Hsieh, Chia-Yu; Lin, Tai-Chia; Liu, Chun; Liu, Pei Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. (English) Zbl 1441.82015 J. Differ. Equations 269, No. 9, 7287-7310 (2020). MSC: 82C21 82D15 82C35 82C40 78A57 78A35 49S05 35A01 35A02 PDF BibTeX XML Cite \textit{C.-Y. Hsieh} et al., J. Differ. Equations 269, No. 9, 7287--7310 (2020; Zbl 1441.82015) Full Text: DOI
Wu, Xiaochun; Zhang, Yongqian The well-posedness of bipolar semiconductor hydrodynamic model with recombination-generation rate on the bounded interval. (English) Zbl 1434.82088 Appl. Anal. 99, No. 7, 1085-1109 (2020). MSC: 82D37 35M33 76N10 35B40 35Q35 PDF BibTeX XML Cite \textit{X. Wu} and \textit{Y. Zhang}, Appl. Anal. 99, No. 7, 1085--1109 (2020; Zbl 1434.82088) Full Text: DOI
Li, Bin Global existence and decay estimates of solutions of a parabolic-elliptic-parabolic system for ion transport networks. (English) Zbl 1442.35364 Result. Math. 75, No. 2, Paper No. 45, 28 p. (2020). MSC: 35Q49 35A01 35B40 35M33 35Q92 92C37 92C40 35K55 92C42 PDF BibTeX XML Cite \textit{B. Li}, Result. Math. 75, No. 2, Paper No. 45, 28 p. (2020; Zbl 1442.35364) Full Text: DOI
Holzinger, Philipp; Jüngel, Ansgar Large-time asymptotics for a matrix spin drift-diffusion model. (English) Zbl 1437.82021 J. Math. Anal. Appl. 486, No. 1, Article ID 123887, 20 p. (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 82C70 35Q20 35Q81 35B40 82D37 78A35 PDF BibTeX XML Cite \textit{P. Holzinger} and \textit{A. Jüngel}, J. Math. Anal. Appl. 486, No. 1, Article ID 123887, 20 p. (2020; Zbl 1437.82021) Full Text: DOI
Hsieh, Chia-Yu Global existence of solutions for the Poisson-Nernst-Planck system with steric effects. (English) Zbl 1429.35127 Nonlinear Anal., Real World Appl. 50, 34-54 (2019). MSC: 35K57 35M33 PDF BibTeX XML Cite \textit{C.-Y. Hsieh}, Nonlinear Anal., Real World Appl. 50, 34--54 (2019; Zbl 1429.35127) Full Text: DOI
Jiang, Jie Eventual smoothness and exponential stabilization of global weak solutions to some chemotaxis systems. (English) Zbl 1425.35109 SIAM J. Math. Anal. 51, No. 6, 4604-4644 (2019). MSC: 35K59 35K61 35D30 35Q92 PDF BibTeX XML Cite \textit{J. Jiang}, SIAM J. Math. Anal. 51, No. 6, 4604--4644 (2019; Zbl 1425.35109) Full Text: DOI
Battaglia, Luca; Pistoia, Angela A unified approach of blow-up phenomena for two-dimensional singular Liouville systems. (English) Zbl 1420.35093 Rev. Mat. Iberoam. 34, No. 4, 1867-1910 (2018). MSC: 35J57 35J25 35B44 35B40 PDF BibTeX XML Cite \textit{L. Battaglia} and \textit{A. Pistoia}, Rev. Mat. Iberoam. 34, No. 4, 1867--1910 (2018; Zbl 1420.35093) Full Text: DOI arXiv
Zhong, Hua; Mu, Chunlai; Lin, Ke Global weak solution and boundedness in a three-dimensional competing chemotaxis. (English) Zbl 1397.92106 Discrete Contin. Dyn. Syst. 38, No. 8, 3875-3898 (2018). MSC: 92C17 35Q92 PDF BibTeX XML Cite \textit{H. Zhong} et al., Discrete Contin. Dyn. Syst. 38, No. 8, 3875--3898 (2018; Zbl 1397.92106) Full Text: DOI
