):65?76 (1967). · Zbl 0183.03103 · doi:10.1016/0021-8693(67)90014-2
[354] R. F. Fox, ?A simple new method for calculating the characters of the symmetric groups,? J. Combin. Theory, 2(2):186?212 (1967). · Zbl 0153.03802 · doi:10.1016/S0021-9800(67)80099-1
[355] G. de Franceschi and L. Maiani, ?An introduction to group theory and to unitary symmetry models,? Fortschr.Phys., 13(7):279?384 (1965). · Zbl 0139.23504 · doi:10.1002/prop.19650130702
[356] D. K. Friesen, ?Finite rotation groups in low dimensions,? Canad. J. Math., 20(3):711?719 (1968). · Zbl 0159.31302 · doi:10.4153/CJM-1968-069-2
[357] W. R. Frucht, ?Un problema combinatorique interesa en la teoria de los grupos de permutaciones,? Scientia (Chile), 19(117):39?49 (1962).
[358] J. Gabriel, ?New methods for reduction of group representations. II,? J. Math. Phys. 9(7):973?976 (1968). · Zbl 0162.58501 · doi:10.1063/1.1664689
[359] T. M. Gagen, ?A characterization of Janko’s simple group,? Proc. Amer. Math. Soc., 19(6):1393?1395 (1968). · Zbl 0182.35401
[360] T. M. Gagen, ?On groups with abelian Sylow 2-groups,? Math. Z. 90(4):268?272 (1965). · Zbl 0134.03101 · doi:10.1007/BF01158567
[361] T. M. Gagen and Z. Janko, ?Finite simple groups with nilpotent third maximal subgroups,? J. Austral. Math. Soc., 6(4):466?469 (1966). · Zbl 0166.02102 · doi:10.1017/S1446788700004936
[362] P. X. Gallagher, ?Counting finite groups of given order,? Math. Z., 102(3):236?237 (1967). · Zbl 0189.02304 · doi:10.1007/BF01112441
[363] P. X. Gallagher, ?Determinants of representations of finite groups,? Abhandl. Math. Semin. Univ. Hamburg, 28(3?4):162?167 (1965). · Zbl 0132.27306 · doi:10.1007/BF02993247
[364] P. X. Gallagher, ?Group characters and Sylow subgroups,? J. London Math. Soc., 39(4):720?722 (1964). · Zbl 0135.05502 · doi:10.1112/jlms/s1-39.1.720
[365] P. X. Gallagher, ?On the p-subgroups of finite group,? Arch. Math., 18(5):469 (1967). · Zbl 0178.02103 · doi:10.1007/BF01899484
[366] P. X. Gallagher, ?The generation of the lower central series,? Canad. J. Math., 17(3):405?410 (1965). · Zbl 0134.26202 · doi:10.4153/CJM-1965-041-5
[367] P. X. Gallagher, ?Zeros of characters of finite groups,? J. Algebra, 4(1):42?45 (1966). · Zbl 0146.25503 · doi:10.1016/0021-8693(66)90048-2
[368] P. X. Gallagher, ?Zeros of group characters,? Math. Z., 87(3):363?364 (1965). · Zbl 0128.25602 · doi:10.1007/BF01111717
[369] D. Garbe and J. L. Mennicke, ?Some remarks on the Mathieu groups,? Canad. Math. Bull., 7(2):201?212 (1964). · Zbl 0129.01802 · doi:10.4153/CMB-1964-018-3
[370] W. Gaschütz, ?Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen,? J. Algebra, 4(1):1?2 (1966). · Zbl 0142.26001 · doi:10.1016/0021-8693(66)90045-7
[371] W. Gaschütz, ?Über des Frattinidual,? Arch. Math., 16(1):1?2 (1965). · Zbl 0139.01904 · doi:10.1007/BF01219992
[372] E. R. Gentile, ?A proof of the structure theorem of finite abelian groups,? Amer. Math. Monthly, 76(1):60?61 (1969). · Zbl 0174.05103 · doi:10.2307/2316799
[373] L. Gerhards and W. Lindenberg, ?Ein Verfahren zur Berechnung des vollständigen Untergruppen-verbandes endlicher Gruppen auf Dualmaschinen,? Numer. Math., 7(1):1?10 (1965). · Zbl 0137.25501 · doi:10.1007/BF01397968
[374] G. Glauberman, ?A characterization of the Suzuki groups,? Ill. J. Math., 12(1):76?98 (1968). · Zbl 0182.35502
[375] G. Glauberman, ?A characteristic subgroup of a p-stable group,? Canad. J. Math., 20(5):1101?1135 (1968). · Zbl 0164.02202 · doi:10.4153/CJM-1968-107-2
[376] G. Glauberman, ?Central elements in core-free groups,? J. Algebra, 4(3):403?420 (1966). · Zbl 0145.02802 · doi:10.1016/0021-8693(66)90030-5
[377] G. Glauberman, ?Correspondences of characters for relatively prime operator groups,? Canad. J. Math., 20(6):1465?1488 (1968). · Zbl 0167.02602 · doi:10.4153/CJM-1968-148-x
[378] G. Glauberman, ?Fixed point subgroups that contain centralizers of involutions,? Doct. Diss. Univ. Wisc. (1965), 118 pp.; Dissert. Abstrs., 25(11):6654 (1965).
[379] G. Glauberman, ?Normalizers of p-subgroups in finite groups.? Pacif. J. Math., 29(1):137?144 (1969). · Zbl 0177.04002 · doi:10.2140/pjm.1969.29.137
[380] G. Glauberman, ?On loops of odd order,? J. Algebra, 1(4):374?396; ?II,? J. Algebra, 8(4):393?414 (1968). · Zbl 0155.03901
[381] G. Glauberman, ?On the automorphism group of a finite group having no nonidentity normal subgroups of odd order,? Math. Z., 93(2):154?160 (1966). · Zbl 0231.20004 · doi:10.1007/BF01111033
[382] G. Glauberman, ?Prime-power factor groups of finite groups,? Math. Z., 107(3):159?172 (1968). · Zbl 0167.02304 · doi:10.1007/BF01110255
[383] G. Glauberman, ?Subgroups of finite groups,? Bull. Amer. Math. Soc., 73(1):1?12 (1967). · Zbl 0167.29502 · doi:10.1090/S0002-9904-1967-11616-1
[384] G. Glauberman, ?Weakly closed elements of Sylow subgroups,? Math. Z., 107(1):1?20 (1968). · Zbl 0172.03002 · doi:10.1007/BF01111043
[385] G. Glauberman, E. F. Krause, and R. R. Struik, ?Engel congruences in groups of prime-power exponent,? Canad. J. Math., 18(3):579?588 (1966). · Zbl 0143.03802 · doi:10.4153/CJM-1966-056-3
[386] G. Glauberman and J. G. Thompson, ?Weakly closed direct factors of Sylow subgroups,? Pacif. J. Math., 26(1):73?83 (1968). · Zbl 0172.03001 · doi:10.2140/pjm.1968.26.73
[387] G. Glauberman and C. R. B. Wright, ?Nilpotence of finite Moufang 2-loops,? J. Algebra, 8(4):415?417 (1968). · Zbl 0155.03902 · doi:10.1016/0021-8693(68)90051-3
[388] K. Goldberg, ?Groups preserving ordering in vectors,? J. Res. Nat. Bur. Standards., B70(2):159?160 (1966). · Zbl 0149.27401 · doi:10.6028/jres.070B.016
[389] M. Goldberg and J. W. Moon, ?On the maximum order of the group of a tournament,? Canad. Math. Bull., 9(5):563?569 (1966). · Zbl 0148.18101 · doi:10.4153/CMB-1966-069-3
[390] B. Gordon, ?A generalization of the coset decomposition of a finite group,? Pacif. J. Math., 15(2):503?509 (1965). · Zbl 0132.01804 · doi:10.2140/pjm.1965.15.503
[391] D. Gorenstein, Finite Groups, Harper and Row (1968). · Zbl 0185.05701
[392] D. Gorenstein, ?Finite groups the centralizers of whose involutions have normal 2-complements,? Canad. J. Math., 21(2):335?357 (1969). · Zbl 0201.03202 · doi:10.4153/CJM-1969-035-x
[393] D. Gorenstein, ?Finite groups in which Sylow 2-subgroups are Abelian and centralizers of involutions are solvable,? Canad. J. Math., 17(6):860?906 (1966). · Zbl 0219.20011 · doi:10.4153/CJM-1965-085-x
[394] D. Gorenstein, ?On a theorem of Philip Hall,? Pacif. J. Math., 19(1):77?80 (1966). · Zbl 0139.25002 · doi:10.2140/pjm.1966.19.77
[395] D. Gorenstein, ?On the centralizers of involutions in finite groups,? J. Algebra, 11(2):243?277 (1969). · Zbl 0214.27902 · doi:10.1016/0021-8693(69)90056-8
[396] D. Gorenstein, ?p-Constraint and the transitivity theorem,? Arch. Math., 18(4):355?358 (1967). · Zbl 0214.27904 · doi:10.1007/BF01898824
[397] D. Gorenstein, ?Some topics in the theory of finite groups,? Rend. Mat. e Applic., 23(3?4):298?315 (1964). · Zbl 0132.26902
[398] D. Gorenstein and J. H. Walter, ?The characterization of finite groups with dihedral Sylow 2-subgroups,? I, J. Algebra, 2(1):85?151 (1965); II, 218?270 (1965); III, 354?393 (1965); Errata, 11(2): 315?318 (1969). · Zbl 0192.11902 · doi:10.1016/0021-8693(65)90027-X
[399] K.-D. Graf, ?Zur Kompositionsstruktur endlicher Gruppen mit Hallunter-gruppen,? Math. Z., 99(1):76?100 (1967). · Zbl 0147.27101 · doi:10.1007/BF01118690
[400] J. A. Green, ?A transfer theorem for modular representations,? J. Algebra, 1(1):73?84 (1964). · Zbl 0126.05502 · doi:10.1016/0021-8693(64)90009-2
[401] J. A. Green, ?Some remarks on defect groups,? Math. Z., 107(2):133?150 (1968). · Zbl 0164.34002 · doi:10.1007/BF01111026
[402] F. Gross, ?Anote on fixed-point-free solvable operator groups,? Proc. Amer. Math. Soc., 19(6):1363?1365 (1968). · Zbl 0182.35302 · doi:10.1090/S0002-9939-1968-0231909-1
[403] F. Gross, ?Fixed-point-free operator groups of order 8,? Pacif. J. Math., 28(2):357?361 (1969). · Zbl 0202.02403 · doi:10.2140/pjm.1969.28.357
[404] F. Gross, ?Groups admitting a fixed-point-free automorphism of order 2n,? Pacif. J. Math., 24(2):269?275 (1968). · Zbl 0157.05702 · doi:10.2140/pjm.1968.24.269
[405] F. Gross, ?On finite groups of exponent pmqn,? J. Algebra, 7(2):238?253 (1967). · Zbl 0167.29403 · doi:10.1016/0021-8693(67)90058-0
[406] F. Gross, ?Soluble groups admitting a fixed-point-free automorphism of prime power order,? Proc. Amer. Math. Soc., 17(6):1440?1446 (1966). · Zbl 0147.27201 · doi:10.1090/S0002-9939-1966-0207836-0
[407] F. Gross, ?Some remarks on groups admitting a fixed-point-free automorphism,? Canad. J. Math., 20(6):1300?1307 (1968). · Zbl 0186.31803 · doi:10.4153/CJM-1968-128-5
[408] F. Gross, ?The 2-length of a finite solvable group,? Pacif. J. Math., 15(4):1221?1237 (1965). · Zbl 0136.01501 · doi:10.2140/pjm.1965.15.1221
[409] F. Gross, ?The 2-length of groups whose Sylow 2-groups are of exponent 4,? J. Algebra, 2(3):312?314 (1965). · Zbl 0132.01801 · doi:10.1016/0021-8693(65)90012-8
[410] L. C. Grove, ?A note on commutators and quotient groups,? Amer. Math. Monthly, 74(10):1235 (1967). · Zbl 0166.28303 · doi:10.2307/2315682
[411] K. Gruenberg, ?The residual nilpotence of certain representations of finite groups,? Arch. Math., 13(6):408?417 (1962). · Zbl 0111.02804 · doi:10.1007/BF01650089
[412] C. K. Gupta, ?A bound for the class of certain nilpotent groups,? J. Austral. Math. Soc., 5(4):506?511 (1965). · Zbl 0178.35002 · doi:10.1017/S1446788700028536
[413] C. K. Gupta, N. D. Gupta, and M. F. Newman, ?Some finite nilpotent p-groups,? J. Austral. Math. Soc., 9(3?4):287?288 (1969). · Zbl 0214.04302 · doi:10.1017/S1446788700007199
[414] N. D. Gupta, ?Groups with Engel-like conditions,? Arch. Math., 17(3):193?199 (1966). · Zbl 0135.04303 · doi:10.1007/BF01899572
[415] N. D. Gupta, ?On commutation semigroups of a group,? J. Austral. Math. Soc., 6(1):36?45 (1966). · Zbl 0136.01303 · doi:10.1017/S1446788700003980
[416] N. D. Gupta, ?Some group laws equivalent to the commutative law,? Arch. Math., 17(2):97?102 (1966). · Zbl 0135.04302 · doi:10.1007/BF01899854
[417] N. D. Gupta and H. Heineken, ?Groups with a two-variable commutator identity,? Math. Z., 95(4):276?287 (1967). · Zbl 0143.03801 · doi:10.1007/BF01111080
[418] N. D. Gupta and M. F. Newman, ?Engel congruences in groups of prime power exponent,? Canad. J. Math., 20(6):1321?1323 (1968). · Zbl 0194.03604 · doi:10.4153/CJM-1968-131-5
[419] N. D. Gupta and M. F. Newman, ?On metabelian groups,? J. Austral. Math. Soc., 6(3):362?368 (1966). · Zbl 0146.03403 · doi:10.1017/S1446788700004316
[420] N. D. Gupta and S. J. Tobin, ?On certain groups with exponent four,? Math. Z., 102(3):216?226 (1967). · Zbl 0157.35001 · doi:10.1007/BF01112439
[421] N. D. Gupta, M. F. Newman, and S. J. Tobin, ?On metabelian groups of prime-power exponent,? Proc Roy. Soc., A302(1469):237?242 (1968). · Zbl 0157.35002 · doi:10.1098/rspa.1968.0006
[422] M. Guterman, ?On ABA-groups of finite order,? Trans. Amer. Math. Soc., Vol. 139 (1969), pp. 109?143. · Zbl 0175.30001
[423] M. Hall, Jr. (Ed.), Proc. Symp. Pure Math., Vol. VI: 1960 Institute on Finite Groups, Calif. Inst. Tech., Pasadena, Calif., Aug. 1?28, 1960, Amer. Math. Soc., Providence, R. I. (1962), 114 pp.
