Thakur, Rahul; Das, Ruchi Strongly Ruelle-Takens, strongly Auslander-Yorke and Poincaré chaos on semiflows. (English) Zbl 07264416 Commun. Nonlinear Sci. Numer. Simul. 81, Article ID 105018, 6 p. (2020). MSC: 37B05 37B20 37D45 PDF BibTeX XML Cite \textit{R. Thakur} and \textit{R. Das}, Commun. Nonlinear Sci. Numer. Simul. 81, Article ID 105018, 6 p. (2020; Zbl 07264416) Full Text: DOI
Kulikov, A. N.; Kulikov, D. A. A possibility of realizing the Landau-Hopf scenario in the problem of tube oscillations under the action of a fluid flow. (English. Russian original) Zbl 1447.74017 Theor. Math. Phys. 203, No. 1, 501-511 (2020); translation from Teor. Mat. Fiz. 203, No. 1, 78-90 (2020). MSC: 74H45 74F10 74H55 74H60 74H10 76F06 PDF BibTeX XML Cite \textit{A. N. Kulikov} and \textit{D. A. Kulikov}, Theor. Math. Phys. 203, No. 1, 501--511 (2020; Zbl 1447.74017); translation from Teor. Mat. Fiz. 203, No. 1, 78--90 (2020) Full Text: DOI
Patra, Aniket; Altshuler, Boris L.; Yuzbashyan, Emil A. Driven-dissipative dynamics of atomic ensembles in a resonant cavity: quasiperiodic route to chaos and chaotic synchronization. (English) Zbl 1435.81108 Ann. Phys. 417, Article ID 168106, 33 p. (2020). MSC: 81S22 37N20 37D45 PDF BibTeX XML Cite \textit{A. Patra} et al., Ann. Phys. 417, Article ID 168106, 33 p. (2020; Zbl 1435.81108) Full Text: DOI
Saha, Sandip; Gangopadhyay, Gautam When an oscillating center in an open system undergoes power law decay. (English) Zbl 1414.92145 J. Math. Chem. 57, No. 3, 750-768 (2019). MSC: 92C45 34D10 PDF BibTeX XML Cite \textit{S. Saha} and \textit{G. Gangopadhyay}, J. Math. Chem. 57, No. 3, 750--768 (2019; Zbl 1414.92145) Full Text: DOI
Ghane, F. H.; Rezaali, E.; Sarizadeh, A. Sensitivity of iterated function systems. (English) Zbl 1410.37011 J. Math. Anal. Appl. 469, No. 2, 493-503 (2019). Reviewer: Jian Li (Shantou) MSC: 37B05 37B20 PDF BibTeX XML Cite \textit{F. H. Ghane} et al., J. Math. Anal. Appl. 469, No. 2, 493--503 (2019; Zbl 1410.37011) Full Text: DOI
Galuzio, Paulo P.; Benkadda, S.; Lopes, S. R. Characterization of intermittency at the onset of turbulence in the forced and damped nonlinear Schrödinger equation. (English) Zbl 07257100 Commun. Nonlinear Sci. Numer. Simul. 42, 404-419 (2017). MSC: 37 70 PDF BibTeX XML Cite \textit{P. P. Galuzio} et al., Commun. Nonlinear Sci. Numer. Simul. 42, 404--419 (2017; Zbl 07257100) Full Text: DOI
Saha, Sandip; Gangopadhyay, Gautam Isochronicity and limit cycle oscillation in chemical systems. (English) Zbl 1373.92155 J. Math. Chem. 55, No. 3, 887-910 (2017). MSC: 92E20 82C28 PDF BibTeX XML Cite \textit{S. Saha} and \textit{G. Gangopadhyay}, J. Math. Chem. 55, No. 3, 887--910 (2017; Zbl 1373.92155) Full Text: DOI
de Divitiis, Nicola Bifurcations analysis of turbulent energy cascade. (English) Zbl 1377.76020 Ann. Phys. 354, 604-617 (2015). MSC: 76F20 76D05 37N10 37G10 PDF BibTeX XML Cite \textit{N. de Divitiis}, Ann. Phys. 354, 604--617 (2015; Zbl 1377.76020) Full Text: DOI
Liu, Heng; Liao, Li; Wang, Lidong Thickly syndetical sensitivity of topological dynamical system. (English) Zbl 1419.37010 Discrete Dyn. Nat. Soc. 2014, Article ID 583431, 4 p. (2014). MSC: 37B05 37B20 PDF BibTeX XML Cite \textit{H. Liu} et al., Discrete Dyn. Nat. Soc. 2014, Article ID 583431, 4 p. (2014; Zbl 1419.37010) Full Text: DOI
Bakri, Taoufik; Verhulst, Ferdinand Bifurcations of quasi-periodic dynamics: torus breakdown. (English) Zbl 1315.34046 Z. Angew. Math. Phys. 65, No. 6, 1053-1076 (2014). Reviewer: Hao Wu (Nanjing) MSC: 34C23 34C15 34C45 34C46 34C28 34C25 34C29 34A25 PDF BibTeX XML Cite \textit{T. Bakri} and \textit{F. Verhulst}, Z. Angew. Math. Phys. 65, No. 6, 1053--1076 (2014; Zbl 1315.34046) Full Text: DOI
So, Paul; Luke, Tanushree B.; Barreto, Ernest Networks of theta neurons with time-varying excitability: macroscopic chaos, multistability, and final-state uncertainty. (English) Zbl 1285.92011 Physica D 267, 16-26 (2014). MSC: 92C42 92C20 37N25 PDF BibTeX XML Cite \textit{P. So} et al., Physica D 267, 16--26 (2014; Zbl 1285.92011) Full Text: DOI