Lin, Ke; Mu, Chunlai; Zhou, Deqin Stabilization in a higher-dimensional attraction-repulsion chemotaxis system if repulsion dominates over attraction. (English) Zbl 1391.35200 Math. Models Methods Appl. Sci. 28, No. 6, 1105-1134 (2018). MSC: 35K55 92C17 35B35 PDF BibTeX XML Cite \textit{K. Lin} et al., Math. Models Methods Appl. Sci. 28, No. 6, 1105--1134 (2018; Zbl 1391.35200) Full Text: DOI
Hu, Haifeng; Mei, Ming; Zhang, Kaijun Relaxation limit in bipolar semiconductor hydrodynamic model with non-constant doping profile. (English) Zbl 1358.35193 J. Math. Anal. Appl. 448, No. 2, 1175-1203 (2017). MSC: 35Q82 35Q35 82D37 35B45 PDF BibTeX XML Cite \textit{H. Hu} et al., J. Math. Anal. Appl. 448, No. 2, 1175--1203 (2017; Zbl 1358.35193) Full Text: DOI
Granero-Belinchón, Rafael On a drift-diffusion system for semiconductor devices. (English) Zbl 1361.82038 Ann. Henri Poincaré 17, No. 12, 3473-3498 (2016). Reviewer: Piotr Garbaczewski (Opole) MSC: 82D37 60G22 78A35 35R11 35C20 35B40 34K37 35Q82 PDF BibTeX XML Cite \textit{R. Granero-Belinchón}, Ann. Henri Poincaré 17, No. 12, 3473--3498 (2016; Zbl 1361.82038) Full Text: DOI arXiv
Lin, Ke; Mu, Chunlai; Gao, Ye Boundedness and blow up in the higher-dimensional attraction-repulsion chemotaxis system with nonlinear diffusion. (English) Zbl 1347.35047 J. Differ. Equations 261, No. 8, 4524-4572 (2016). MSC: 35B44 92C17 35B45 35K51 35K59 PDF BibTeX XML Cite \textit{K. Lin} et al., J. Differ. Equations 261, No. 8, 4524--4572 (2016; Zbl 1347.35047) Full Text: DOI
Yamamoto, Masakazu; Sugiyama, Yuusuke Asymptotic expansion of solutions to the drift-diffusion equation with fractional dissipation. (English) Zbl 1381.35235 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 141, 57-87 (2016). MSC: 35R11 35B30 35B33 35C20 35K58 35M31 78A35 82D37 PDF BibTeX XML Cite \textit{M. Yamamoto} and \textit{Y. Sugiyama}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 141, 57--87 (2016; Zbl 1381.35235) Full Text: DOI
Yamamoto, Masakazu; Sugiyama, Yuusuke Asymptotic behavior of solutions to the drift-diffusion equation with critical dissipation. (English) Zbl 1346.35022 Ann. Henri Poincaré 17, No. 6, 1331-1352 (2016). Reviewer: Andrea Tellini (Paris) MSC: 35B40 35R11 35Q60 PDF BibTeX XML Cite \textit{M. Yamamoto} and \textit{Y. Sugiyama}, Ann. Henri Poincaré 17, No. 6, 1331--1352 (2016; Zbl 1346.35022) Full Text: DOI arXiv
Yamamoto, Masakazu Asymptotic expansion of solutions to the nonlinear dissipative equation with the anomalous diffusion. (English) Zbl 1335.35284 J. Math. Anal. Appl. 427, No. 2, 1027-1069 (2015). Reviewer: Gelu Paşa (Bucureşti) MSC: 35R11 35B40 35C20 PDF BibTeX XML Cite \textit{M. Yamamoto}, J. Math. Anal. Appl. 427, No. 2, 1027--1069 (2015; Zbl 1335.35284) Full Text: DOI