[424] M. Hall, Jr., ?On the number of Sylow subgroups in a finite group,? J. Algebra, 7(3):363?371 (1967). · Zbl 0178.02102 · doi:10.1016/0021-8693(67)90076-2
[425] M. Hall, Jr. and D. Wales, ?The simple group of order 604,800,? J. Algebra, 9(4):417?450 (1968). · Zbl 0172.03103 · doi:10.1016/0021-8693(68)90014-8
[426] J. T. Hallett and K. A. Hirsch, ?Torsion-free groups having finite automorphism groups. I,? J. Algebra, 2(3):287?298 (1965). · Zbl 0132.27301 · doi:10.1016/0021-8693(65)90010-4
[427] K. Harada, ?A characterization of the groups LF(2, q),? Ill. J. Math., 11(4):647?659 (1967). · Zbl 0189.31903
[428] K. Harada, ?A characterization of the Zassenhaus groups,? Nagoya, Math. J., Vol. 33, pp. 117?127, (1968). · Zbl 0169.03303 · doi:10.1017/S0027763000012897
[429] K. Harada, ?Finite simple groups with short chains of subgroups,? J. Math. Soc., Japan, 20(4):655?672 (1968). · Zbl 0169.03401 · doi:10.2969/jmsj/02040655
[430] K. Harada, ?Groups with a certain type of Sylow 2-subgroups,? J. Math. Soc. Japan, 19(3):303?307 (1967). · Zbl 0189.31603 · doi:10.2969/jmsj/01930303
[431] K. Harada, ?On groups all of whose 2-blocks have the highest defects,? Nagoya Math. J., Vol. 32, pp. 283?286 (1968). · Zbl 0175.30402 · doi:10.1017/S0027763000026714
[432] M. E. Harris, ?A normalizer condition on a finite group,? Rend. Mat., 1(1?2):71?74 (1968). · Zbl 0194.04301
[433] B. Hartley, ?On Fischer’s dualization of formation theory,? Proc. London Math. Soc., 19(2):193?207 (1969). · Zbl 0169.34201 · doi:10.1112/plms/s3-19.2.193
[434] T. O. Hawkes, ?A note on system normalizers of a finite soluble group,? Proc. Cambridge Philos. Soc., 62(3):339?346 (1966). · Zbl 0145.02902 · doi:10.1017/S030500410003992X
[435] T. O. Hawkes, ?On formation subgroups of a finite soluble group,? J. London Math. Soc., 44(2):243?250 (1968). · Zbl 0174.31001
[436] T. O. Hawkes, ?On the class of Sylow tower groups,? Math. Z., 105(5):393?398 (1968). · Zbl 0157.05601 · doi:10.1007/BF01110301
[437] H. Heineken, ?Commutator closed groups,? Ill. J. Math. 9(2):242?255 (1965). · Zbl 0127.01301
[438] H. Heineken, ?Die Geometrie der Gruppen und die Gruppen der Geometrie unter besonderer Berücksichtigung endlicher Strukturen,? Math. Forschungsinst, Oberwolfach (1964).
[439] H. Heineken, ?Gruppen, deren Kommutatorstrukturen gewisse Abschlusseigenschaften haben,? Math. Ann., 176(2):96?120 (1968). · Zbl 0155.04901 · doi:10.1007/BF02056979
[440] H. Heineken and F. Levin, ?Varieties of groups satisfying one two-variable law,? Publs. Math., 14(1?4):211?225 (1967). · Zbl 0189.30804
[441] H. Heineken and P. M. Neumann, ?Identical relations and decision procedures for groups.? J. Austral. Math. Soc., 7(1):39?47 (1967). · Zbl 0147.00902 · doi:10.1017/S1446788700005073
[442] D. Held, ?A characterization of some multiply transitive permutation groups,? I, Ill. J. Math., 13(1):224?240 (1969); II, Arch. Math., 19(4):378?382 (1968). · Zbl 0165.34002
[443] D. Held, ?A characterization of the alternating groups of degrees eight and nine,? J. Algebra, 7(2):218?237 (1967). · Zbl 0189.02501 · doi:10.1016/0021-8693(67)90057-9
[444] D. Held, ?Closure properties and partial Engel conditions in groups,? Ill. J. Math., 8(4):705?712 (1964). · Zbl 0123.25001
[445] D. Held, ?Eine Bemerkung zur Kennzeichnung von PSL (4, 2),? Arch. Math., 18(6):580?581 (1967). · Zbl 0189.31801 · doi:10.1007/BF01898862
[446] D. Held, ?Eine Kennzeichnung der Mathieu-Gruppe M22 und der alternierenden Gruppe A10,? J. Algebra, 8(4):436?449 (1968). · Zbl 0157.35502 · doi:10.1016/0021-8693(68)90054-9
[447] D. Held, ?Engel conditions and direct decompositions into groups of coprime order,? Ill. J. Math., 8(4):582?585 (1964). · Zbl 0122.03102
[448] D. Held, ?Gruppen beschränkt Engelscher Automorphismen,? Math. Ann., 162(1):1?8 (1965). · Zbl 0131.02301 · doi:10.1007/BF01361929
[449] D. Held, ?On bounded Engel elements in groups,? J. Algebra, 3(3):360?365 (1966). · Zbl 0138.25801 · doi:10.1016/0021-8693(66)90005-6
[450] C. Hering, ?Gruppen mit nichttrivialer Trofimovzahl,? Arch. Math. 15(6):404?407 (1964). · Zbl 0136.28401 · doi:10.1007/BF01589222
[451] C. Hering, ?Über projektive Ebenen vom Lenz-Typ III,? Math. Z., 105(3):219?225 (1968). · Zbl 0167.18801 · doi:10.1007/BF01109901
[452] C. Hering, ?Zweifach transitive Permutationsgruppen, in denen 2 die maximale Anzahl von Fixpunkten von Involutionen ist,? Math. Z., 104(2):150?174 (1968). · Zbl 0172.02804 · doi:10.1007/BF01109878
[453] M. Herzog, ?A characterization of some projective special linear groups,? J. Algebra, 6(3):305?308 (1967). · Zbl 0149.27302 · doi:10.1016/0021-8693(67)90085-3
[454] M. Herzog, ?A characterization of the simple groups PSL (2, p), p > 3,? Israel J. Math. 5(2):79?85 (1967). · Zbl 0166.02201 · doi:10.1007/BF02771625
[455] M. Herzog, ?On finite groups which contain a Frobenius subgroup,? J. Algebra, 6(2):192?221 (1967). · Zbl 0203.02801 · doi:10.1016/0021-8693(67)90004-X
[456] M. Herzog, ?On finite groups containing a CCT-subgroup with a cyclic Sylow subgroup,? Pacif. J. Math., 25(3):523?531 (1968). · Zbl 0159.31102 · doi:10.2140/pjm.1968.25.523
[457] M. Herzog, ?On finite groups with cyclic Sylow subgroups for all odd primes,? Israel J. Math., 6(3):206?216 (1968). · Zbl 0169.34303 · doi:10.1007/BF02760253
[458] M. Herzog, ?On finite groups with independent cyclic Sylow subgroups,? Pacif. J. Math. 29(2):285?294 (1969). · Zbl 0182.35403 · doi:10.2140/pjm.1969.29.285
[459] M. Herzog, ?On finite simple groups of order divisible by three primes only,? J. Algebra, 10(3):383?388 (1968). · Zbl 0167.29101 · doi:10.1016/0021-8693(68)90088-4
[460] D. G. Higman, ?Finite permutation groups of rank 3,? Math. Z., 86(2):145?156 (1964). · Zbl 0122.03205 · doi:10.1007/BF01111335
[461] D. G. Higman, ?Intersection matrices for finite permutation groups,? J. Algebra 6(1):22?42 (1967). · Zbl 0183.02704 · doi:10.1016/0021-8693(67)90011-7
[462] D. G. Higman, ?Primitive rank 3 groups with a prime subdegree,? Math. Z., 91(1):70?86 (1966). · Zbl 0136.01402 · doi:10.1007/BF01113853
[463] D. G. Higman and C. C. Sims, ?A simple group of order 44,352,000,? Math. Z., 105(2):110?113 (1968). · Zbl 0186.04002 · doi:10.1007/BF01110435
[464] H. Hijikata, ?On certain groups with involutive generators,? J. Math. Soc. Japan, 20(1?2):44?51 (1968). · Zbl 0169.33603 · doi:10.2969/jmsj/02010044
[465] K. A. Hirsch and H. Zassenhaus, ?Finite automorphism groups of torsion-free groups,? J. London Math. Soc., 41(3):545?549 (1966). · Zbl 0144.26406 · doi:10.1112/jlms/s1-41.1.545
[466] C. Hobby, ?Finite groups with normal normalizers,? Canad. J. Math., 20(5):1256?1260 (1968). · Zbl 0174.31102 · doi:10.4153/CJM-1968-121-8
[467] C. Hobby, ?Nearly regular p-groups,? Canad. J. Math., 19(3):520?522 (1967). · Zbl 0189.31402 · doi:10.4153/CJM-1967-044-8
[468] F. Hoffman and L. R. Welch, ?Totally variant sets in finite groups and vector spaces,? Canad. J. Math., 20(3):701?710 (1968). · Zbl 0223.20022 · doi:10.4153/CJM-1968-068-5
[469] X. Hubaut, ?Groups affins et groupes projectifs,? Bull. Cl. Sci. Acad. Roy. Bel., 53(11):1266?1275 (1967). · Zbl 0195.50401
[470] D. R. Hughes, ?On ?-homogeneous groups,? Arch. Math., 15(6):401?403 (1964). · Zbl 0127.01305 · doi:10.1007/BF01589221
[471] B. Huppert, ?Das F-HyperZentrum,? Sympos. Math., Vol. 1, 1967?1968, Vol. 1, Gubbio (1969), pp. 95?97. · doi:10.1016/B978-1-4832-2995-9.50010-6
[472] B. Huppert, Endliche Gruppen, I, Vol. 11, Springer (1967). · Zbl 0217.07201
[473] B. Huppert, ?Zur Gaschützschen Theorie der Formationen,? Math. Ann., 164(2):133?141 (1966). · Zbl 0136.28503 · doi:10.1007/BF01429051
[474] B. Huppert, ?Zur Theorie der Formationen,? Arch. Math., 19(6):561?574 (1969). · Zbl 0192.35303 · doi:10.1007/BF01899382
[475] N. Inagaki, ?On groups with nilpotent commutation subgroups,? Nagoya Math. J., Vol. 25, pp. 205?210 (1965). · Zbl 0132.27001 · doi:10.1017/S0027763000011533
[476] I. M. Isaacs, ?A note on IC-p groups,? Proc. Amer. Math. Soc., 17(6):1451?1454 (1966). · Zbl 0166.02002
[477] I. M. Isaacs, ?Extensions of certain linear groups,? J. Algebra, 4(1):3?12 (1966). · Zbl 0166.02202 · doi:10.1016/0021-8693(66)90046-9