Kuznetsov, Alexander P.; Kuznetsov, Sergey P.; Sataev, Igor R.; Turukina, Ludmila V. About Landau-Hopf scenario in a system of coupled self-oscillators. (English) Zbl 1304.34073 Phys. Lett., A 377, No. 45-48, 3291-3295 (2013). MSC: 34C23 34C15 34C45 34C27 PDF BibTeX XML Cite \textit{A. P. Kuznetsov} et al., Phys. Lett., A 377, No. 45--48, 3291--3295 (2013; Zbl 1304.34073) Full Text: DOI
Broer, Henk W. Resonance and fractal geometry. (English) Zbl 1356.70028 Acta Appl. Math. 120, No. 1, 61-86 (2012). MSC: 70K30 28A80 70K42 70K50 34C15 34C23 37N05 PDF BibTeX XML Cite \textit{H. W. Broer}, Acta Appl. Math. 120, No. 1, 61--86 (2012; Zbl 1356.70028) Full Text: DOI
Polly, James B.; McDonough, J. M. Application of the poor man’s Navier-Stokes equations to real-time control of fluid flow. (English) Zbl 1251.76013 J. Appl. Math. 2012, Article ID 746752, 18 p. (2012). MSC: 76D05 PDF BibTeX XML Cite \textit{J. B. Polly} and \textit{J. M. McDonough}, J. Appl. Math. 2012, Article ID 746752, 18 p. (2012; Zbl 1251.76013) Full Text: DOI
Ivancevic, Vladimir G.; Reid, Darryn J. Turbulence and shock-waves in crowd dynamics. (English) Zbl 1247.91124 Nonlinear Dyn. 68, No. 1-2, 285-304 (2012). MSC: 91B69 76L05 76F99 35Q55 35Q51 35Q91 35Q30 PDF BibTeX XML Cite \textit{V. G. Ivancevic} and \textit{D. J. Reid}, Nonlinear Dyn. 68, No. 1--2, 285--304 (2012; Zbl 1247.91124) Full Text: DOI
Hatjispyros, Spyridon J.; Walker, Stephen G. A high accuracy stochastic estimation of a nonlinear deterministic model. (English) Zbl 1242.90030 Phys. Lett., A 375, No. 19, 1954-1964 (2011). MSC: 90B06 37N40 62N05 65C05 35Q93 PDF BibTeX XML Cite \textit{S. J. Hatjispyros} and \textit{S. G. Walker}, Phys. Lett., A 375, No. 19, 1954--1964 (2011; Zbl 1242.90030) Full Text: DOI
Turukina, L. V.; Pikovsky, A. Hyperbolic chaos in a system of resonantly coupled weakly nonlinear oscillators. (English) Zbl 1242.34064 Phys. Lett., A 375, No. 11, 1407-1411 (2011). MSC: 34C15 34C28 34C23 PDF BibTeX XML Cite \textit{L. V. Turukina} and \textit{A. Pikovsky}, Phys. Lett., A 375, No. 11, 1407--1411 (2011; Zbl 1242.34064) Full Text: DOI
Kuznetsov, A. P.; Sataev, I. R.; Turukina, L. V. On the road towards multidimensional tori. (English) Zbl 1221.34098 Commun. Nonlinear Sci. Numer. Simul. 16, No. 6, 2371-2376 (2011). MSC: 34C15 34D06 37G99 PDF BibTeX XML Cite \textit{A. P. Kuznetsov} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 6, 2371--2376 (2011; Zbl 1221.34098) Full Text: DOI
Yan, Weiping; Ji, Shuguan; Li, Yong Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations. (English) Zbl 1228.60074 Phys. Lett., A 373, No. 14, 1268-1275 (2009). MSC: 60H15 35Q55 35R60 39A12 PDF BibTeX XML Cite \textit{W. Yan} et al., Phys. Lett., A 373, No. 14, 1268--1275 (2009; Zbl 1228.60074) Full Text: DOI
Angeli, David; Hirsch, Morris W.; Sontag, Eduardo D. Attractors in coherent systems of differential equations. (English) Zbl 1172.34036 J. Differ. Equations 246, No. 8, 3058-3076 (2009). Reviewer: Martin Rasmussen (London) MSC: 34D45 34C12 PDF BibTeX XML Cite \textit{D. Angeli} et al., J. Differ. Equations 246, No. 8, 3058--3076 (2009; Zbl 1172.34036) Full Text: DOI arXiv
Szezech, J. D. jun.; Lopes, S. R.; Viana, R. L.; Caldas, I. L. Bubbling transition to spatial mode excitation in an extended dynamical system. (English) Zbl 1157.37313 Physica D 238, No. 5, 516-525 (2009). MSC: 37D45 37J45 PDF BibTeX XML Cite \textit{J. D. Szezech jun.} et al., Physica D 238, No. 5, 516--525 (2009; Zbl 1157.37313) Full Text: DOI
Roy, D.; Musielak, Z. E. Generalized Lorenz models and their routes to chaos. III: Energy-conserving horizontal and vertical mode truncations. (English) Zbl 1133.37312 Chaos Solitons Fractals 33, No. 3, 1064-1070 (2007). MSC: 37D45 PDF BibTeX XML Cite \textit{D. Roy} and \textit{Z. E. Musielak}, Chaos Solitons Fractals 33, No. 3, 1064--1070 (2007; Zbl 1133.37312) Full Text: DOI
Mukhamedov, Alfred M. Dynamic paradigm of turbulence. (English) Zbl 1137.76027 Chaos Solitons Fractals 30, No. 2, 278-289 (2006). MSC: 76F02 PDF BibTeX XML Cite \textit{A. M. Mukhamedov}, Chaos Solitons Fractals 30, No. 2, 278--289 (2006; Zbl 1137.76027) Full Text: DOI
