×

zbMATH — the first resource for mathematics

A high order continuation method to locate exceptional points and to compute Puiseux series with applications to acoustic waveguides. (English) Zbl 1436.65040
Summary: A numerical algorithm is proposed to explore in a systematic way the trajectories of the eigenvalues of non-Hermitian matrices in the parametric space and exploit this in order to find the locations of defective eigenvalues in the complex plane. These non-Hermitian degeneracies also called exceptional points (EP) have raised considerable attention in the scientific community as these can have a great impact in a variety of physical problems.
The method requires the computation of successive derivatives of two selected eigenvalues with respect to the parameter so that, after recombination, regular functions can be constructed. This algebraic manipulation permits the localization of exceptional points (EP), using standard root-finding algorithms and the computation of the associated Puiseux series up to an arbitrary order. This representation, which is associated with the topological structure of Riemann surfaces allows to efficiently approximate the selected pair in a certain neighborhood of the EP.
Practical applications dealing with guided acoustic waves propagating in straight ducts with absorbing walls and in periodic guiding structures are given to illustrate the versatility of the proposed method and its ability to handle large size matrices arising from finite element discretization techniques. The fact that EPs are associated with optimal dissipative treatments in the sense that they should provide best modal attenuation is also discussed.
MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
76Q05 Hydro- and aero-acoustics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berry, M., Physics of nonhermitian degeneracies, Czechoslov. J. Phys., 54, 10, 1039-1047 (2004)
[2] Heiss, W. D.; Sannino, A. L., Avoided level crossing and exceptional points, J. Phys. A, 23, 7, 1167 (1990)
[3] Heiss, W., The physics of exceptional points, J. Phys. A, 45, 44, Article 444016 pp. (2012) · Zbl 1263.81163
[4] Kato, T., Perturbation Theory for Linear Operators (1980), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, 623 pp
[5] Trefethen, L. N.; Embree, M., Spectra and Pseudospectra: the Behavior of Nonnormal Matrices and Operators (2005), Princeton University Press · Zbl 1085.15009
[6] Seyranian, A. P.; Kirillov, O. N.; Mailybaev, A. A., Coupling of eigenvalues of complex matrices at diabolic and exceptional points, J. Phys. A, 38, 8, 1723 (2005) · Zbl 1081.81039
[7] Triantafyllou, M.; Triantafyllou, G., Frequency coalescence and mode localization phenomena: a geometric theory, J. Sound Vib., 150, 3, 485-500 (1991)
[8] Seyranian, A.; Mailybaev, A., Multiparameter Stability Theory with Mechanical Applications, vol. 13 (2003), World Scientific · Zbl 1047.34063
[9] Tester, B. J., The optimization of modal sound attenuation in duct, in the absence of mean flow, J. Sound Vib., 27, 477-513 (1973) · Zbl 0272.76048
[10] Shenderov, E. L., Helmholtz equation solutions corresponding to multiple roots of the dispersion equation for a waveguide with impedance walls, Acoust. Phys., 46, 3, 357-363 (2000)
[11] Bi, W.; Pagneux, W., New insights into mode behaviours in waveguides with impedance boundary conditions
[12] Xiong, L.; Nennig, B.; Aurégan, Y.; Bi, W., Sound attenuation optimization using metaporous materials tuned on exceptional points, J. Acoust. Soc. Am., 142, 4, 2288-2297 (2017)
[13] Achilleos, V.; Theocharis, G.; Richoux, O.; Pagneux, V., Non-hermitian acoustic metamaterials: role of exceptional points in sound absorption, Phys. Rev. B, 95, Article 144303 pp. (2017)
[14] Feng, L.; Zhu, X.; Yang, S.; Zhu, H.; Zhang, P.; Yin, X.; Wang, Y.; Zhang, X., Demonstration of a large-scale optical exceptional point structure, Opt. Express, 22, 2, 1760-1767 (2014)