Zhou, Fang Asymptotic behavior of solutions for the one-dimensional drift-diffusion model in the quarter plane. (English) Zbl 1313.35336 Wuhan Univ. J. Nat. Sci. 19, No. 2, 144-148 (2014). MSC: 35Q60 35B40 78A35 PDF BibTeX XML Cite \textit{F. Zhou}, Wuhan Univ. J. Nat. Sci. 19, No. 2, 144--148 (2014; Zbl 1313.35336) Full Text: DOI
Lin, Chang-Shou; Zhang, Lei Classification of radial solutions to Liouville systems with singularities. (English) Zbl 1285.35025 Discrete Contin. Dyn. Syst. 34, No. 6, 2617-2637 (2014). MSC: 35J47 35J60 35J75 PDF BibTeX XML Cite \textit{C.-S. Lin} and \textit{L. Zhang}, Discrete Contin. Dyn. Syst. 34, No. 6, 2617--2637 (2014; Zbl 1285.35025) Full Text: DOI arXiv
Tao, Youshan; Wang, Zhi-An Competing effects of attraction vs. repulsion in chemotaxis. (English) Zbl 1403.35136 Math. Models Methods Appl. Sci. 23, No. 1, 1-36 (2013). Reviewer: E. Ahmed (Mansoura) MSC: 35K57 35Q92 35B40 35B44 92C17 35A01 PDF BibTeX XML Cite \textit{Y. Tao} and \textit{Z.-A. Wang}, Math. Models Methods Appl. Sci. 23, No. 1, 1--36 (2013; Zbl 1403.35136) Full Text: DOI
Chen, Zhi-You; Chern, Jann-Long; Tang, Yong-Li On the solutions to a Liouville-type system involving singularity. (English) Zbl 1250.35089 Calc. Var. Partial Differ. Equ. 43, No. 1-2, 57-81 (2012). Reviewer: Massimo Lanza de Cristoforis (Padova) MSC: 35J47 35A20 34C99 PDF BibTeX XML Cite \textit{Z.-Y. Chen} et al., Calc. Var. Partial Differ. Equ. 43, No. 1--2, 57--81 (2012; Zbl 1250.35089) Full Text: DOI
Yamamoto, Masakazu Spatial analyticity of solutions to the drift-diffusion equation with generalized dissipation. (English) Zbl 1225.35042 Arch. Math. 97, No. 3, 261-270 (2011). MSC: 35B65 35K45 35Q60 78A35 82D37 35R11 PDF BibTeX XML Cite \textit{M. Yamamoto}, Arch. Math. 97, No. 3, 261--270 (2011; Zbl 1225.35042) Full Text: DOI
Liu, Weishi; Wang, Bixiang Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. (English) Zbl 1218.37113 J. Dyn. Differ. Equations 22, No. 3, 413-437 (2010). Reviewer: Adina Luminiţa Sasu (Timişoara) MSC: 37L55 PDF BibTeX XML Cite \textit{W. Liu} and \textit{B. Wang}, J. Dyn. Differ. Equations 22, No. 3, 413--437 (2010; Zbl 1218.37113) Full Text: DOI arXiv
Nishibata, Shinya; Suzuki, Masahiro Relaxation limit and initial layer to hydrodynamic models for semiconductors. (English) Zbl 1214.35052 J. Differ. Equations 249, No. 6, 1385-1409 (2010). Reviewer: Giovanni Mascali (Arcavacata di Rende) MSC: 35Q35 35Q60 76W05 76R50 35B40 82D37 PDF BibTeX XML Cite \textit{S. Nishibata} and \textit{M. Suzuki}, J. Differ. Equations 249, No. 6, 1385--1409 (2010; Zbl 1214.35052) Full Text: DOI
Yamamoto, Masakazu Asymptotic expansion of solutions to the drift-diffusion equation with large initial data. (English) Zbl 1201.35050 J. Math. Anal. Appl. 369, No. 1, 144-163 (2010). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35B40 35K55 35K15 PDF BibTeX XML Cite \textit{M. Yamamoto}, J. Math. Anal. Appl. 369, No. 1, 144--163 (2010; Zbl 1201.35050) Full Text: DOI