Ngamga Ketchamen, E. J.; Nana, L.; Kofane, T. C. Strange nonchaotic attractors in a fifth-order amplitude equation of Rayleigh–Bénard system near the codimension-two point. (English) Zbl 1106.37051 Chaos Solitons Fractals 28, No. 5, 1139-1148 (2006). MSC: 37M25 76E06 37C70 37J10 37N10 PDF BibTeX XML Cite \textit{E. J. Ngamga Ketchamen} et al., Chaos Solitons Fractals 28, No. 5, 1139--1148 (2006; Zbl 1106.37051) Full Text: DOI
Kritchevski, E.; Starr, S. The extended variational principle for mean-field, classical spin systems. (English) Zbl 1094.82005 Rev. Math. Phys. 17, No. 10, 1209-1239 (2005). MSC: 82B20 60G09 PDF BibTeX XML Cite \textit{E. Kritchevski} and \textit{S. Starr}, Rev. Math. Phys. 17, No. 10, 1209--1239 (2005; Zbl 1094.82005) Full Text: DOI arXiv
Ketchamen, E. J. Ngamga; Nana, L.; Kofane, T. C. Strange nonchaotic attractors in a fifth-order amplitude equation of Rayleigh-Bénard system near the codimension-two point. (English) Zbl 1064.37068 Chaos Solitons Fractals 23, No. 1, 23-32 (2005). MSC: 37N10 37C70 76E06 PDF BibTeX XML Cite \textit{E. J. N. Ketchamen} et al., Chaos Solitons Fractals 23, No. 1, 23--32 (2005; Zbl 1064.37068) Full Text: DOI
Tung, Wen-wen; Qi, Yan; Gao, J. B.; Cao, Yinhe; Billings, Lora Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity. (English) Zbl 1066.92043 Chaos Solitons Fractals 24, No. 2, 645-652 (2005). MSC: 92D25 92D40 37N25 37D45 PDF BibTeX XML Cite \textit{W.-w. Tung} et al., Chaos Solitons Fractals 24, No. 2, 645--652 (2005; Zbl 1066.92043) Full Text: DOI
Talay Akyildiz, F.; Bellout, Hamid Chaos in the thermal convection of a Newtonian fluid with a temperature dependent viscosity. (English) Zbl 1303.76120 Appl. Math. Comput. 162, No. 3, 1103-1118 (2005). MSC: 76R10 37N10 76E06 PDF BibTeX XML Cite \textit{F. Talay Akyildiz} and \textit{H. Bellout}, Appl. Math. Comput. 162, No. 3, 1103--1118 (2005; Zbl 1303.76120) Full Text: DOI
Lai, Ying-Cheng; Bollt, Erik M.; Liu, Zonghua Low-dimensional chaos in high-dimensional phase space: How does it occur? (English) Zbl 1038.37026 Chaos Solitons Fractals 15, No. 2, 219-232 (2003). MSC: 37D45 37L99 PDF BibTeX XML Cite \textit{Y.-C. Lai} et al., Chaos Solitons Fractals 15, No. 2, 219--232 (2003; Zbl 1038.37026) Full Text: DOI
Aubin, David; Dalmedico, Amy Dahan Writing the history of dynamical systems and chaos: ‘Longue durée’ and revolution, disciplines and cultures. (English) Zbl 1026.01014 Hist. Math. 29, No. 3, 273-339 (2002). Reviewer: Cristina Irimia (Iasi) MSC: 01A60 01A85 37-03 76-03 82-03 86-03 PDF BibTeX XML Cite \textit{D. Aubin} and \textit{A. D. Dalmedico}, Hist. Math. 29, No. 3, 273--339 (2002; Zbl 1026.01014) Full Text: DOI
Pastor, G.; Romera, M.; Álvarez, G.; Montoya, F. Operating with external arguments in the Mandelbrot set antenna. (English) Zbl 1008.37028 Physica D 171, No. 1-2, 52-71 (2002). MSC: 37F45 PDF BibTeX XML Cite \textit{G. Pastor} et al., Physica D 171, No. 1--2, 52--71 (2002; Zbl 1008.37028) Full Text: DOI
Francisco, G.; Santos, C. R. Transition to turbulence in the Reynolds’ experiment. (English) Zbl 0969.76536 Physica A 297, No. 1-2, 73-78 (2001). MSC: 76F06 76F20 PDF BibTeX XML Cite \textit{G. Francisco} and \textit{C. R. Santos}, Physica A 297, No. 1--2, 73--78 (2001; Zbl 0969.76536) Full Text: DOI
Pliss, Victor A.; Sell, George R. Perturbations of normally hyperbolic manifolds with applications to the Navier-Stokes equations. (English) Zbl 0998.34038 J. Differ. Equations 169, No. 2, 396-492 (2001). Reviewer: Norbert Koksch (Dresden) MSC: 34C30 35Q30 34G20 37C20 37D05 34C28 37L45 37L65 37N20 76D05 PDF BibTeX XML Cite \textit{V. A. Pliss} and \textit{G. R. Sell}, J. Differ. Equations 169, No. 2, 396--492 (2001; Zbl 0998.34038) Full Text: DOI
Pasini, Antonello; Pelino, Vinicio A unified view of Kolmogorov and Lorenz systems. (English) Zbl 1115.76320 Phys. Lett., A 275, No. 5-6, 435-446 (2000). MSC: 76D05 37N10 76E20 82C05 86A10 PDF BibTeX XML Cite \textit{A. Pasini} and \textit{V. Pelino}, Phys. Lett., A 275, No. 5--6, 435--446 (2000; Zbl 1115.76320) Full Text: DOI
Davidchack, Ruslan; Lai, Ying-Cheng Characterization of transition to chaos with multiple positive Lyapunov exponents by unstable periodic orbits. (English) Zbl 1115.37317 Phys. Lett., A 270, No. 6, 308-313 (2000). MSC: 37D45 37C99 PDF BibTeX XML Cite \textit{R. Davidchack} and \textit{Y.-C. Lai}, Phys. Lett., A 270, No. 6, 308--313 (2000; Zbl 1115.37317) Full Text: DOI