[478] I. M. Isaacs, ?Finite groups with small character degrees and large prime divisors,? Pacif. J. Math., 23(2):273?280 (1967). · Zbl 0178.02203 · doi:10.2140/pjm.1967.23.273
[479] I. M. Isaacs, ?Fixed points and characters in groups with non-coprime operator groups,? Canad. J. Math., 20(6):1315?1320 (1968). · Zbl 0165.34302 · doi:10.4153/CJM-1968-130-7
[480] I. M. Isaacs, ?Two solvability theorems,? Pacif. J. Math., 23(2):281?290 (1967). · Zbl 0178.02005 · doi:10.2140/pjm.1967.23.281
[481] I. M. Isaacs and D. S. Passman, ?A characterization of groups in terms of the degrees of their characters,? Pacif. J. Math., 15(3):877?903 (1965). · Zbl 0132.01902 · doi:10.2140/pjm.1965.15.877
[482] I. M. Isaacs and D. S. Passman, ?Groups with relatively few non-linear irreducible characters,? Canad. J. Math., 20(6):1451?1458 (1968). · Zbl 0165.34303 · doi:10.4153/CJM-1968-146-3
[483] I. M. Isaacs and D. S. Passman, ?Half-transitive automorphism groups,? Canad. J. Math., 18(6):1243?1250 (1966). · Zbl 0145.02701 · doi:10.4153/CJM-1966-122-5
[484] N. Itô, ?On a class of doubly, but not triply transitive permutation groups,? Arch. Math., 18(6):564?570 (1967). · Zbl 0166.28606 · doi:10.1007/BF01898859
[485] N. Itô, ?On a conjecture of J. S. Frame,? Nagoya Math. J., Vol. 30, pp. 79?81 (1967). · Zbl 0189.31303 · doi:10.1017/S002776300001237X
[486] N. Itô, ?On doubly transitive groups of degree n and order 2 (n-1) n,? Nagoya Math. J., 27(2):409?417 (1966). · Zbl 0139.25102 · doi:10.1017/S002776300002626X
[487] N. Itô, ?On permutation groups of prime degree p which contain (at least) two classes of conjugate subgroups of index p,? Rend. Semin. Mat. Univ. Padova, Vol. 38, pp. 287?292 (1967).
[488] N. Itô, ?On uniprimitive permutation groups of degree 2p,? Math. Z., 102(3):238?244 (1967). · Zbl 0153.03502 · doi:10.1007/BF01112442
[489] N. Itô, ?Transitive permutation groups of degree p=2q+1, p and q being prime numbers,? II, Trans. Amer. Math. Soc., 113(3):454?487 (1964); III, 116(4):151?166 (1965).
[490] N. Itô, ?Über die Darstellungen der Permutationsgruppen von Primzahlgrad,? Math. Z., 89(3):196?198 (1965). · Zbl 0135.05203 · doi:10.1007/BF02116861
[491] N. Itô, ?Un teorema sui gruppi transitivi di grado primo,? Rend. Semin. Mat. Univ. Padova, 35, Parte 1, 132?133 (1965).
[492] N. Iwahori and T. Kondo, ?A criterion for the existence of a nontrivial partition of a finite group with applications to finite reflection groups,? J. Math. Soc. Japan, 17(2):207?215 (1965). · Zbl 0136.01401 · doi:10.2969/jmsj/01720207
[493] N. Iwahori and T. Kondo, ?On finite groups admitting a permutation representation P such that Tr P(?)=3 for all ? ? 1,? J. Fac. Sci. Univ. Tokyo, sec. 1, 11(2):113?144 (1965). · Zbl 0136.28203
[494] A. Jacques, ?Sur le genre d’une paire de substitutions,? C. R. Acad. Sci., 267(18):A625-A627 (1968). · Zbl 0187.20902
[495] A. Jacques, A. Lentin, C. Lenormand, and J.-F. Perrot, ?Un résultat extremal en theorie des permutations,? C. R. Acad. Sci., 266(8):A446-A448 (1968). · Zbl 0153.32601
[496] Z. Janko, ?A characterization of the finite simple group PSpn(3),? Canad. J. Math., 19(4):872?894 (1967). · Zbl 0178.02202 · doi:10.4153/CJM-1967-082-9
[497] Z. Janko, ?A characterization of the Mathieu, simple groups. I,? J. Algebra, 9(1):1?19 (1968). · Zbl 0159.03101 · doi:10.1016/0021-8693(68)90002-1
[498] Z. Janko, ?A characterization of the simple group G2 (3),? J. Algebra, 12(3):360?371 (1969). · Zbl 0177.04001 · doi:10.1016/0021-8693(69)90037-4
[499] Z. Janko, ?A characterization of the smallest group of Ree associated with the simple Lie algebra of type (G2),? J. Algebra, 4(2):293?299 (1966). · Zbl 0145.02703 · doi:10.1016/0021-8693(66)90042-1
[500] Z. Janko, ?A new finite simple group with abelian Sylow 2-subgroups and its characterization,? J. Algebra, 3(2):147?186 (1966). · Zbl 0214.28003 · doi:10.1016/0021-8693(66)90010-X
[501] Z. Janko, ?Finite groups with a nilpotent maximal subgroup,? J. Austral. Math. Soc., 4(4):449?451 (1964). · Zbl 0135.05301 · doi:10.1017/S1446788700025271
[502] Z. Janko, ?Finite simple groups with short chains of subgroups,? Math. Z., 84(4):428?437 (1964). · Zbl 0119.02802 · doi:10.1007/BF01109910
[503] Z. Janko and J. G. Thompson, ?On a class of finite simple groups of Ree,? J. Algebra, 4(2):274?292 (1966). · Zbl 0145.02702 · doi:10.1016/0021-8693(66)90041-X
[504] L. Jansen and M. Boon, Theory of Finite Groups. Applications in Physics, North Holland (1967). · Zbl 0218.20002
[505] G. J. Janusz, ?Indecomposable representations of groups with a cyclic Sylow subgroup,? Trans. Amer. Math. Soc., 125(2):288?295 (1966). · Zbl 0178.35102 · doi:10.1090/S0002-9947-1966-0201528-4
[506] W. Jonsson, ?Doubly transitive groups, nearfields and geometry,? Arch. Math., 17(1):83?88 (1966). · Zbl 0135.20802 · doi:10.1007/BF01900208
[507] M. Kanazawa and H. Enomoto, ?On B-group properties of semidihedral groups,? J. Fac. Sci. Univ. Tokyo, 15(1):71?85 (1968). · Zbl 0239.20030
[508] M. Kanazawa and H. Yamaki, ?On finite solvable groups with t(G)=4 or 5,? J. Fac. Sci., Univ. Tokyo, 13(2):189?199 (1966). · Zbl 0192.11801
[509] W. M. Kantor, ?4-homogeneous groups,? Math. Z., 103(1):67?68 (1968);Correction, 109(1):86 (1969). · Zbl 0189.02303 · doi:10.1007/BF01111290
[510] W. P. Kappe, ?E-Normen endlicher Gruppen,? Arch. Math., 19(3):256?264 (1968). · Zbl 0164.02104 · doi:10.1007/BF01899501
[511] W. P. Kappe, ?Properties of groups related to the second center,? Math. Z., 101(5):356?368 (1967). · Zbl 0149.27204 · doi:10.1007/BF01109801
[512] H. Karzel, ?Bericht über protective Inzidenzgruppen,? Jahresber. Dtsch. Math.-Ver., 67(2):58?92 (1964).
[513] Y. Kawada, ?On blocks of group algebras of finite groups,? Sci. Repts. Tokyo Kyoiku Daigaku, A9(209?213):87?110 (1966).
[514] O. H. Kegel, ?Eine Charakterisierung der Sylowgruppen endlicher Gruppen,? Rend. Semin. Mat. Univ. Padova, 36(1):122?128 (1966). · Zbl 0144.01503
[515] O. H. Kegel, ?On the solvability of some factorized linear groups,? Ill. J. Math., 9(3):535?547 (1965). · Zbl 0131.02602
[516] O. H. Kegel, ?Über den Normalisator von subnormalen und erreichbaren Untergruppen,? Math. Ann., 163(3):248?258 (1966). · Zbl 0135.04804 · doi:10.1007/BF02052288
[517] O. H. Kegel, ?Zur Struktur lokal endlicher Zassenhausgruppen,? Arch. Math., 18(4):337?348 (1967). · Zbl 0189.31103 · doi:10.1007/BF01898822
[518] O. H. Kegel, ?Zur Struktur mehrfach faktorisierter endlicher Gruppen,? Math. Z., 87(1):42?48 (1965). · Zbl 0123.02503 · doi:10.1007/BF01109929
[519] G. Keller, ?Concerning the degrees of irreducible characters,? Math. Z., 107(3):221?224 (1968). · Zbl 0186.32801 · doi:10.1007/BF01110260
[520] A. Kerber, ?Darstellungstheorie von Kranszprodukten,? Canad. J. Math., 20(3):665?672 (1969). · Zbl 0157.06501 · doi:10.4153/CJM-1968-064-6
[521] A. Kerber, ?Zur modularen Darstellungstheorie symmetrischer und alternierender Gruppen,? Mitt. Math. Semin., Giessen, No. 68 (1966). · Zbl 0139.25103
[522] H. Kimura, ?On doubly transitive permutation groups of degree n and order 4(n?1)n,? J. Math. Soc. Japan, 21(2):234?243 (1969). · Zbl 0179.04501 · doi:10.2969/jmsj/02120234
[523] J. D. King, ?A characterization of some doubly transitive groups,? Math. Z., 107(1):43?48 (1968). · Zbl 0164.02502 · doi:10.1007/BF01111046
[524] M. Kneser, ?Über die Ausnahme Isomorphismen zwischen endlichen klassischen Gruppen,? Abhandl. Math. Semin. Univ. Hamburg, 31(3?4):136?140 (1967). · Zbl 0246.20039 · doi:10.1007/BF02992391
[525] J. Knopfmacher, ?Extensions in varieties of groups and algebras,? Acta Math., 115(1?2):17?50 (1966). · Zbl 0144.01404 · doi:10.1007/BF02392201
[526] R. Kochendörffer, Lehrbuch der Gruppentheorie unter besonderer Berücksichtigung der endlichen Gruppen, Leipzig, Geest und Portig (1966), 375 pp. · Zbl 0136.28002
[527] J. Kohler, ?A note on solvable groups,? J. London Math. Soc., 43(2):235?236 (1968). · Zbl 0174.31002 · doi:10.1112/jlms/s1-43.1.235
[528] T. Kondo, ?On the alternating groups,? J. Fac. Sci. Univ., Tokyo, 15(1):87?97 II. J. Math. Soc. Japan 21(1): 116?139 (1969).