Lin, Chang-Shou; Zhang, Lei Profile of bubbling solutions to a Liouville system. (English) Zbl 1182.35107 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 117-143 (2010). MSC: 35J60 35J57 35B45 35B44 35B53 PDF BibTeX XML Cite \textit{C.-S. Lin} and \textit{L. Zhang}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 1, 117--143 (2010; Zbl 1182.35107) Full Text: DOI arXiv
Ogawa, Takayoshi; Yamamoto, Masakazu Asymptotic behavior of solutions to drift-diffusion system with generalized dissipation. (English) Zbl 1187.35015 Math. Models Methods Appl. Sci. 19, No. 6, 939-967 (2009). Reviewer: Nasser-eddine Tatar (Dhahran) MSC: 35B40 35K45 35K55 35Q60 35K59 35R11 PDF BibTeX XML Cite \textit{T. Ogawa} and \textit{M. Yamamoto}, Math. Models Methods Appl. Sci. 19, No. 6, 939--967 (2009; Zbl 1187.35015) Full Text: DOI
Kobayashi, Ryo; Kurokiba, Masaki; Kawashima, Shuichi Stationary solutions to the drift-diffusion model in the whole spaces. (English) Zbl 1173.78301 Math. Methods Appl. Sci. 32, No. 6, 640-652 (2009). MSC: 78A25 82D10 47N50 PDF BibTeX XML Cite \textit{R. Kobayashi} et al., Math. Methods Appl. Sci. 32, No. 6, 640--652 (2009; Zbl 1173.78301) Full Text: DOI
Jochmann, F. Uniqueness and regularity for the two-dimensional drift-diffusion model for semiconductors coupled with Maxwell’s equations. (English) Zbl 0968.78004 J. Differ. Equations 147, No. 2, 242-270 (1998). Reviewer: A.Jeffrey (Newcastle upon Tyne) MSC: 78A25 35Q60 82D55 PDF BibTeX XML Cite \textit{F. Jochmann}, J. Differ. Equations 147, No. 2, 242--270 (1998; Zbl 0968.78004) Full Text: DOI
Jochmann, F. A singular limit in the drift diffusion model for semiconductors coupled with Maxwell’s equations. (English) Zbl 0886.35148 Appl. Anal. 67, No. 1-2, 121-136 (1997). Reviewer: F.Jochmann (Berlin) MSC: 35Q60 35L45 35B30 35B25 PDF BibTeX XML Full Text: DOI
Jochmann, F. Galerkin approximation of weak solutions of the drift diffusion model for semiconductors coupled with Maxwell’s equations. (English) Zbl 0865.35028 Math. Methods Appl. Sci. 19, No. 18, 1471-1488 (1996). MSC: 35D05 35Q60 35K55 35L50 PDF BibTeX XML Cite \textit{F. Jochmann}, Math. Methods Appl. Sci. 19, No. 18, 1471--1488 (1996; Zbl 0865.35028) Full Text: DOI
Biler, Piotr; Hebisch, Waldemar; Nadzieja, Tadeusz The Debye system: Existence and large time behavior of solutions. (English) Zbl 0814.35054 Nonlinear Anal., Theory Methods Appl. 23, No. 9, 1189-1209 (1994). Reviewer: R.Manthey (Jena) MSC: 35K60 35D05 PDF BibTeX XML Cite \textit{P. Biler} et al., Nonlinear Anal., Theory Methods Appl. 23, No. 9, 1189--1209 (1994; Zbl 0814.35054) Full Text: DOI
Gajewski, Herbert; Gröger, Konrad On the basic equations for carrier transport in semiconductors. (English) Zbl 0642.35038 J. Math. Anal. Appl. 113, 12-35 (1986). Reviewer: M.Degiovanni MSC: 35K55 78A35 35B65 35B40 35A05 PDF BibTeX XML Cite \textit{H. Gajewski} and \textit{K. Gröger}, J. Math. Anal. Appl. 113, 12--35 (1986; Zbl 0642.35038) Full Text: DOI