Rius, J.; Figueras, M.; Herrero, R.; Farjas, J.; Pi, F.; Orriols, G. \(N\)-dimensional dynamical systems exploiting instabilities in full. (English) Zbl 1055.76520 Chaos 10, No. 4, 760-770 (2000). MSC: 76F06 37N10 PDF BibTeX XML Cite \textit{J. Rius} et al., Chaos 10, No. 4, 760--770 (2000; Zbl 1055.76520) Full Text: DOI
Abarenkova, N.; Anglès D’Auriac, J.-Ch.; Boukraa, S.; Maillard, J.-M. Real topological entropy versus metric entropy for birational measure-preserving transformations. (English) Zbl 0978.37036 Physica D 144, No. 3-4, 387-433 (2000). Reviewer: Manfred Denker (Göttingen) MSC: 37E30 37F99 37B35 28D05 32H50 PDF BibTeX XML Cite \textit{N. Abarenkova} et al., Physica D 144, No. 3--4, 387--433 (2000; Zbl 0978.37036) Full Text: DOI
Okada, T.; Nobuta, M.; Shimojo, T. A route to chaos in a conservative system of three interacting Langmuir waves. (English) Zbl 0961.76097 Chaos Solitons Fractals 11, No. 4, 581-605 (2000). MSC: 76X05 82D10 37N10 PDF BibTeX XML Cite \textit{T. Okada} et al., Chaos Solitons Fractals 11, No. 4, 581--605 (2000; Zbl 0961.76097) Full Text: DOI
Alaggio, Rocco; Rega, Giuseppe Characterizing bifurcations and classes of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics. (English) Zbl 0963.70501 Physica D 137, No. 1-2, 70-93 (2000). MSC: 70-05 70K55 70K50 PDF BibTeX XML Cite \textit{R. Alaggio} and \textit{G. Rega}, Physica D 137, No. 1--2, 70--93 (2000; Zbl 0963.70501) Full Text: DOI
Kowalski, Krzysztof; Rembieliński, Jakub Groups and nonlinear dynamical systems: chaotic dynamics on the \(\text{SU}(2)\times\text{SU}(2)\) group. (English) Zbl 0933.37039 Chaos Solitons Fractals 9, No. 3, 437-448 (1998). MSC: 37D45 37G35 PDF BibTeX XML Cite \textit{K. Kowalski} and \textit{J. Rembieliński}, Chaos Solitons Fractals 9, No. 3, 437--448 (1998; Zbl 0933.37039) Full Text: DOI
Argyris, John; Ciubotariu, Corneliu; Andreadis, Ioannis Complexity in spacetime and gravitation. I: From chaos to superchaos. (English) Zbl 0989.37023 Chaos Solitons Fractals 9, No. 10, 1651-1701 (1998). Reviewer: Mamed Rajabov (Baku) MSC: 37D45 37N20 83C57 PDF BibTeX XML Cite \textit{J. Argyris} et al., Chaos Solitons Fractals 9, No. 10, 1651--1701 (1998; Zbl 0989.37023) Full Text: DOI
Sewell, Geoffrey L. Recent developments in macroscopic quantum electrodynamics. (English) Zbl 0883.35101 Rep. Math. Phys. 38, No. 3, 357-373 (1996). MSC: 35Q40 81V05 76X05 78A60 PDF BibTeX XML Cite \textit{G. L. Sewell}, Rep. Math. Phys. 38, No. 3, 357--373 (1996; Zbl 0883.35101) Full Text: DOI
Muriel, A.; Jirkovsky, L.; Dresden, M. A quantum model for the onset of turbulence. (English) Zbl 0900.76190 Physica D 94, No. 3, 103-115 (1996). MSC: 76F99 81V99 PDF BibTeX XML Cite \textit{A. Muriel} et al., Physica D 94, No. 3, 103--115 (1996; Zbl 0900.76190) Full Text: DOI
Stagliano, James J. jun.; Wersinger, Jean-Marie; Slaminka, Edward E. Doubling bifurcations of destroyed \(\mathbb{T}^ 2\) tori. (English) Zbl 0890.58064 Physica D 92, No. 3-4, 164-177 (1996). MSC: 37G99 37D45 37C55 PDF BibTeX XML Cite \textit{J. J. Stagliano jun.} et al., Physica D 92, No. 3--4, 164--177 (1996; Zbl 0890.58064) Full Text: DOI
Iskoldsky, Alexander M.; Volkov, Nickolas B.; Zubareva, Olga V. The dynamics of large-scale spatial structures in current-carrying fluids and the electric explosion of conductors. (English) Zbl 0899.76018 Physica D 91, No. 1-2, 182-204 (1996). MSC: 76-05 76X05 78A55 PDF BibTeX XML Cite \textit{A. M. Iskoldsky} et al., Physica D 91, No. 1--2, 182--204 (1996; Zbl 0899.76018) Full Text: DOI
Dang-Vu, H.; Delcarte, C. Hopf bifurcation and strange attractors in Chebyshev spectral solutions of the Burgers equation. (English) Zbl 0844.65074 Appl. Math. Comput. 73, No. 2-3, 99-113 (1995). Reviewer: R.Gorenflo (Berlin) MSC: 65M70 65M20 35Q53 PDF BibTeX XML Cite \textit{H. Dang-Vu} and \textit{C. Delcarte}, Appl. Math. Comput. 73, No. 2--3, 99--113 (1995; Zbl 0844.65074) Full Text: DOI
Takatsuka, Kazuo Nonlinear dynamics in coupled fuzzy control systems. I: Coherence and chaos-frustration in triangle configuration. (English) Zbl 0900.93164 Physica D 82, No. 1-2, 95-116 (1995). MSC: 93C42 93C10 37D45 PDF BibTeX XML Cite \textit{K. Takatsuka}, Physica D 82, No. 1--2, 95--116 (1995; Zbl 0900.93164) Full Text: DOI