[529] L. G. Kovács, ?On finite soluble groups,? Math. Z., 103(1):37?39 (1968). · Zbl 0183.02804 · doi:10.1007/BF01111284
[530] L. G. Kovács and M. F. Newman, ?Cross varieties of groups,? Proc. Roy. Soc., A292(1431):530?536 (1966). · Zbl 0139.01601 · doi:10.1098/rspa.1966.0151
[531] L. G. Kovács and M. F. Newman, ?Minimal verbal subgroups,? Proc. Cambridge Philos. Soc., 62(3):347?350 (1966). · doi:10.1017/S0305004100039931
[532] L. G. Kovács and M. F. Newman, ?On critical groups,? J. Austral. Math. Soc., 6(2):237?250 (1966). · Zbl 0143.04001 · doi:10.1017/S144678870000481X
[533] L. G. Kovács and G. E. Wall, ?Involutory automorphisms of groups of odd order and their fixed point groups,? Nagoya Math. J., 27(1):113?120 (1966). · Zbl 0294.20024 · doi:10.1017/S0027763000011910
[534] Y. Kurata, ?A decomposition of normal subgroups in a group,? Osaka J. Math., 1(2):201?229 (1964). · Zbl 0129.01601
[535] H. Kurzweil, ?Auflösbare Gruppen, die eine abelsche Automorphismen-gruppe gestalten, deren Fixpunktgruppe nilpotent ist,? J. Algebra, 10(1):92?101 (1968). · Zbl 0159.30902 · doi:10.1016/0021-8693(68)90106-3
[536] W. B. Laffer and H. B. Mann, Decomposition of sets of group elements,? Pacif. J. Math., 14(2):547?558 (1964). · Zbl 0121.03202 · doi:10.2140/pjm.1964.14.547
[537] H. Lausch, ?Eine Charakterisierung nilpotenter Gruppen der Klasse 2,? Math. Z., 93(3):206?209 (1966). · Zbl 0144.01701 · doi:10.1007/BF01110932
[538] H. Lausch, ?Formations of ?-soluble groups,? J. Austral. Math. Soc., 10(1?2):241?250 (1969). · Zbl 0179.32301 · doi:10.1017/S1446788700007138
[539] H. Lausch, ?Zur Theorie der Polynompermutationen über endlichen Gruppen,? Arch. Math., 19(3):284?288 (1968). · Zbl 0164.02103 · doi:10.1007/BF01899504
[540] H. Lausch, W. Nöbauer, and F. Schweiger, ?Polynompermutationen auf Gruppen,? Monatsh. Math., 69(5):410?423 (1965); II, 70(2):118?126 (1966). · Zbl 0144.01604 · doi:10.1007/BF01299947
[541] H. Lausch and F. Schweiger, ?Characterization of groups by monomials,? J. Algebra, 6(1):115?122 (1967). · Zbl 0153.03301 · doi:10.1016/0021-8693(67)90017-8
[542] J. Leech, ?Generators for certain normal subgroups of (2, 3, 7),? Proc. Cambridge Philos. Soc., 61(2):321?332 (1965). · Zbl 0138.02202 · doi:10.1017/S0305004100003923
[543] J. Leech, ?Note on the abstract group (2, 3, 7; 9),? Proc. Cambridge Philos. Soc., 62(1):7?10 (1966). · doi:10.1017/S030500410003944X
[544] H. S. Leonard, ?A property of Sylow subgroups of finite groups,? Amer. Math. Monthly, 74(7):824?825 (1967). · Zbl 0189.02403 · doi:10.2307/2315804
[545] H. S. Leonard, ?On finite groups which contain a Frobenius factor group,? Ill. J. Math., 9(1):47?58 (1965).
[546] H. S. Leonard, ?On finite groups whose p-Sylow subgroup is a T. I. set,? Proc. Amer. Math. Soc., 19(3):667?670 (1968). · Zbl 0159.31101
[547] H. S. Leonard and K. K. McKelvey, ?On lifting characters in finite groups,? J. Algebra, 7(2):168?191 (1967). · Zbl 0189.32103 · doi:10.1016/0021-8693(67)90054-3
[548] H. Leptin, ?Einige Bemerkungen über die Automorphismen Abelscher p-Gruppen,? Proc Colloq. on Abelian Groups, Budapest, Hung. Acad. Sci., (1964), pp. 99?104.
[549] H. Liebeck, ?The automorphism group of finite p-groups,? J. Algebra, 4(3):426?432 (1966). · Zbl 0146.03902 · doi:10.1016/0021-8693(66)90032-9
[550] D. Livingstone, ?On a permutation representation of the Janko group,? J. Algebra, 6(1):43?55 (1967). · Zbl 0225.20001 · doi:10.1016/0021-8693(67)90012-9
[551] D. Livingstone and A. Wagner, ?Transitivity of finite permutation groups on unordered sets,? Math. Z., 90(5):393?403 (1965). · Zbl 0136.28101 · doi:10.1007/BF01112361
[552] P. J. Lorimer, ?A characterisation of the Moebius and similarity groups,? J. Austral. Math. Soc., 5(2):237?240 (1965). · Zbl 0135.06405 · doi:10.1017/S144678870002680X
[553] P. J. Morimer, ?A note on doubly transitive groups,? J. Austral. Math. Soc., 6(4):449?451 (1966). · Zbl 0143.26202 · doi:10.1017/S1446788700004900
[554] P. J. Lorimer, ?On S2-groups and groups of Moebius transformations,? Canad. J. Math., 20(2):484?485 (1968). · Zbl 0157.06101 · doi:10.4153/CJM-1968-046-8
[555] P. J. Lorimer, ?On the finite two dimensional linear groups,? J. Algebra, 10(4):419?435 (1968). · Zbl 0169.34304 · doi:10.1016/0021-8693(68)90070-7
[556] P. J. Lorimer, ?T2-groups and a characterization of the finite groups of Moebius transformations,? Canad. J. Math., 17(2):353?366 (1965). · Zbl 0154.26805 · doi:10.4153/CJM-1965-036-5
[557] P. J. Lorimer, ?The outer automorphisms of S6,? Amer. Math. Monthly, 78(6):642?643 (1966). · Zbl 0136.28201 · doi:10.2307/2314806
[558] B. Lou and D. S. Passman, ?Generalized Frobenius complements,? Proc. Amer. Math. Soc., 17(5):1166?1172 (1966). · Zbl 0264.20036 · doi:10.1090/S0002-9939-1966-0201505-9
[559] H. Lüneburg, ?Die Suzukigruppen und ihre Geometrien,? Lect. Notes Math., No. 10 (1965).
[560] H. Lüneburg, ?Some remarks concerning the Ree groups of type (G2),? J. Algebra, 3(2):256?259 (1966). · Zbl 0135.39401 · doi:10.1016/0021-8693(66)90014-7
[561] H. Lüneburg, ?Über die Gruppen von Mathieu,? J. Algebra, 10(2):194?210 (1968). · Zbl 0169.03501 · doi:10.1016/0021-8693(68)90095-1
[562] R. C. Lyndon, ?Dependence in groups,? Colloq. Math., Vol. 14 (1964), pp. 275?283. · Zbl 0141.02102
[563] I. D. Macdonald, The Theory of Groups, Vol. 8, Clarendon Press, (1968). · Zbl 0181.03501
[564] I. D. Macdonald, ?The variety of regular p-groups,? Arch. Math., 18(4):359?361 (1967). · Zbl 0153.03401 · doi:10.1007/BF01898825
[565] I. D. Macdonald and B. H. Neumann, ?A third-Enuel 5-group,? J. Austral. Math. Soc., 7(4):555?569 (1967). · Zbl 0163.02502 · doi:10.1017/S144678870000450X
[566] L. A. Machtinger, ?Multiple transitivity of primitive permutation groups,? Proc. Amer. Math. Soc., 16(1):168?172 (1965). · Zbl 0127.01304 · doi:10.1090/S0002-9939-1965-0170934-3
[567] A. Mader, ?A note direct and semi-direct products of groups,? Math. Z., 95(4):272?275 (1967). · Zbl 0145.02403 · doi:10.1007/BF01111079
[568] W. Magnus, A. Karras, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and relations, No. XII, New York (1966), 444 pp.
[569] J. J. Malone, Jr., ?Uses of Sylow theory,? Math. Gazette, 51(375):11?14 (1967). · Zbl 0146.03801 · doi:10.2307/3613603
[570] R. Mangold, ?Beiträge zur Theorie der Darstellungen endlicher Gruppen durch Kollineationen,? Mitt. Math. Semin., Giessen, No. 69 (1966), 44 pp. · Zbl 0136.28702
[571] A. Mann, ?A criterion for pronormaliiy,? J. London Math. Soc., 44(1):175?176 (1969). · Zbl 0165.34003 · doi:10.1112/jlms/s1-44.1.175
[572] A. Mann, ?On F-normalizers and F-covering subgroups,? Proc. Amer. Math. Soc., 19(5):1159?1160 (1968). · Zbl 0167.02303
[573] A. Mann, ?On subgroups of finite solvable groups,? Proc. Amer. Math. Soc., 22(1):214?216 (1969). · Zbl 0185.06004 · doi:10.1090/S0002-9939-1969-0241539-4
[574] A. Mann, ?Simple groups having p-nilpotent 2nd-maximal subgroups,? Israel J. Math., 6(3):233?245 (1968). · Zbl 0175.30102 · doi:10.1007/BF02760256
[575] N. B. Mann and J. E. Olson, ?Sums of sets in the elementary Abelian group of type (p, p),? J. Combin. Theory, 2(3):275?284 (1967). · Zbl 0168.01501 · doi:10.1016/S0021-9800(67)80028-0
[576] D. E. Mansfield and M. Bruckheimer, Background to Set and Group Theory, including Applications in the Teaching of Mathematics, Chatto and Windus, London (1965).
[577] E. V. Martin and W. A. McWorter, Jr., ?Finite sequences of group elements and their relation to the existence order and index of subgroups,? Ill. J. Math., 11(4):660?662 (1967). · Zbl 0178.01903
[578] I. Gy. Maurer and I. Virág, ?Note on Cayley’s grouptheoretical theorem,? Ann. Univ. Scient. Budapest Sec. Math., No. 10, pp. 55?56 (1967).
[579] W. D. Maurer and J. L. Rhodes, ?A property of finite simple nonabelian groups,? Proc. Amer. Math. Soc., 16(3):552?554 (1965). · Zbl 0132.26903 · doi:10.1090/S0002-9939-1965-0175971-0
[580] F. Maurin, ?Sur certains groupes de substitutions entrainant l’existence de tableaux Orthogonaux,? C. R. Acad. Sci., 260(1):52?55 (1965). · Zbl 0168.01602
[581] R. McHaffey, ?Isomorphism of finite abelian groups,? Amer. Math. Monthly, 72(1):48?50 (1965). · Zbl 0127.25601 · doi:10.2307/2313001
[582] J. McLaughlin, ?Some groups generated by transvections,? Arch. Math., 18(4):364?368 (1967). · Zbl 0232.20084 · doi:10.1007/BF01898827
[583] J. McLaughlin, ?Some subgroups of SLn(F2),? Ill. J. Math., 13(1):108?115 (1969).
