×

zbMATH — the first resource for mathematics

Resolvent of nonautonomous linear delay functional differential equations. (English) Zbl 1337.34067
Summary: The aim of this paper is to give a complete proof of the formula for the resolvent of a nonautonomous linear delay functional differential equations given in the book of J. K. Hale and S. M. Verduyn Lunel [Introduction to functional differential equations. New York, NY: Springer-Verlag (1993; Zbl 0787.34002)] under the assumption alone of the continuity of the right-hand side with respect to the time,when the notion of solution is a differentiable function at each point, which satisfies the equation at each point, and when the initial value is a continuous function.

MSC:
34K06 Linear functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [1] M. Adimy, Integrated semigroups and delay differential equations, J. Math. Anal. Appl. 177 (1993), 125-134. · Zbl 0776.34045
[2] J.-P. Aubin, Abstract and applied analysis, Wiley-Interscience, New York, 1977.
[3] H.T. Banks, Representation of solutions of linear functional differential equations, Differential Equations 5 (1969), 399-409. · Zbl 0165.42701
[4] J. Blot, On the almost everywhere continuity, arXiv: 1411.3582v1[math.OC] 13 Nov 2014.
[5] L. Chambadal, and J.-L. Ovaert, Cours de mathématiques; tome 2 : analyse II, Gauthier-Villars, Paris, 1972.
[6] J. Dieudonné, Éléments d’analyse; tome 1: fondements de l’analyse moderne, French edition, Gauthier-Villars, Paris, 1969.
[7] W. Fleming, Functions of several variables, Springer-Verlag, New York, 1977. · Zbl 0348.26002
[8] J. Genet, Mesure et intégration, Librairie Vuibert, Paris, 1976.
[9] J.K. Hale, and M.S. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, New York, 1991.
[10] H. Helson, Harmonic analysis, Wadsworth, Inc., Belmont, California, 1991. · Zbl 0837.43001
[11] L.V. Kantorovitch, and G.P. Akilov, Analyse fonctionnelle, tome 1: opérateurs et fonctionnelles linéaires, French edition, MIR, Moscow, 1981.
[12] A.N. Kolmogorov, and S.V. Fomin, Éléments de la théorie des fonctions et de l’analyse fonctionnelle, French edition, MIR, Moscow, 1974.
[13] S. Lang, Real and functional analysis, Third edition, Springer-Verlag, New York, 1983.
[14] L.A. Liusternik, and V.J. Sobolev, Elements of functional analysis, English edition, Frederick Ungar Publishing Co., New York, 1961.
[15] L. Maniar, Équations différentielles à retard par la méthode d’extrapolation, Port. Math. 54 (1997), 101-113. · Zbl 0876.34072
[16] S.-I. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J.Math. 25 (1988), 353-398. · Zbl 0713.34069
[17] E. Ramis, C. Deschamps, and J. Odoux, Cours de mathématiques spéciales; tome 3: topologie et éléments d’analyse, Third edition, Masson, Paris, 1991.
[18] E. Ramis, C. Deschamps, and J. Odoux, Cours de mathématiques spéciales; tome 4: séries et équations différentielles, Third edition, Masson, Paris, 1977.
[19] F. Riesz and B. Sz. Nagy, Leçons d’analyse fonctionnelle, Sixth edition, Gauthier-Villars, Paris, 1975.
[20] W. Rudin, Real and complex analysis, McGraw-Hill Book Comp., Singapore, 1987. · Zbl 0925.00005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.