Muriel, A.; Dresden, M. Projection techniques in non-equilibrium statistical mechanics. III: A microscopic theory of turbulence. (English) Zbl 0900.76454 Physica D 81, No. 3, 221-236 (1995). MSC: 76M25 76F99 82-08 PDF BibTeX XML Cite \textit{A. Muriel} and \textit{M. Dresden}, Physica D 81, No. 3, 221--236 (1995; Zbl 0900.76454) Full Text: DOI
Cartwright, Julyan H. E.; Feingold, Mario; Piro, Oreste Passive scalars and three-dimensional Liouvillian maps. (English) Zbl 1194.76057 Physica D 76, No. 1-3, 22-33 (1994). MSC: 76E99 76F20 PDF BibTeX XML Cite \textit{J. H. E. Cartwright} et al., Physica D 76, No. 1--3, 22--33 (1994; Zbl 1194.76057) Full Text: DOI arXiv
Brindley, J.; Kaneko, K.; Kapitaniak, T. Spatio-temporal chaos in closed and open systems. (English) Zbl 0816.76040 Chaos Solitons Fractals 4, No. 7, 1193-1209 (1994). Reviewer: P.Garbaczewski (Wrocław) MSC: 76F20 37D45 76M20 PDF BibTeX XML Cite \textit{J. Brindley} et al., Chaos Solitons Fractals 4, No. 7, 1193--1209 (1994; Zbl 0816.76040) Full Text: DOI
Selvam, A. Mary Universal quantification for deterministic chaos in dynamical systems. (English) Zbl 0795.58033 Appl. Math. Modelling 17, No. 12, 642-649 (1993). MSC: 37D45 37A99 53D50 PDF BibTeX XML Cite \textit{A. M. Selvam}, Appl. Math. Modelling 17, No. 12, 642--649 (1993; Zbl 0795.58033) Full Text: DOI
Fraedrich, Klaus; Wang, Risheng Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding. (English) Zbl 0774.58027 Physica D 65, No. 4, 373-398 (1993). MSC: 37C70 PDF BibTeX XML Cite \textit{K. Fraedrich} and \textit{R. Wang}, Physica D 65, No. 4, 373--398 (1993; Zbl 0774.58027) Full Text: DOI
Giberti, C.; Zanasi, R. Behavior of a three-torus in truncated Navier-Stokes equations. (English) Zbl 0774.35056 Physica D 65, No. 3, 300-312 (1993). MSC: 35Q30 37C70 PDF BibTeX XML Cite \textit{C. Giberti} and \textit{R. Zanasi}, Physica D 65, No. 3, 300--312 (1993; Zbl 0774.35056) Full Text: DOI
Ito, Hiroyuki; Glass, Leon Theory of reentrant excitation in a ring of cardiac tissue. (English) Zbl 0780.92014 Physica D 56, No. 1, 84-106 (1992). MSC: 92C50 PDF BibTeX XML Cite \textit{H. Ito} and \textit{L. Glass}, Physica D 56, No. 1, 84--106 (1992; Zbl 0780.92014) Full Text: DOI
Noack, Bernd R.; Ohle, Frank; Eckelmann, Helmut Construction and analysis of differential equations from experimental time series of oscillatory systems. (English) Zbl 0754.34034 Physica D 56, No. 4, 389-405 (1992). MSC: 34C23 34C25 34A55 34C15 35Q30 76D25 94A12 PDF BibTeX XML Cite \textit{B. R. Noack} et al., Physica D 56, No. 4, 389--405 (1992; Zbl 0754.34034) Full Text: DOI
Ünal, G.; Şuhubi, E. S. H. A local analysis of the Kolmogorov-Spiegel-Sivashinsky equation. (English) Zbl 0775.76042 Int. J. Eng. Sci. 30, No. 5, 579-592 (1992). MSC: 76D99 76F99 58J70 PDF BibTeX XML Cite \textit{G. Ünal} and \textit{E. S. H. Şuhubi}, Int. J. Eng. Sci. 30, No. 5, 579--592 (1992; Zbl 0775.76042) Full Text: DOI
Ünal, G.; Şuhubi, E. S. H. Travelling waves and chaos in the Kolmogorov-Spiegel-Sivashinsky model. (English) Zbl 0775.76082 Int. J. Eng. Sci. 30, No. 5, 593-610 (1992). MSC: 76F20 76B25 PDF BibTeX XML Cite \textit{G. Ünal} and \textit{E. S. H. Şuhubi}, Int. J. Eng. Sci. 30, No. 5, 593--610 (1992; Zbl 0775.76082) Full Text: DOI
Baesens, C.; Guckenheimer, J.; Kim, S.; MacKay, R. S. Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos. (English) Zbl 0734.58036 Physica D 49, No. 3, 387-475 (1991). Reviewer: J.Kolomý (Praha) MSC: 37G99 PDF BibTeX XML Cite \textit{C. Baesens} et al., Physica D 49, No. 3, 387--475 (1991; Zbl 0734.58036) Full Text: DOI
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D. Regularity properties and pathologies of position-space renormalization-group transformations. (English) Zbl 0957.82506 Nucl. Phys., B, Proc. Suppl. 20, 48-52 (1991). MSC: 82B28 81T17 PDF BibTeX XML Cite \textit{A. C. D. van Enter} et al., Nucl. Phys., B, Proc. Suppl. 20, 48--52 (1991; Zbl 0957.82506) Full Text: DOI