[584] D. L. McQuillan, ?Some results on the linear fractional group,? Ill. J. Math., 10(1):24?38 (1966). · Zbl 0134.03103
[585] J. D. P. Meldrum, ?On central series of a group,? J. Algebra, 6(3):281?284 (1967). · Zbl 0147.27001 · doi:10.1016/0021-8693(67)90083-X
[586] R. A. Melter, ?A note on representations of abstract groups as groups of motions,? Math. Mag., 37(5):330?331 (1964). · Zbl 0135.05801 · doi:10.2307/2689248
[587] J. L. Mennicke, ?Finite factor groups of the unimodular group,? Ann. Math., 81(1):31?37 (1965). · Zbl 0135.06504 · doi:10.2307/1970380
[588] F. Migliorini, ?Rappresentanti di laterali e supplementi in un gruppo finite,? Matematiche, 21(1):11?17 (1966). · Zbl 0146.03702
[589] F. Migliorini, ?Sopra certi sottogruppi generati da elementi periodici,? Matematiche, 22(2):333?339 1967 (1968) · Zbl 0179.04404
[590] F. Migliorini and J. Szép, ?Sulle ?-partizioni di gruppi finiti,? Rend. Ist. Lombardo Acad. Sci.e Lettere, A102(3):401?409 (1968).
[591] S. Montague and G. Thomas, ?A condition for a finite group to be nilpotent. Proc. Amer. Math. Soc., 17(5):1205?1206 (1966). · Zbl 0144.01603 · doi:10.1090/S0002-9939-1966-0197566-6
[592] S. Moran, ?The product of powers in a finite p-group,? Arch. Math., 17(2):112?120 (1966). · Zbl 0144.26402 · doi:10.1007/BF01899856
[593] M. Moriya, ?On the automorphisms of a certain class of finite rings,? Bull. Tokyo Inst. Technol., No. 76 (1966), pp. 1?4. · Zbl 0147.29003
[594] A. O. Morris, ?The multiplication of Hall functions,? Proc. London Math. Soc., 13(52):733?742 (1963). · Zbl 0125.01701 · doi:10.1112/plms/s3-13.1.733
[595] K. H. Müller, ?Schwachnormale Untergruppen: eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen,? Rend. Semin. Mat. Univ. Padova, 36(1):129?157 (1966). · Zbl 0139.24901
[596] K. Murasugi, ?The center of a group with a single defining relation,? Math. Ann., 155(3):246?251 (1964). · Zbl 0119.02601 · doi:10.1007/BF01344162
[597] H. Nagao, ?A proof of Brauer’s theorem on generalized decomposition numbers,? Nagoya Math. J., Vol. 22, June (1963), pp. 73?77. · Zbl 0127.25602 · doi:10.1017/S0027763000011041
[598] H. Nagao, ?On a theorem of Wielandt,? Proc. Japan Acad., 40(10):793?794 (1964). · Zbl 0135.05204 · doi:10.3792/pja/1195522565
[599] H. Nagao, ?On multiply transitive groups. I,? Nagoya Math. J., 27(1):15?19 (1966). · Zbl 0143.04302 · doi:10.1017/S0027763000011818
[600] H. Nagao and T. Oyama, ?On multiply transitive groups. II,? Osaka J. Math., 2(1):129?136 (1965); III, 2(2):319?326 (1965) · Zbl 0199.06003
[601] K. Nakamura, ?Über einige Beispiele der Quasinormalteiler einer p-Gruppe,? Nagoya Math. J., Vol. 31 January (1968), pp. 97?103. · Zbl 0179.32502 · doi:10.1017/S002776300001268X
[602] K. Nakamura, ?Über den Quasinormalteiler der regulären p-Gruppe von der Klasse 2,? Nagoya Math. J., Vol. 26 (1966), pp. 61?67. · Zbl 0163.02604 · doi:10.1017/S0027763000011636
[603] K. Nakamura, ?Über Permutationsgruppen vom Grad 2 p,? Math. Z., 94(4):307?308 (1966). · Zbl 0154.26602 · doi:10.1007/BF01111457
[604] M. Nakanishi, ?On a kind of connectivity in finite groups,? Sci. Repts. Tokyo Kyoiku Daigaku, A9(214?219):158?162 (1967).
[605] F. Napolitani, ?Elementi U-quasi distributivi ed u. c. r.-elementi del reticolo dei sottogruppi di un gruppo finite,? Ricerche Mat., 17(1):95?108 (1968). · Zbl 0195.31802
[606] F. Napolitani, ?Proprieta reticolari dell’insieme dei sottogruppi subnormali,? Rend. Semin. Mat. Univ. Padova, Vol. 38 (1967), pp. 293?294. · Zbl 0203.02502
[607] F. Napolitani, ?Sui gruppi risolubili complementati,? Rend. Semin. Mat. Univ. Padova, Vol. 38 (1967), pp. 118?120. · Zbl 0183.02702
[608] F. Napolitani, ?Sui p-gruppi modulari finiti,? Rend. Semin. Mat. Univ. Padova, Vol. 39, 1967 (1968). pp. 296?303. · Zbl 0169.03404
[609] B. H. Neumann, ?Varieties of groups,? Bull. Amer. Math. Soc., 73(5):603?613 (1967). · Zbl 0149.26704 · doi:10.1090/S0002-9904-1967-11795-6
[610] B. H. Neumann and S. Yamamuro, ?Boolean powers of simple groups,? J. Austral. Math. Soc., 5(3):315?324 (1965). · Zbl 0132.26901 · doi:10.1017/S1446788700027749
[611] H. Neumann, ?Note on a theorem by Gaschütz,? J. Reine und Angew Math., 212(1?2):109?112 (1963).
[612] H. Neumann, Varieties of Groups, Berlin (1967). · Zbl 0149.26704
[613] P. M. Neumann, C. C. Sims, and J. Wiegold, ?Counterexamples to a theorem of Cauchy,? J. London Math. Soc., 43(2):234 (1968). · Zbl 0155.05101 · doi:10.1112/jlms/s1-43.1.234
[614] M. Newman, ?A bound for the number of conjugacy classes in a group,? J. London Math. Soc., 43(1):108?110 (1968). · Zbl 0157.35403 · doi:10.1112/jlms/s1-43.1.108
[615] J.-L. Nicolas, ?Sur l’ordre maximum d’un element dans le groupe Sn des permutations,? Acta Arithm., 14(3):315?332 (1968).
[616] W. Nöbauer, ?Mehrdimensionale Polynompermutationen auf endlichen Gruppen,? Monatsh. Math., 71(2):148?155 (1967). · Zbl 0146.03604 · doi:10.1007/BF01298467
[617] R. Noda, ?A note on multiply transitive groups,? Osaka J. Math., 4(2):261?263 (1967). · Zbl 0178.02001
[618] R. Noda, ?On 6-fold transitive groups,? Osaka J. Math., 4(2):257?260 (1967). · Zbl 0178.01905
[619] R. Noda and T. Oyama, On multiply transitive groups. VI,? J. Algebra, 11(1):145?154 (1969). · Zbl 0164.33804 · doi:10.1016/0021-8693(69)90106-9
[620] C. W. Norman, ?A characterization of the Mathieu group M11,? Math. Z., 106(3):162?166 (1968). · Zbl 0164.33101 · doi:10.1007/BF01110124
[621] DeWayne S. Nymann, ?Dedekind groups,? Pacif. J. Math., 21(1):153?159 (1967). · Zbl 0152.00103 · doi:10.2140/pjm.1967.21.153
[622] H. Onishi, ?Commutator extensions of finite groups,? Mich. Math. J., 13(1):119?126 (1966). · Zbl 0166.28804 · doi:10.1307/mmj/1028999487
[623] M. Osima, ?On a theorem of Brauer,? Proc. Japan Acad., 40(10):795?798 (1964). · Zbl 0136.28703 · doi:10.3792/pja/1195522566
[624] M. Osima, ?On block idempotents of modular group rings,? Nagoya Math. J., 27(2):429?433 (1966). · Zbl 0139.25202 · doi:10.1017/S0027763000026283
[625] M. Osima, ?On the generalized decomposition numbers of the symmetric group,? J. Math. Soc. Japan, 20(1?2):289?296 (1968). · Zbl 0182.35103 · doi:10.2969/jmsj/02010289
[626] A. D. Otto, ?Central automorphisms of a finite p-group,? Trans. Amer. Math. Soc., 125(2):280?287 (1966). · Zbl 0158.02704
[627] T. Oyama, ?On multiply transitive groups. VII,? Osaka J. Math., 5(2):155?169 (1968). · Zbl 0174.05003
[628] T. Oyama, ?On the groups with the same table of characters as alternating groups,? Osaka J. Math., 1(1):91?101 (1964). · Zbl 0139.01902
[629] H. Pahlings, ?Beiträge zur Theorie der projektiven Darstellungen endlicher Gruppen,? Mitt. Math. Semin., Giessen, No. 77 (1968), 61 pp. · Zbl 0157.06302
[630] M. Parker, ?Représentation de tout groupe comme groupe d’automorphismes d’une relation,? Bull. Cl. Sci. Acad. Roy. Belg., 50(11):1227?1233 (1964). · Zbl 0138.02201
[631] D. S. Passman, ?A note on the action of p-groups on abelian groups,? Proc. Amer. Math. Soc., 17(4):915?921 (1966). · Zbl 0147.27203
[632] D. S. Passman, ?Character kernels of discrete groups,? Proc. Amer. Math. Soc., 17(2):487?492 (1966). · Zbl 0145.03101 · doi:10.1090/S0002-9939-1966-0191974-5
[633] D. S. Passman, ?Groups whose irreducible representations have degrees dividing p2,? Pacif. J. Math., 17(3):475?496 (1966). · Zbl 0145.03005 · doi:10.2140/pjm.1966.17.475
[634] D. S. Passman, ?Groups with normal, solvable Hall p’-subgroups,? Trans. Amer. Math. Soc., 123(1):99?111 (1966). · Zbl 0139.01801
[635] D. S. Passman, ?Isomorphic groups and group rings,? Pacif. J. Math., 15(2):561?583 (1965). · Zbl 0171.28603 · doi:10.2140/pjm.1965.15.561
[636] D. S. Passman, ?p-solvable doubly transitive permutation groups,? Pacif. J. Math., 26(3):555?577 (1968). · Zbl 0164.33805 · doi:10.2140/pjm.1968.26.555
[637] D. S. Passman, ?Solvable half-transitive automorphism groups,? J. Algebra, 6(3):285?304 (1967). · Zbl 0244.20030 · doi:10.1016/0021-8693(67)90084-1
[638] D. S. Passman, ?Solvable 3/2-transitive permutation groups,? J. Algebra, 7(2):192?207 (1967). · Zbl 0244.20005 · doi:10.1016/0021-8693(67)90055-5
[639] D. S. Passman, ?Some 5/2 transitive permutation groups,? Pacif. J. Math., 28(1):157?171 (1969). · Zbl 0172.02802 · doi:10.2140/pjm.1969.28.157
[640] G. Pazderski, ?Über Kronecker-Potenzen von Darstellungen,? Math. Ann., 166(1):56?59 (1966). · Zbl 0143.04402 · doi:10.1007/BF01361437
[641] G. Pazderski, ?Zur Charakterisierung zs-metazyklischer Gruppen,? Ann. Univ. Scient. Budapest. Sec. Math., Vol. 9 (1966), pp. 19?21. · Zbl 0192.11702
[642] T. A. Peng, ?Finite soluble groups with an Engel condition,? J. Algebra, 11(3):319?330 (1969). · Zbl 0167.29202 · doi:10.1016/0021-8693(69)90060-X
[643] T. A. Peng, ?Normalizers of pro-normal subgroups,? Math. Z., 93(4):294?298 (1966). · Zbl 0166.28902 · doi:10.1007/BF01111940
[644] R. Permutti, ?Caratterizzazione dei gruppi finiti a fattoriali divisibili,? Ricerche Mat., 13(1):30?38 (1964). · Zbl 0168.27201
[645] R. Permutti, ?Distributività nel reticolo dei sottogruppi normali di un T-gruppo,? Matematiche, 20(1):46?63 (1965). · Zbl 0135.04904
[646] Kok-Wee Phan, ?A characterization of the finite simple group L4 (3),? J. Austral. Math. Soc., 10(1?2):51?76 (1969). · Zbl 0198.04504 · doi:10.1017/S144678870000690X
[647] Kok-Wee Phan, ?A characterization of the finite simple group U4 (3),? J. Austral Math. Soc., 10(1?2):77?94 (1969). · Zbl 0198.04601 · doi:10.1017/S1446788700006911
[648] G. Pic, ?Kriterien für das Zerfallen von Gruppen über Subnormalteilern,? Math. Z., 83(1):27?28 (1964). · Zbl 0116.01704 · doi:10.1007/BF01111103
[649] G. Pic, ?Sur les groupes finis p-nilpotents,? An. Stiint Univ. Iasi, Sec. 1a, 11b, (1965), pp. 55?65.