[15] Moiseyev, N., Non-Hermitian Quantum Mechanics (2011), Cambridge University Press · Zbl 1230.81004
[16] Uzdin, R.; Lefebvre, R., Finding and pinpointing exceptional points of an open quantum system, J. Phys. B, 43, 23, Article 235004 pp. (2010)
[17] Jarlebring, E.; Kvaal, S.; Michiels, W., Computing all pairs (λ, μ) such that λ is a double eigenvalue of A+ μB, SIAM J. Matrix Anal. Appl., 32, 3, 902-927 (2011) · Zbl 1245.65043
[18] Cartarius, H.; Main, J.; Wunner, G., Exceptional points in the spectra of atoms in external fields, Phys. Rev. A, 79, Article 053408 pp. (2009)
[19] Feldmaier, M.; Main, J.; Schweiner, F.; Cartarius, H.; Wunner, G., Rydberg systems in parallel electric and magnetic fields: an improved method for finding exceptional points, J. Phys. B, 49, 14, Article 144002 pp. (2016)
[20] Bender, C. M., PT Symmetry: In Quantum and Classical Physics (2018), World Scientific Publishing
[21] Adhikari, S.; Friswell, M., Random matrix eigenvalue problems in structural dynamics, Int. J. Numer. Methods Eng., 69, 3, 562-591 (2007) · Zbl 1194.74152
[22] Ghienne, M.; Nennig, B., Méthode de perturbation à haut ordre pour l’estimation de valeurs propres aléatoires proche d’une zone de veering, (14e colloque national en calcul des structures (2019))
[23] Dieci, L.; Papini, A.; Pugliese, A.; Spadoni, A., Continuous decompositions and coalescing eigenvalues for matrices depending on parameters, (Current Challenges in Stability Issues for Numerical Differential Equations. Current Challenges in Stability Issues for Numerical Differential Equations, Lecture Notes in Mathematics, vol. 2082 (2014), Springer), 173-264 · Zbl 1318.15004
[24] Lawrie, J. B.; Abrahams, I. D., An orthogonality relation for a class of problems with high-order boundary conditions; applications in sound-structure interaction, Q. J. Mech. Appl. Math., 52, 2, 161-181 (1999) · Zbl 0934.74023
[25] Redon, E.; Bonnet-Ben Dhia, A.-S.; Mercier, J.-F.; Poernomo, S. Sari, Non-reflecting boundary conditions for acoustic propagation in ducts with acoustic treatment and mean flow, Int. J. Numer. Methods Eng., 86, 11, 1360-1378 (2011) · Zbl 1235.76029
[26] Hanson, G. W.; Yakovlev, A. B.; Othman, M. A.; Capolino, F., Exceptional points of degeneracy and branch points for coupled transmission lines—linear-algebra and bifurcation theory perspectives, IEEE Trans. Antennas Propag., 67, 2, 1025-1034 (2019)
[27] Hernández, E.; Jáuregui, A.; Mondragón, A., Energy eigenvalue surfaces close to a degeneracy of unbound states: Crossings and anticrossings of energies and widths, Phys. Rev. E, 72, 2, Article 026221 pp. (2005)
[28] Lefebvre, R.; Moiseyev, N., Localization of exceptional points with Padé approximants, J. Phys. B, 43, 9, Article 095401 pp. (2010)
[29] Landau, A.; Haritan, I.; Kaprálová-Žďánská, P. R.; Moiseyev, N., Atomic and molecular complex resonances from real eigenvalues using standard (hermitian) electronic structure calculations, J. Phys. Chem. A, 120, 19, 3098-3108 (2016)
[30] Stahl, H., The convergence of Padé approximants to functions with branch points, J. Approx. Theory, 91, 2, 139-204 (1997) · Zbl 0896.41009
[31] Aptekarev, A. I.; Yattselev, M. L., Padé approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials, Acta Math., 215, 2, 217-280 (2015) · Zbl 1339.41020
[32] Akinola, R. O.; Freitag, M. A.; Spence, A., The computation of Jordan blocks in parameter-dependent matrices, IMA J. Numer. Anal., 34, 3, 955-976 (2014) · Zbl 1302.65136
[33] Spence, A.; Poulton, C., Photonic band structure calculations using nonlinear eigenvalue techniques, J. Comput. Phys., 204, 1, 65-81 (2005) · Zbl 1143.82336
[34] Mailybaev, A. A., Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters, Numer. Linear Algebra Appl., 13, 5, 419-436 (2006) · Zbl 1174.65368
[35] Akinola, R. O.; Freitag, M. A.; Spence, A., The calculation of the distance to a nearby defective matrix, Numer. Linear Algebra Appl., 21, 3, 403-414 (2014) · Zbl 1340.65072