Lauterborn, Werner; Holzfuss, Joachim Acoustic chaos. (English) Zbl 0800.76401 Int. J. Bifurcation Chaos Appl. Sci. Eng. 1, No. 1, 13-26 (1991). MSC: 76Q05 37D45 76-05 PDF BibTeX XML Cite \textit{W. Lauterborn} and \textit{J. Holzfuss}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 1, No. 1, 13--26 (1991; Zbl 0800.76401) Full Text: DOI
Ueda, Yoshisuke Survey of regular and chaotic phenomena in the forced Duffing oscillator. (English) Zbl 0748.34022 Chaos Solitons Fractals 1, No. 3, 199-231 (1991). Reviewer: Á.Bosznay (Budapest) MSC: 34C15 37-XX 70K50 34C23 34D45 PDF BibTeX XML Cite \textit{Y. Ueda}, Chaos Solitons Fractals 1, No. 3, 199--231 (1991; Zbl 0748.34022) Full Text: DOI
Geist, Karlheinz; Lauterborn, Werner The nonlinear dynamics of the damped and driven Toda chain. II: Fourier and Lyapunov analysis of tori. (English) Zbl 0721.34050 Physica D 41, No. 1, 1-25 (1990). MSC: 34C23 37C10 42A10 34C25 34C27 65J99 34D20 PDF BibTeX XML Cite \textit{K. Geist} and \textit{W. Lauterborn}, Physica D 41, No. 1, 1--25 (1990; Zbl 0721.34050) Full Text: DOI
Gambaudo, Jean-Marc; Tresser, Charles Diffeomorphisms with infinitely many strange attractors. (English) Zbl 0717.58041 J. Complexity 6, No. 4, 409-416 (1990). Reviewer: W.J.Satzer jun MSC: 37D45 PDF BibTeX XML Cite \textit{J.-M. Gambaudo} and \textit{C. Tresser}, J. Complexity 6, No. 4, 409--416 (1990; Zbl 0717.58041) Full Text: DOI
Aubry, Serge; Abramovici, Gilles Chaotic trajectories in the standard map. The concept of anti- integrability. (English) Zbl 0713.58014 Physica D 43, No. 2-3, 199-219 (1990). Reviewer: D.Savin MSC: 37J99 37J35 37K10 35Q51 37D45 PDF BibTeX XML Cite \textit{S. Aubry} and \textit{G. Abramovici}, Physica D 43, No. 2--3, 199--219 (1990; Zbl 0713.58014) Full Text: DOI
Hadeler, K. P.; Gerstmann, I. The discrete Rosenzweig model. (English) Zbl 0694.92014 Math. Biosci. 98, No. 1, 49-72 (1990). MSC: 92D25 39A12 39A11 65C20 PDF BibTeX XML Cite \textit{K. P. Hadeler} and \textit{I. Gerstmann}, Math. Biosci. 98, No. 1, 49--72 (1990; Zbl 0694.92014) Full Text: DOI
Zak, Michail Non-Lipschitzian dynamics for neural net modelling. (English) Zbl 0722.70022 Appl. Math. Lett. 2, No. 1, 69-74 (1989). MSC: 70K50 37D45 PDF BibTeX XML Cite \textit{M. Zak}, Appl. Math. Lett. 2, No. 1, 69--74 (1989; Zbl 0722.70022) Full Text: DOI
Dorlas, T. C.; van Enter, A. C. D. Non-Gibbsian limit for large-block majority-spin transformations. (English) Zbl 0714.60092 J. Stat. Phys. 55, No. 1-2, 171-181 (1989). MSC: 60K35 81T16 PDF BibTeX XML Cite \textit{T. C. Dorlas} and \textit{A. C. D. van Enter}, J. Stat. Phys. 55, No. 1--2, 171--181 (1989; Zbl 0714.60092) Full Text: DOI
Kaneko, Kunihiko Pattern dynamics in spatiotemporal chaos. Pattern selection, diffusion of defect and pattern competition intermittency. (English) Zbl 0702.58043 Physica D 34, No. 1-2, 1-41 (1989). Reviewer: K.Brod MSC: 37D45 37G99 58C05 PDF BibTeX XML Cite \textit{K. Kaneko}, Physica D 34, No. 1--2, 1--41 (1989; Zbl 0702.58043) Full Text: DOI
Battelino, Peter M.; Grebogi, Celso; Ott, Edward; Yorke, James A. Chaotic attractors on a 3-torus, and torus break-up. (English) Zbl 0694.58029 Physica D 39, No. 2-3, 299-314 (1989). MSC: 37D45 PDF BibTeX XML Cite \textit{P. M. Battelino} et al., Physica D 39, No. 2--3, 299--314 (1989; Zbl 0694.58029) Full Text: DOI
Aubry, Nadine; Holmes, Philip; Lumley, John L.; Stone, Emily Application of dynamical system theory to coherent structures in the wall region. (English) Zbl 0687.76061 Physica D 37, No. 1-3, 1-10 (1989); erratum ibid. 104, No. 2-4, 212-213 (1997). MSC: 76F99 76M99 PDF BibTeX XML Cite \textit{N. Aubry} et al., Physica D 37, No. 1--3, 1--10 (1989; Zbl 0687.76061) Full Text: DOI
Linsay, Paul S.; Cumming, Andrew W. Three-frequency quasiperiodicity, phase locking, and the onset of chaos. (English) Zbl 0825.58028 Physica D 40, No. 2, 196-217 (1989). MSC: 37D45 PDF BibTeX XML Cite \textit{P. S. Linsay} and \textit{A. W. Cumming}, Physica D 40, No. 2, 196--217 (1989; Zbl 0825.58028) Full Text: DOI
McKenzie, Dan The symmetry of convective transitions in space and time. (English) Zbl 0645.76053 J. Fluid Mech. 191, 287-339 (1988). MSC: 76E15 76R99 76M99 PDF BibTeX XML Cite \textit{D. McKenzie}, J. Fluid Mech. 191, 287--339 (1988; Zbl 0645.76053) Full Text: DOI