[650] G. Pic, ?Sur un théoreme de la théorie des nombres et ses applications a la théorie des treillis et des groupes,? Studia Univ. Babes-Bolyai, Ser. Math. Phys., 11(2):21?30 (1966).
[651] G. Pic, ?Sur un theoreme de VI. Dlab,? Czech. Math. J., 16(4):545?551 (1966).
[652] D. H. Pilgrim, ?Engel conditions on groups,? Proc. Iowa Acad. Sci., Vol. 71., Des Moines, Iowa, (1965), pp. 377?383.
[653] F. C. Piper, ?On elations of finite projective spaces of even order,? J. London Math. Soc., 43(3):459?464 (1968). · Zbl 0164.20802 · doi:10.1112/jlms/s1-43.1.459
[654] J. Poland, ?Finite groups with a given number of conjugate classes,? Canad. J. Math., 20(2):456?464 (1968). · Zbl 0167.29102 · doi:10.4153/CJM-1968-042-9
[655] J. Poland, ?Two problems on finite groups with k conjugate classes,? J. Austral. Math. Soc., 8(1):49?55 (1968). · Zbl 0167.29103 · doi:10.1017/S1446788700004596
[656] A. D. Polimeni, ?Finite solvable c-groups,? J. Austral. Math. Soc., 7(2):172?176 (1967). · Zbl 0147.27202 · doi:10.1017/S1446788700005553
[657] P. van Praag, ?Une question de transitivité dans les groups classiques,? Bull Cl. Sci. Acad. Roy. Belg., 49(9):901?915 (1963). · Zbl 0123.02802
[658] M. J. Prentice, ?X-normalizers andX-covering subgroups,? Proc. Cambridge Phil. Soc., 66(2):215?230 (1969). · Zbl 0204.34702 · doi:10.1017/S0305004100044893
[659] L. Prohaska, ?Über die Existenz normaler Komplemente zu gewissen Halgruppen,? Acta Scient. Math., 26(1?2):159?162 (1965). · Zbl 0134.03003
[660] L. Prohaska, ?Über die Existenz einer invarianten Hallgruppe,? Wiss. Z. Univ. Rostock. Math.-Naturwiss. Reine, 14(3?4):435?436 (1965). · Zbl 0138.25902
[661] B. M. Puttaswamaian and G. B. de Robinson, ?Induced representation and alternating groups,? Canad. J. Math., 16(3):587?601 (1964). · Zbl 0245.20011 · doi:10.4153/CJM-1964-060-5
[662] L. Rédei, ?Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós,? Acta Math. Acad. Scient. Hung., 16(3?4):329?373 (1965); Berichtigung. Acta Math. Acad. Scient. Hung. 17(3?4):461 (1966). · Zbl 0138.26001 · doi:10.1007/BF01904843
[663] L. Rédei, ?Ein überdeckungssatz für endliche abelsche Gruppen im Zusammenhang mit dem Hauptsatz von Hajós,? Acta Scient. Math., 26(1?2):55?61 (1965).
[664] L. Rédei, ?Logische Dualitäat der Frebenius-Stickelbergersehen und Hajósschen Hauptsätze der Theorie der endlichen abelschen Gruppen,? Acta Math. Acad. Scient. Hung., 16(3?4):327 (1965). · Zbl 0138.25903 · doi:10.1007/BF01904842
[665] R. Ree, ?Sur une famille de groups de permutations doublement transitifs,? Canad. J. Math., 16(4):797?820 (1964). · Zbl 0126.05301 · doi:10.4153/CJM-1964-077-2
[666] I. Reiner, ?On the number of irreducible modular representations of a finite group,? Proc. Amer. Math. Soc., 15(5):810?812 (1964). · Zbl 0126.05703 · doi:10.1090/S0002-9939-1964-0168665-8
[667] W. F. Reynolds, ?A generalization of Brauer characters,? Trans. Amer. Math. Soc., 119(2):333?351 (1965). · Zbl 0134.03105 · doi:10.1090/S0002-9947-1965-0181672-X
[668] W. F. Reynolds, ?Block idempotents and normal p-subgroups,? Nagoya Math. J., Vol. 28, 1?13 (1966). · Zbl 0147.27301 · doi:10.1017/S0027763000023886
[669] W. F. Reynolds, ?Isometrics and principal blocks of group characters,? Math. Z., 107(4):264?270 (1968). · Zbl 0174.05402 · doi:10.1007/BF01110015
[670] W. F. Reynolds, ?Projective representations of finite groups in cyclotomic fields,? Ill. J. Math., 9(2):191?198 (1965). · Zbl 0134.03201
[671] W. F. Reynolds, ?Sections, isometries and generalized group characters,? J. Algebra, 7(3):394?405 (1967). · Zbl 0189.32102 · doi:10.1016/0021-8693(67)90079-8
[672] P. Ribenboim, ?Linear representations of groups,? Textos Mat. Inst. Fis.e Mat. Univ. Fed. Pernambuco, No. 16, (1967), 305 pp.
[673] M. A. Rieffel, ?A characterization of the group algebras of finite groups,? Pacif. J. Math., 16(2):347?362 (1966). · Zbl 0142.26103 · doi:10.2140/pjm.1966.16.347
[674] D. J. S. Robinson, ?A note on finite groups in which normality is transitive,? Proc. Amer. Math. Soc., 19(4):933?937 (1968). · Zbl 0159.31002 · doi:10.1090/S0002-9939-1968-0230808-9
[675] G. B. de Robinson, ?Geometry of group representations,? Nagoya Math. J., 27(2):509?513 (1966). · Zbl 0145.03004 · doi:10.1017/S0027763000026337
[676] G. B. de Robinson, ?Note on a theorem of Livingstone and Wagner,? Math. Z., 102(5):351?352 (1967). · Zbl 0149.27102 · doi:10.1007/BF01111072
[677] K. W. Roggenkamp, ?Darstellungen endlicher Gruppen in Polynombereichen,? Mitt. Math. Semin., Giessen, No. 71, (1967). · Zbl 0157.36401
[678] L. A. Rosati, ?Sui p-gruppi i cui sottogruppi sono privi de sottogruppi quasinormali propri,? Matematiche, 19(1):19?23 (1964). · Zbl 0152.00503
[679] L. A. Rosati, ?Sulle S-partizioni nei gruppi non abeliani d’ordine pq,? Rend. Semin. Mat. Univ. Padova, Vol. 38, 108?117 (1967). · Zbl 0168.27102
[680] J. S. Rose, ?Abnormal depth and hypereccentric length in finite soluble groups,? Math. Z., 90(1):29?40 (1965). · Zbl 0131.02403 · doi:10.1007/BF01112050
[681] J. S. Rose, ?Finite groups with prescribed Sylow tower subgroups,? Proc. London Math. Soc., 16(4):577?589 (1966). · Zbl 0144.26103 · doi:10.1112/plms/s3-16.1.577
[682] J. S. Rose, ?Finite soluble groups with pronormal system normalizers,? Proc. London Math. Soc., 17(3):447?469 (1967). · Zbl 0153.03602 · doi:10.1112/plms/s3-17.3.447
[683] J. S. Rose, ?Nilpotent subgroups of finite soluble groups,? Math. Z., 106(2):97?112 (1968). · Zbl 0169.03402 · doi:10.1007/BF01110717
[684] J. S. Rose, ?On a splitting theorem of Gaschiitz,? Proc. Edinburg. Math. Soc., 15(1):57?60 (1966). · Zbl 0144.26102 · doi:10.1017/S0013091500013353
[685] J. E. Roseblade, ?The permutability of orthogonal subnormal subgroups,? Math. Z., 90(5):365?372 (1965). · Zbl 0131.02203 · doi:10.1007/BF01112355
[686] O. Rothaus and J. G. Thompson, ?A combinatorial problem in the symmetric group,? Pacif. J. Math., 18(1):175?178 (1966). · Zbl 0145.02905 · doi:10.2140/pjm.1966.18.175
[687] B. Rothschild, ?Degrees of irreducible modular characters of blocks with cyclic defect groups,? Bull. Amer. Math. Soc., 73(1):102?104 (1967). · Zbl 0157.36203 · doi:10.1090/S0002-9904-1967-11663-X
[688] J. J. Rotman, The Theory of Groups, Vol. 13, Allyh and Bacon (1965). · Zbl 0123.02001
[689] P. Rudra, ?On projective representations of finite groups,? J. Math. Phys., 6(8):1273?1277 (1965). · Zbl 0135.05603 · doi:10.1063/1.1704770
[690] Chih-han Sah, ?Automorphisms of finite groups,? J. Algebra, 10(1):47?68 (1968). · Zbl 0159.31001 · doi:10.1016/0021-8693(68)90104-X
[691] P. R. Sanders, ?The central automorphisms of a finite group,? J. London Math. Soc., 44(2):225?228 (1969). · Zbl 0169.34004 · doi:10.1112/jlms/s1-44.1.225
[692] R. Sandier, ?On finite collineation groups of F5,? Canad. J. Math., 21(1):217?221 (1969). · Zbl 0167.18804 · doi:10.4153/CJM-1969-021-4
[693] E. V. Schenkman, Group Theory, Vol. 14, Princeton, (1965).
[694] E. V. Schenkman, ?The tower theorem for finite groups,? Proc. Amer. Math. Soc., 22(2):458?459 (1969). · Zbl 0177.03802 · doi:10.1090/S0002-9939-1969-0245661-8
[695] L. Schiefelbusch, ?The Trofimov number of some infinite groups with finiteness conditions,? Arch. Math., 18(2):122?127 (1967). · Zbl 0152.00202 · doi:10.1007/BF01899636
[696] R. Schmidt, ?Eine verbandstheoretische Charakterisierung der auflösbren und überauflösbaren endlichen Gruppen,? Arch. Math., 19(5):449?452 (1968). · Zbl 0169.34103 · doi:10.1007/BF01898763
[697] R. Schmidt, ?Modulare Untergruppen endlicher Gruppen,? Ill. J. Math., 13(2):358?377 (1969). · Zbl 0169.34102
[698] R. Schmidt, ?Verbandshomomorphismen endlicher Gruppen,? Rend. Semin. Mat. Univ. Padova, No. 38, 331?357 (1967). · Zbl 0157.35402
[699] U. Schoenwaelder, ?Normale komplemente zu nilpotenten Hall-Untergruppen,? Arch. Math., 19(4):361?377 (1968). · Zbl 0164.02004 · doi:10.1007/BF01898416
[700] H. Schnuk, ??-Untergruppen in endlichen auflösbaren Gruppen,? Math. Z., 97(4):326?330 (1967). · Zbl 0158.02802 · doi:10.1007/BF01112173
[701] W. Schwarz, ?Über die Anzahl Abelscher Gruppen gegebener Ordnung,? I. Math. Z., 92(4):314?320 (1966). · Zbl 0136.28901 · doi:10.1007/BF01112199
[702] B. Scimemi, ?Finite groups admitting a fixed-point-free automorphism,? J. Algebra, 10(2):125?133 (1968). · Zbl 0185.06001 · doi:10.1016/0021-8693(68)90089-6
[703] B. Scimemi, ?Gruppi finite dotati di automorphismi di ordine pq privi di coincidenze,? Rend. Semin. Mat. Univ. Padova, Vol. 38, 174?179 (1967).
