×

zbMATH — the first resource for mathematics

Algebraic transformation groups and representation theory. (English) Zbl 0302.54036

MSC:
54H15 Transformation groups and semigroups (topological aspects)
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Auslander, L., Moore, C. C.: Unitary representations of solvable Lie groups. Memoirs Amer. Math. Soc., No.62 (1966) · Zbl 0204.14202
[2] Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801
[3] Borel, A., Serre, J.-P.: ThĂ©oreme de finitude en cohomologie galoisienne. Comm. Math. Helv.39, 111-164 (1964) · Zbl 0143.05901 · doi:10.1007/BF02566948
[4] Effros, E.: Transformation groups and C*-algebras. Ann. of Math.81, 38-55 (1965) · Zbl 0152.33203 · doi:10.2307/1970381
[5] Glimm, J.: Locally compact transformation groups. Trans. Amer. Math. Soc.104, 124-138 (1962) · Zbl 0119.10802
[6] Kirillov, A.: Unitary representations of nilpotent Lie groups. Russian Math. Surveys17, 53-104 (1962) · Zbl 0106.25001 · doi:10.1070/RM1962v017n04ABEH004118
[7] Lipsman, R. L.: The CCR property for algebraic groups. Amer. J. Math. (to appear) · Zbl 0319.22009
[8] Lipsman, R. L.: A survey of some current topics in group representations, vol.388. Berlin-Heidelberg-New York: Springer Lecture Notes, 1974 · Zbl 0283.22002
[9] Mackey, G. W.: Unitary representations of group extensions. I. Acta Math.99, 265-311 (1958) · Zbl 0082.11301 · doi:10.1007/BF02392428
[10] Moore, C. C.: Decomposition of unitary representations by discrete subgroups of nilpotent groups. Ann. of Math.82, 146-182 (1965) · Zbl 0139.30702 · doi:10.2307/1970567
[11] Richardson, R. W.: Principal orbit types for algebraic transformation spaces in characteristic zero. Inventiones math.16, 6-14 (1972) · Zbl 0242.14010 · doi:10.1007/BF01391211
[12] Richardson, R. W.: Principal orbit types for real-analytic transformation groups. Amer. J. Math.95, 193-203 (1973) · Zbl 0277.57013 · doi:10.2307/2373651
[13] Rothschild, L. P.: Orbits in a real reductive Lie algebra. Trans. Amer. Math. Soc.168, 403-421 (1972) · Zbl 0222.17009 · doi:10.1090/S0002-9947-1972-0349778-3
[14] Serre, J.-P.: Lie algebras and Lie groups. New York: Benjamin 1965 · Zbl 0132.27803
[15] Vust, T.: Sur le type principal d’orbites d’un module rationnel. Comm. Math. Helv.49, 408-416 (1974) · Zbl 0309.22015 · doi:10.1007/BF02566740
[16] Corwin, L.: Decomposition of representations induced from uniform subgroups and the Mackey machine (preprint) · Zbl 0332.22010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.