Bryant, Paul; Jeffries, Carson The dynamics of phase locking and points of resonance in a forced magnetic oscillator. (English) Zbl 0654.34035 Physica D 25, 196-232 (1987). Reviewer: N.L.Marià MSC: 37-XX 34C25 34C10 PDF BibTeX XML Cite \textit{P. Bryant} and \textit{C. Jeffries}, Physica D 25, 196--232 (1987; Zbl 0654.34035) Full Text: DOI
Ikeda, Kensuke; Matsumoto, Kenji High-dimensional chaotic behavior in systems with time-delayed feedback. (English) Zbl 0626.58014 Physica D 29, No. 1-2, 223-235 (1987). MSC: 37-XX 28D99 PDF BibTeX XML Cite \textit{K. Ikeda} and \textit{K. Matsumoto}, Physica D 29, No. 1--2, 223--235 (1987; Zbl 0626.58014) Full Text: DOI
Ghosh, S.; Papadopoulos, K. The onset of Alfvénic turbulence. (English) Zbl 0623.76056 Phys. Fluids 30, 1371-1387 (1987). MSC: 76F99 76X05 76E25 76M99 PDF BibTeX XML Cite \textit{S. Ghosh} and \textit{K. Papadopoulos}, Phys. Fluids 30, 1371--1387 (1987; Zbl 0623.76056) Full Text: DOI
Keefe, Laurence R. Integrability and structural stability of solutions to the Ginzburg- Landau equation. (English) Zbl 0602.76061 Phys. Fluids 29, 3135-3141 (1986). MSC: 76Fxx 76M99 35Q99 PDF BibTeX XML Cite \textit{L. R. Keefe}, Phys. Fluids 29, 3135--3141 (1986; Zbl 0602.76061) Full Text: DOI
Everson, R. M. Chaotic dynamics of a bouncing ball. (English) Zbl 0597.58018 Physica D 19, 355-383 (1986). Reviewer: K.Sibirskij MSC: 37D45 PDF BibTeX XML Cite \textit{R. M. Everson}, Physica D 19, 355--383 (1986; Zbl 0597.58018) Full Text: DOI
Gorman, M.; Widmann, P. J.; Robbins, K. A. Nonlinear dynamics of a convection loop: A quantitative comparison of experiment with theory. (English) Zbl 0588.76094 Physica D 19, 255-267 (1986). MSC: 76E30 76R99 82D15 70-08 80A20 PDF BibTeX XML Cite \textit{M. Gorman} et al., Physica D 19, 255--267 (1986; Zbl 0588.76094) Full Text: DOI
Antoranz, J. C.; Mori, Hazime Intermittent incommensurate chaos. (English) Zbl 0597.58019 Physica D 16, 184-202 (1985). Reviewer: J.Šiška MSC: 37D45 PDF BibTeX XML Cite \textit{J. C. Antoranz} and \textit{H. Mori}, Physica D 16, 184--202 (1985; Zbl 0597.58019) Full Text: DOI
Milnor, John On the concept of attractor. (English) Zbl 0595.58028 Commun. Math. Phys. 99, 177-195 (1985). Reviewer: R.Devaney MSC: 37C70 37D20 37D45 PDF BibTeX XML Cite \textit{J. Milnor}, Commun. Math. Phys. 99, 177--195 (1985; Zbl 0595.58028) Full Text: DOI
McGuinness, Mark J. A computation of the limit capacity of the Lorenz attractor. (English) Zbl 0591.58020 Physica D 16, 265-275 (1985). Reviewer: F.Przytycki MSC: 37C70 37D45 26A18 PDF BibTeX XML Cite \textit{M. J. McGuinness}, Physica D 16, 265--275 (1985; Zbl 0591.58020) Full Text: DOI
Grebogi, Celso; Ott, Edward; Yorke, James A. Attractors on an N-torus: Quasiperiodicity versus chaos. (English) Zbl 0577.58023 Physica D 15, 354-373 (1985). MSC: 37C70 37G99 PDF BibTeX XML Cite \textit{C. Grebogi} et al., Physica D 15, 354--373 (1985; Zbl 0577.58023) Full Text: DOI
Mayer-Kress, Gottfried; Haken, H. Attractors of convex maps with positive Schwarzian derivative in the presence of noise. (English) Zbl 0602.58026 Physica D 10, 329-339 (1984). Reviewer: A.Klíč MSC: 37B99 26A18 37D45 PDF BibTeX XML Cite \textit{G. Mayer-Kress} and \textit{H. Haken}, Physica D 10, 329--339 (1984; Zbl 0602.58026) Full Text: DOI
Grebogi, Celso; Ott, Edward; Pelikan, Steven; Yorke, James A. Strange attractors that are not chaotic. (English) Zbl 0588.58036 Physica D 13, 261-268 (1984). Reviewer: G.Osipenko MSC: 37C70 34C15 37D45 37J40 PDF BibTeX XML Cite \textit{C. Grebogi} et al., Physica D 13, 261--268 (1984; Zbl 0588.58036) Full Text: DOI
Fowler, A. C.; Gibbon, J. D.; Mcguinness, M. J. The real and complex Lorenz equations and their relevance to physical systems. (English) Zbl 1194.76087 Physica D 7, No. 1-3, 126-134 (1983). MSC: 76F99 37N10 PDF BibTeX XML Cite \textit{A. C. Fowler} et al., Physica D 7, No. 1--3, 126--134 (1983; Zbl 1194.76087) Full Text: DOI
Ruelle, David Five turbulent problems. (English) Zbl 1194.37095 Physica D 7, No. 1-3, 40-44 (1983). MSC: 37J99 76F99 PDF BibTeX XML Cite \textit{D. Ruelle}, Physica D 7, No. 1--3, 40--44 (1983; Zbl 1194.37095) Full Text: DOI