[704] W. R. Scott, Group Theory, Prentice-Hall (1964).
[705] W. R. Scott and F. Gross, ?Solvable products of groups,? J. Algebra, 9(4):414?416 (1968). · Zbl 0159.03003 · doi:10.1016/0021-8693(68)90013-6
[706] T. Scruton, ?Bounds for the class of nilpotent wreath products,? Proc. Cambridge Philos. Soc., 62(2):165?169 (1966). · doi:10.1017/S0305004100039694
[707] S. K. Sehgal, ?A characterization of groups having property P,? Ill. J. Math., 11(2):297?299 (1967). · Zbl 0163.02504
[708] S. K. Sehgal and W. A. McWorter, Jr., ?Normal complements of Carter subgroups,? Ill. J. Math., 12(3):510?512 (1968). · Zbl 0157.05701
[709] G. M. Scitz, ?M-groups and the supersolvable residual,? Math. Z., 110(2):101?122 (1969). · Zbl 0214.04303 · doi:10.1007/BF01124976
[710] J. Shamash, ?On the Carter subgroup of a solvable group,? Math. Z., 109(4):188?310 (1969). · Zbl 0186.32201 · doi:10.1007/BF01110120
[711] J. Shamash and E. Shult, ?On groups with cyclic Carter subgroups,? J. Algebra, 11(4):564?597 (1969). · Zbl 0203.32604 · doi:10.1016/0021-8693(69)90092-1
[712] E. E. Shult, ?A note on splitting in solvable groups,? Proc. Amer. Math. Soc., 17(2):318?320 (1966). · Zbl 0142.26002 · doi:10.1090/S0002-9939-1966-0207843-8
[713] E. E. Shult, ?Nilpotence of the commutator subgroup in groups admitting fixed point free operator groups,? Pacific. J. Math., 17(2):323?347 (1966). · Zbl 0136.28601 · doi:10.2140/pjm.1966.17.323
[714] E. E. Shult, ?On groups admitting fixed point free Abelian operator groups,? Ill. J. Math., 9(4):701?720 (1965). · Zbl 0136.28504
[715] E. E. Shult, ?Some analogues of Glauberman’s Z*-theorem,? Proc. Amer. Math. Soc., 17(5):1186?1190 (1966). · Zbl 0145.02803
[716] E. E. Shult, ?The solution of Boen’s problem,? Bull. Amer. Math. Soc., Vol. 74, 268?270 (1968). · Zbl 0164.01904 · doi:10.1090/S0002-9904-1968-11915-9
[717] H. Simon, ?Finite solvable groups containing maximal nilpotent subgroups,? J. Algebra, 10(4):389?399 (1968). · Zbl 0185.06003 · doi:10.1016/0021-8693(68)90067-7
[718] H. Simon, ?On a class of solvable groups of even order,? J. Algebra, 9(2):165?175 (1968). · Zbl 0169.34202 · doi:10.1016/0021-8693(68)90042-2
[719] C. C. Sims, ?Graphs and finite permutation groups,? Math. Z., 95(1):76?86 (1967). · Zbl 0244.20001 · doi:10.1007/BF01117534
[720] E. Snapper, ?Normal subsets of finite groups,? Ill. J. Math., 13(1):155?164 (1969). · Zbl 0164.33901
[721] D. Soda, ?On a theorem of Manning,? Math. Z., 94(5):326?327 (1966). · Zbl 0143.26201 · doi:10.1007/BF01111664
[722] L. Solomon, ?The Burnside algebra of a finite group,? J. Combin. Theory, 2(4):603?615 (1967). · Zbl 0183.03601 · doi:10.1016/S0021-9800(67)80064-4
[723] L. Solomon, ?The orders of the finite Chevalley groups,? J. Algebra, 3(3):376?393 (1966). · Zbl 0151.02003 · doi:10.1016/0021-8693(66)90007-X
[724] A. E. Spencer, ?Maximal nonnormal chains in finite groups,? Pacif. J. Math., 27(1):167?173 (1968). · Zbl 0164.34001 · doi:10.2140/pjm.1968.27.167
[725] E. L. Spitznagel, ?Hall subgroups of certain families of finite groups,? Math. Z., 97(4):259?290 (1967). · Zbl 0183.03104 · doi:10.1007/BF01112169
[726] B. Srinivasan, ?A note on blocks of modular representations,? Proc. Cambridge Philos. Soc., 60(2):179?182 (1964). · Zbl 0126.05702 · doi:10.1017/S0305004100037634
[727] A. G. R. Stewart, ?On the class of certain nilpotent groups,? Proc. Roy. Soc., A292(1430) 374?379 (1966). · Zbl 0139.01705 · doi:10.1098/rspa.1966.0140
[728] S. E. Stonehewer, ?Formations and a class of locally soluble groups,? Proc. Cambridge Philos. Soc., 62(4):613?635 (1966). · Zbl 0145.02503 · doi:10.1017/S0305004100040275
[729] W. Sudbrock, ?Sylowfunktionen in endlichen Gruppen,? Rend. Semin., Mat. Univ. Padova, 36(1):158?184 (1966). · Zbl 0139.25001
[730] M. Suzuki, ?A characterization of the 3-dimensional projective unitary group over a finite field of odd characteristic,? J. Algebra, 2(1):1?14 (1965). · Zbl 0134.03102 · doi:10.1016/0021-8693(65)90021-9
[731] M. Suzuki, ?A characterization of the simple groups PSL (2, q),? J. Math. Soc. Japan, 20(1?2):342?349 (1968). · Zbl 0175.30204 · doi:10.2969/jmsj/02010342
[732] M. Suzuki, ?Finite groups in which the centralizer of any element of order 2 is 2-closed,? Ann. Math., 82(2):191?212 (1965). · Zbl 0132.01704 · doi:10.2307/1970569
[733] M. Suzuki, ?On characterizations of linear groups. IV,? J. Algebra, 9(2):223?247 (1968). · Zbl 0239.20055 · doi:10.1016/0021-8693(68)90046-X
[734] M. Suzuki, ?Transitive extensions of a class of doubly transitive groups,? Nagoya Math. J., 27(1):159?169 (1966). · Zbl 0146.03803 · doi:10.1017/S002776300001196X
[735] J. Szép, ?Sui gruppi fattorizzabili,? Rend. Semin. Mat.e Fis. Milano, Vol. 38, 228?230 (1968). · Zbl 0187.29202 · doi:10.1007/BF02924492
[736] J. Szép and G. Zappa, ?Sui gruppi trifattorizzabili,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur., 45(3?4):113?116 1968 (1969).
[737] E. J. Taft, ?Orthogonal conjugates in finite groups,? Math. Ann., 170(1):37?40 (1967). · Zbl 0144.01703 · doi:10.1007/BF01362284
[738] K. Takeuchi, ?On Frattini subgroups,? TRU Math., 4, 10?13 (1968).
[739] O. Tamaschke, ?A generalization of conjugacy in groups,? Rend. Semin. Mat. Univ. Padova, Vol. 40, 408?427 (1968). · Zbl 0174.04803
[740] O. Tamaschke, ?A generalization of normal subgroups,? J. Algebra, 11(3):338?352 (1969). · Zbl 0165.03902 · doi:10.1016/0021-8693(69)90062-3
[741] O. Tamaschke, ?A generalization of subnormal subgroups,? Arch. Math., 19(4):337?347 (1968). · Zbl 0165.33901 · doi:10.1007/BF01898413
[742] O. Tamaschke, ?An extension of group theory to S-semigroups,? Math. Z., 104(1):74?90 (1968). · Zbl 0155.04702 · doi:10.1007/BF01114920
[743] Gabriella Tani Corsi, ?Sui gruppi finiti in cui ogni sottogruppo subnormale proprio è a sottogruppo di Frattini identico,? Matematiche, 21(1):131?134 (1966). · Zbl 0152.00403
[744] Gabriella Tani Corsi, ?Cui centralizzanti dei sottogruppi normali abeliani dei 2-gruppi,? Matematiche, 20(2):137?141 (1965). · Zbl 0134.26302
[745] Gabriella Tani Corsi, ?Automorfismi dei 2-gruppi finiti che lasclano fissi glielementi di un sottogruppo abeliano elementare massimo,? Matematiche, 23(1):166?179 (1968). · Zbl 0185.06002
[746] J. G. Thompson, ?An example of core-free quasinormal subgroups of p-groups,? Math. Z., 96(2):226?227 (1967). · Zbl 0189.31702 · doi:10.1007/BF01124081
[747] J. G. Thompson, ?Centralizers of elements in p-groups,? Math. Z., 96(4):292?293 (1967). · Zbl 0152.00504 · doi:10.1007/BF01123657
[748] J. G. Thompson, ?Characterizations of finite simple groups,? Proc. Internat. Congr. Mathematicians (Moscow, 1966) [in Russian], Mir, Moscow (1968), pp. 158?162.
[749] J. G. Thompson, ?Defect groups are Sylow intersections,? Math. Z., 100(2):146 (1967). · Zbl 0178.01904 · doi:10.1007/BF01110791
[750] J. G. Thompson, ?Envelopes and p-signalizers of finite groups,? Ill. J. Math., 13(1):87?90 (1969). · Zbl 0179.04602
[751] J. G. Thompson, ?Factorizations of p-solvable groups,? Pacif. J. Math., No. 2, 371?372 (1966). · Zbl 0136.28502 · doi:10.2140/pjm.1966.16.371
[752] J. G. Thompson, ?Finite groups with fixed-point-free automorphisms of prime order,? Proc. Nat. Acad. Sci. USA, No. 54, 578?581 (1959). · Zbl 0086.25101 · doi:10.1073/pnas.45.4.578
[753] J. G. Thompson, ?Hall subgroups of the symmetric groups,? J. Combin. Theory, 1(2):271?279 (1966). · Zbl 0144.26101 · doi:10.1016/S0021-9800(66)80032-7
[754] J. G. Thompson, ?Nonsolvable finite groups all of whose local subgroups are solvable,? Bull. Amer. Math. Soc., 74(3):383?437 (1968). · Zbl 0159.30804 · doi:10.1090/S0002-9904-1968-11953-6
[755] J. G. Thompson, ?On a question of L. J. Paige,? Math. Z, 99(1):26?27 (1967). · Zbl 0163.02701 · doi:10.1007/BF01118685
[756] J. G. Thompson, ?Toward a characterization of E 2 * (q),? J. Algebra, 7(3):406?414 (1967). · Zbl 0189.31802 · doi:10.1016/0021-8693(67)90080-4
[757] J. G. Thompson, ?Vertices and sources,? J. Algebra, 6(1):1?6 (1967). · Zbl 0167.29902 · doi:10.1016/0021-8693(67)90009-9
[758] J. Tits, ?Géométries polyédriques et groupes simples,? Atti 2, Riunione ?Groupem. math. express latine,? Firenze, Bologna, 1961, Rome (1963), pp. 66?88.
[759] J. A. Todd, ?A representation of the Mathieu group M24 as a collineation group,? Simpos. Internaz. Geometria Algebrica, Roma (1967), pp. 29?32.
[760] J. A. Todd, ?A representation of the Mathieu group M24 as a collineation group,? Rend. Mat. e Applic., 25(1?2):29?32 (1967).