[36] Welters, A., On explicit recursive formulas in the spectral perturbation analysis of a Jordan block, SIAM J. Matrix Anal. Appl., 32, 1, 1-22 (2011) · Zbl 1229.15011
[37] Hernández, F.; Pick, A.; Johnson, S. G., Scalable computation of Jordan chains, arXiv preprint
[38] Muhič, A.; Plestenjak, B., A method for computing all values λ such that A+ λB has a multiple eigenvalue, Linear Algebra Appl., 440, 345-359 (2014) · Zbl 1292.65039
[39] Benda, Z.; Jagau, T.-C., Locating exceptional points on multidimensional complex-valued potential energy surfaces, J. Phys. Chem. Lett., 9, 24, 6978-6984 (2018)
[40] Andrew, A. L.; Chu, K.-W. E.; Lancaster, P., Derivatives of eigenvalues and eigenvectors of matrix functions, SIAM J. Matrix Anal. Appl., 14, 4, 903-926 (1993) · Zbl 0786.15011
[41] Baumgärtel, H., Analytic Perturbation Theory for Matrices and Operators, vol. 15 (1985), Springer · Zbl 0591.47013
[42] Güttel, S.; Tisseur, F., The nonlinear eigenvalue problem, Acta Numer., 26, 1-94 (2017) · Zbl 1377.65061
[43] Balay, S.; Abhyankar, S.; Adams, M.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. (2018), Argonne National Laboratory, IL: Argonne National Laboratory, IL United States, Petsc users manual, Tech. rep., PETSc Users Manual, ANL-95/11 - Revision 3.10
[44] Dalcin, L. D.; Paz, R. R.; Kler, P. A.; Cosimo, A., Parallel distributed computing using python, Adv. Water Resour., 34, 9, 1124-1139 (2011), New Computational Methods and Software Tools
[45] Amestoy, P. R.; Duff, I. S.; L’Excellent, J.-Y.; Koster, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018
[46] Hernandez, V.; Roman, J. E.; Vidal, V., SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Softw., 31, 3, 351-362 (2005) · Zbl 1136.65315
[47] Ghienne, M.; Blanzé, C.; Laurent, L., Stochastic model reduction for robust dynamical characterization of structures with random parameters, C. R., Méc., 345, 12, 844-867 (2017)
[48] Nennig, B.; Perrey-Debain, E.; Ben Tahar, M., A mode matching method for modelling dissipative silencers lined with poroelastic materials and containing mean flow, J. Acoust. Soc. Am., 128, 6, 3308-3320 (2010)
[49] Christiansen, S.; Madsen, P. A., On truncated taylor series and the position of their spurious zeros, Appl. Numer. Math., 56, 1, 91-104 (2006) · Zbl 1084.76062
[50] Allard, J.-F.; Atalla, N., Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials (2009), John Wiley & Sons: John Wiley & Sons Chichester, 372 pp
[51] Seyranian, A. P.; Mailybaev, A. A., Interaction of eigenvalues in multi-parameter problems, J. Sound Vib., 267, 5, 1047-1064 (2003) · Zbl 1236.70018
[52] Murthy, D. V.; Haftka, R. T., Derivatives of eigenvalues and eigenvectors of a general complex matrix, Int. J. Numer. Methods Eng., 26, 2, 293-311 (1988) · Zbl 0637.65030
[53] Rudisill, C. S.; Chu, Y.-Y., Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors, AIAA J., 13, 6, 834-837 (1975)
[54] Andrew, A. L., Convergence of an iterative method for derivatives of eigensystems, J. Comput. Phys., 26, 1, 107-112 (1978) · Zbl 0374.65017
[55] Tan, R. C., Accelerating the convergence of an iterative method for derivatives of eigensystems, J. Comput. Phys., 67, 1, 230-235 (1986) · Zbl 0611.65022
[56] Van Der Aa, N.; Ter Morsche, H.; Mattheij, R., Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem, Electron. J. Linear Algebra, 16, 1, 300-314 (2007) · Zbl 1145.65027
[57] Krome, F.; Gravenkamp, H., Analyzing modal behavior of guided waves using high order eigenvalue derivatives, Ultrasonics, 71, 75-85 (2016)
[58] Thurston, R. N., Direct calculation of the group velocity, IEEE Trans. Sonics Ultrason., 24, 2, 109-111 (1977)
[59] Moiseyenko, R. P.; Laude, V., Material loss influence on the complex band structure and group velocity in phononic crystals, Phys. Rev. B, 83, Article 064301 pp. (2011)
[60] Nelson, R. B., Simplified calculation of eigenvector derivatives, AIAA J., 14, 9, 1201-1205 (1976) · Zbl 0342.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.