Pepwski, P. Bifurcation of periodic solutions in a laser with saturable absorber. (English) Zbl 1194.78044 Physica D 6, No. 3, 364-374 (1983). MSC: 78A60 37G99 34C25 34D20 PDF BibTeX XML Cite \textit{P. Pepwski}, Physica D 6, No. 3, 364--374 (1983; Zbl 1194.78044) Full Text: DOI
Grassberger, Peter; Procaccia, Itamar Measuring the strangeness of strange attractors. (English) Zbl 0593.58024 Physica D 9, 189-208 (1983). Reviewer: R.Devaney MSC: 37D45 28A80 37D25 37A35 PDF BibTeX XML Cite \textit{P. Grassberger} and \textit{I. Procaccia}, Physica D 9, 189--208 (1983; Zbl 0593.58024) Full Text: DOI
Foiaş, Ciprian; Manley, O. P.; Temam, R.; Treve, Y. M. Asymptotic analysis of the Navier-Stokes equations. (English) Zbl 0584.35007 Physica D 9, 157-188 (1983). Reviewer: F.Rosso MSC: 35B40 35Q30 49M15 35D05 PDF BibTeX XML Cite \textit{C. Foiaş} et al., Physica D 9, 157--188 (1983; Zbl 0584.35007) Full Text: DOI
Grebogi, Celso; Ott, Edward; Yorke, James A. Crises, sudden changes in chaotic attractors, and transient chaos. (English) Zbl 0561.58029 Order in chaos, Proc. int. Conf., Los Alamos/N.M. 1982, Physica 7D, 181-200 (1983). Reviewer: G.Keller MSC: 37D45 37A99 37C70 PDF BibTeX XML Full Text: DOI
Moon, H. T.; Huerre, P.; Redekopp, L. G. Transitions to chaos in the Ginzburg-Landau equation. (English) Zbl 0558.58030 Order in chaos, Proc. int. Conf., Los Alamos/N.M. 1982, Physica 7D, 135-150 (1983). MSC: 58J99 37G99 35Q56 PDF BibTeX XML
Hentschel, H. G. E.; Procaccia, Itamar The infinite number of generalized dimensions of fractals and strange attractors. (English) Zbl 0538.58026 Physica D 8, 435-444 (1983). MSC: 37D45 PDF BibTeX XML Cite \textit{H. G. E. Hentschel} and \textit{I. Procaccia}, Physica D 8, 435--444 (1983; Zbl 0538.58026) Full Text: DOI
Ostlund, Stellan; Rand, David; Sethna, James; Siggia, Eric Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. (English) Zbl 0538.58025 Physica D 8, 303-342 (1983). MSC: 37D45 PDF BibTeX XML Cite \textit{S. Ostlund} et al., Physica D 8, 303--342 (1983; Zbl 0538.58025) Full Text: DOI
Greenside, H. S.; Ahlers, Guenter; Hohenberg, P. C.; Walden, R. W. A simple stochastic model for the onset of turbulence in Rayleigh-Bénard convection. (English) Zbl 1194.76053 Physica D 5, No. 2-3, 322-334 (1982). MSC: 76E06 PDF BibTeX XML Cite \textit{H. S. Greenside} et al., Physica D 5, No. 2--3, 322--334 (1982; Zbl 1194.76053) Full Text: DOI
Farmer, J. Doyne Chaotic attractors of an infinite-dimensional dynamical system. (English) Zbl 1194.37052 Physica D 4, No. 3, 366-393 (1982). MSC: 37D45 PDF BibTeX XML Cite \textit{J. D. Farmer}, Physica D 4, No. 3, 366--393 (1982; Zbl 1194.37052) Full Text: DOI
Jensen, R. V.; Oberman, C. R. Statistical properties of chaotic dynamical systems which exhibit strange attractors. (English) Zbl 1194.37056 Physica D 4, No. 2, 183-196 (1982). MSC: 37D45 82B41 81S40 PDF BibTeX XML Cite \textit{R. V. Jensen} and \textit{C. R. Oberman}, Physica D 4, No. 2, 183--196 (1982; Zbl 1194.37056) Full Text: DOI
Fowler, A. C.; Gibbon, J. D.; McGuinness, M. J. The complex Lorenz equations. (English) Zbl 1194.37039 Physica D 4, No. 2, 139-163 (1982). MSC: 37C70 37C55 37D45 PDF BibTeX XML Cite \textit{A. C. Fowler} et al., Physica D 4, No. 2, 139--163 (1982; Zbl 1194.37039) Full Text: DOI
Troger, H. Über chaotisches Verhalten einfacher mechanischer Systeme. (German) Zbl 0532.70023 Z. Angew. Math. Mech. 62, T18-T27 (1982). Reviewer: F.Ling MSC: 70K50 37D45 PDF BibTeX XML Cite \textit{H. Troger}, Z. Angew. Math. Mech. 62, T18--T27 (1982; Zbl 0532.70023) Full Text: DOI
Salvadori, Luigi; Visentin, Francesca Perturbed dynamical systems: Displacement and bifurcation functions. (English) Zbl 0489.34055 J. Math. Anal. Appl. 87, 246-255 (1982). MSC: 34D20 34C25 37G99 PDF BibTeX XML Cite \textit{L. Salvadori} and \textit{F. Visentin}, J. Math. Anal. Appl. 87, 246--255 (1982; Zbl 0489.34055) Full Text: DOI
Froehling, Harold; Crutchfield, J. P.; Farmer, Doyne; Packard, N. H.; Shaw, Rob On determining the dimension of chaotic flows. (English) Zbl 1194.37053 Physica D 3, No. 3, 605-617 (1981). MSC: 37D45 PDF BibTeX XML Cite \textit{H. Froehling} et al., Physica D 3, No. 3, 605--617 (1981; Zbl 1194.37053) Full Text: DOI