[761] J. A. Todd, ?A representation of the Mathieu group M24 as a collineation group,? Ann. Mat. Pura ed Appl., Vol. 71, 199?238 (1966). · Zbl 0144.26204 · doi:10.1007/BF02413742
[762] H. F. Trotter, ?Groups in which raising to a power is an automorphism,? Canad. Math. Bull., 8(6):825?827 (1965). · Zbl 0135.05101 · doi:10.4153/CMB-1965-063-4
[763] Y. Tsushima, ?Radicals of group algebras,? Osaka J. Math., 4(1):179?182 (1967). · Zbl 0199.07601
[764] T. Tsuzuku, ?A remark on decompositions of the permutation representation of a permutation group,? Nagoya Math. J., Vol. 22, 79?82 (1963). · Zbl 0219.20009 · doi:10.1017/S0027763000011053
[765] T. Tsuzuku, ?On doubly transitive permutation groups of degree 1+p+p2 where p is a prime number,? J. Algebra, 9(2):143?147 (1968). · Zbl 0157.05502 · doi:10.1016/0021-8693(68)90039-2
[766] T. Tsuzuku, ?On primitive extensions of rank 3 of symmetric groups,? Nagoya Math. J., 27(1):171?177 (1966). · Zbl 0143.04301 · doi:10.1017/S0027763000011971
[767] T. Tsuzuku, ?Transitive extensions of certain permutation groups of rank 3,? Nagoya Math. J., Vol. 31, 31?36 (1968). · Zbl 0169.34003 · doi:10.1017/S0027763000012605
[768] P. A. Tucker, ?On the reduction of induced indecomposable representations,? Amer. J. Math., 87(4):798?806 (1965). · Zbl 0152.00703 · doi:10.2307/2373246
[769] M. L. Veronesi, ?Sulla struttura aritmetica dei gruppi finite con operatori,? Rend. Ist. Lombardo. Accad. Sci. e lettere, A102(1):3?11 (1968). · Zbl 0237.20019
[770] A. Wagner, ?A theorem on doubly transitive permutation groups,? Math. Z. 85(5):451?453 (1964). · Zbl 0122.03301 · doi:10.1007/BF01115363
[771] A. Wagner, ?Normal subgroups of triply transitive permutation groups of odd degree,? Math. Z., 94(3):219?222 (1966). · Zbl 0245.20006 · doi:10.1007/BF01111350
[772] D. B. Wales, ?Finite linear groups in seven variables,? Bull. Amer. Math. Soc. 74(1):197?198 (1968). · Zbl 0165.34105 · doi:10.1090/S0002-9904-1968-11939-1
[773] D. B. Wales, ?The uniqueness of the simple group of order 604,800as a subgroup of SL6 (4),? J. Algebra, 11(3):455?460 (1969). · Zbl 0165.34004 · doi:10.1016/0021-8693(69)90066-0
[774] G. E. Wall, ?A characterization of PSL2 (Zp?) and PGL2 (Zp?),? J. Austral. Math. Soc., 8(3):523?543 (1968). · Zbl 0164.02401 · doi:10.1017/S1446788700006182
[775] J. H. Walter, ?Character theory of finite groups with trivial intersection subsets,? Nagoya Math. J., 27(2):515?524 (1966). · Zbl 0173.02201 · doi:10.1017/S0027763000026349
[776] J. H. Walter, ?The characterization of finite groups with Abelian Sylow 2-subgroups,? Annals of Math., 89(3):405?514 (1969). · Zbl 0184.04605 · doi:10.2307/1970648
[777] H. N. Ward, ?On Ree’s series of simple groups,? Trans. Amer. Math. Soc., 121(1):62?89 (1966). · Zbl 0139.24902
[778] J. N. Ward, ?Automorphisms of finite groups and their fixed-point groups,? J. Austral. Math. Soc., 9(3?4):467?477 (1969). · Zbl 0182.03901 · doi:10.1017/S1446788700007424
[779] J. N. Ward, ?Involutory automorphisms of groups of odd order,? J. Austral. Math. Soc. 6(4):480?494 (1966). · Zbl 0144.26405 · doi:10.1017/S1446788700004961
[780] J. N. Ward, ?On finite soluble groups,? J. Austral Math. Soc., 9(1?2):250?251 (1969). · Zbl 0175.30003 · doi:10.1017/S1446788700005851
[781] C. E. Watts, ?A Jordan-Hölder theorem,? Pacif. J. Math., 14(2):731?734 (1964). · Zbl 0121.27301 · doi:10.2140/pjm.1964.14.731
[782] P. M. Weichsel, ?On p-Abelian groups,? Proc. Amer. Math. Soc., 18(4):736?737 (1967). · Zbl 0154.26702
[783] P. M. Weichsel, ?Regular p-groups and varieties,? Math. Z. 95(3):223?231 (1967). · Zbl 0183.02802 · doi:10.1007/BF01111525
[784] I. Weidig, ?Gruppen mit abgeschwächter Normalteilertransitivität,? Rend. Semin. Mat. Univ. Padova, 36(1):185?215 (1966). · Zbl 0136.28301
[785] D. R. Weidman, ?The character ring of a finite group,? Ill. J. Math., 9(3):462?467 (1965). · Zbl 0171.28503
[786] C. E. Weil, ?Another approach to the alternating subgroup of the symmetric group,? Amer. Math. Monthly, 71(5):545?546 (1964). · doi:10.2307/2312602
[787] T. A. Whitelaw, ?Janko’s group as a collineation group in PG (6, 11),? Proc. Cambridge Philos. Soc., 63(3):663?677 (1967). · Zbl 0153.03701 · doi:10.1017/S0305004100041645
[788] T. A. Whitelaw, ?On the Mathieu group of degree twelve,? Proc. Cambridge Philos. Soc., 62(3):351?364 (1966). · Zbl 0192.12104 · doi:10.1017/S0305004100039943
[789] J. Wiegold, ?Soluble embeddings of group amalgams,? Publs. Math., 12(1?4):227?230 (1965). · Zbl 0135.05003
[790] J. Wiegold, ?Transitive subgroups of transitive p-groups,? Math. Z., 94(4):294?295 (1967). · Zbl 0146.03901 · doi:10.1007/BF01123658
[791] H. Wielandt, ?Endliche k-homogene Permutationsgruppen,? Math. Z., 101(2):142 (1967). · Zbl 0189.31301 · doi:10.1007/BF01136031
[792] H. Wielandt, ?Factors of groups,? Sympos. Math., 1967?1968, Vol. 1, Gubbio (1969), pp. 187?194. · doi:10.1016/B978-1-4832-2995-9.50014-3
[793] H. Wielandt, Finite Permutation Groups, X, Academic Press (1964). · Zbl 0138.02501
[794] H. Wielandt, ?Sur la structure des groupes composés,? Semin. Dubreil et Pisot. Fac. Sci. Paris, 1963?1964, 17(2):17/01?17/10 (1967).
[795] G. Winkler, ?Eine Charakterisierung der Gruppen PSL (2, 5), SL(2, 5) und PSL(2, 8),? Arch. Math., 18(3):230?234 (1967). · Zbl 0183.02903 · doi:10.1007/BF01900627
[796] D. L. Winter, ?Finite p-solvable linear groups with a cyclic Sylow p-subgroup,? Proc. Amer. Math. Soc., 18(2):341?343 (1967). · Zbl 0146.25504
[797] D. L. Winter, ?On finite linear groups,? Math. Z., 106(4):245?247 (1968). · Zbl 0164.02303 · doi:10.1007/BF01110272
[798] D. L. Winter, ?On the restrict-induce map of group characters,? Proc. Amer. Math. Soc., 19(1):246?248 (1968). · Zbl 0162.33103 · doi:10.1090/S0002-9939-1968-0224727-1
[799] W. J. Wong, ?A characterization of the finite projective symplectic groups PSp(q),? Trans. Amer. Math. Soc., 139, 1?35 (1969). · Zbl 0175.30201
[800] W. J. Wong, ?Determination of a class of primitive permutation groups,? Math. Z., 99(3):235?246 (1967). · Zbl 0189.31204 · doi:10.1007/BF01112454
[801] W. J. Wong, ?Exceptional character theory and the theory of blocks,? Math. Z., 91(5):363?379 (1966). · Zbl 0143.04403 · doi:10.1007/BF01110650
[802] W. J. Wong, ?Finite groups with a self-centralizing subgroup of order 4,? J. Austral. Math. Soc., 7(4):570?576 (1967). · Zbl 0203.02902 · doi:10.1017/S1446788700004511
[803] W. J. Wong, ?On finite groups with semi-dihedral Sylow 2-subgroups,? J. Algebra, 4(1):52?63 (1966). · Zbl 0199.06301 · doi:10.1016/0021-8693(66)90050-0
[804] W. J. Wong, ?Twisted wreath products and Sylow 2-subgroups of classical simple groups,? Math. Z., 97(5):406?424 (1967). · Zbl 0166.02103 · doi:10.1007/BF01112816
[805] Yung-Chow Wong and Yik-Hoi Au-Yeung, ?An elementary and simple proof of the connectedness of the classical groups,? Amer. Math. Monthly, 74(8):964?966 (1967). · Zbl 0183.03604 · doi:10.2307/2315278
[806] C. R. B. Wright, ?Nilpotency conditions for finite loops,? Ill. J. Math., 9(3):399?409 (1965). · Zbl 0135.03701
[807] Cheng-hao Xu, ?The commutators of the alternating group,? Scientia Sinica, 14(3):339?342 (1965). · Zbl 0152.00402
[808] K. R. Yacoub, ?On finite groups with three independent generators two of which being of orders p and p2,? Nieuw. Arch. Wiskunde, 15(1):15?30 (1967). · Zbl 0189.31401
[809] H. Yamaki, ?A characterization of the alternating groups of degrees 12, 13, 14, 15,? J. Math. Soc. Japan, 20(4):673?694 (1968). · Zbl 0167.02301 · doi:10.2969/jmsj/02040673
[810] T. Yokonuma, ?On a property of some generalized symmetric groups,? J. Fac. Sci. Univ. Tokyo. Sec. 1, 12(1):193?211 (1965). · Zbl 0139.02003
[811] T. Yokonuma, ?Sur la commutant d’une représentation d’un groupe de Chevalley fini,? C. R. Acad. Sci., A264(10):433?436 (1967). · Zbl 0241.20029
[812] T. Yokonuma, ?Sur la structure des anneaux de Hecke d’un groupe de Cheavalley fini,? C. R. Acad. Sci., A264(8):344?347 (1967). · Zbl 0225.20027
[813] G. Zacher, ?I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur., 37(3?4):150?154 (1964). · Zbl 0136.28302
[814] V. Zambelli, ?Il sottogruppo di Hughes e la serie centrale ascedente,? Boll. Unione Mat. Ital., 19(4):478?489 (1964). · Zbl 0139.01704
[815] A. Zame, ?Note on a paper by M. F. Tinsley,? Duke Math. J., 34(2):231 (1967). · Zbl 0203.02602 · doi:10.1215/S0012-7094-67-03425-4
[816] G. Zappa, Fondamenti di Teoria dei Gruppi, Vol. I, Roma (1965), 291 pp.
[817] G. Zappa, ?Partizioni ed S-partizioni dei gruppi finiti,? Sympos. Math. 1967?1968, Vol. 1, Gubbio, (1969), pp. 85?94. · doi:10.1016/B978-1-4832-2995-9.50009-X
[818] G. Zappa, ?Recenti progressi della teoria dei gruppi finiti risolubili,? Conf. Semin. Mat. Univ. Bari, No. 73 (1962), 12 pp. · Zbl 0113.02504
[819] G. Zappa, ?Recenti risultati sul reticolo dei sottogruppi subnormali di un gruppo,? Semin. 1962?1963 Analisi, Algebra, Geometria e Topol.,Vol. 2, Roma (1965), pp. 441?448.
[820] G. Zappa, ?Sulle S-partizioni di Hall di un gruppo finito,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. e Natur., 38(6):755?759 (1965).
[821] G. Zappa, ?Sulle S-partizioni di un gruppo finito,? Ann. Mat. Pura ed Appl., Vol. 74, 1?14 (1966). · Zbl 0192.11501 · doi:10.1007/BF02416444
[822] G. Zappa, ?Sulle S-partizioni semistrette di Hall nei gruppi finiti metanilpotenti,? Matematiche, 22, 375?384, 1967 (1968).
[823] H. J. Zassenhaus, ?A presentation of the groups PSL(2, p) with three defining relations,? Canad. J. Math., 21(2):310?311 (1969). · Zbl 0184.04805 · doi:10.4153/CJM-1969-032-8
[824] Li-qian Zhang and Shu-sen Dai, ?On the orthogonal relations among orthomorphisms of noncommutative groups of small orders,? Chinese Math., 5(3):506?515 (1964). · Zbl 0266.20039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.