zbMATH — the first resource for mathematics

An Erdős-Ko-Rado theorem for the derangement graph of PGL(\(2,q\)) acting on the projective line. (English) Zbl 1227.05163
Summary: Let \(G= \text{PGL}(2, q)\) be the projective general linear group acting on the projective line \(\mathbb{P}_q\). A subset \(S\) of \(G\) is intersecting if for any pair of permutations \(\pi\), \(\sigma\) in \(S\), there is a projective point \(p\in\mathbb{P}_q\) such that \(p^\pi= p^\sigma\). We prove that if \(S\) is intersecting, then \(|S|\leq q(q- 1)\). Also, we prove that the only sets \(S\) that meet this bound are the cosets of the stabilizer of a point of \(\mathbb{P}_q\).

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05D05 Extremal set theory
05E10 Combinatorial aspects of representation theory
Full Text: DOI arXiv
[1] Babai, L., Spectra of Cayley graphs, J. combin. theory ser. B, 2, 180-189, (1979) · Zbl 0338.05110
[2] Cameron, P.J., Permutation groups, London math. soc. stud. texts, 45, (1999) · Zbl 1091.20002
[3] Cameron, P.J.; Ku, C.Y., Intersecting families of permutations, European J. combin., 24, 7, 881-890, (2003) · Zbl 1026.05001
[4] Deza, M.; Frankl, P., Erdős-ko-Rado theorem - 22 years later, SIAM J. algebraic discrete methods, 4, 4, 419-431, (1983) · Zbl 0526.05001
[5] Erdős, P.; Ko, C.; Rado, R., Intersection theorems for systems of finite sets, Quart. J. math. Oxford ser., 12, 2, 313-320, (1961) · Zbl 0100.01902
[6] Frankl, P., Intersection theorems for finite sets and geometric applications, Proc. internat. congress math., 1, 2, 1419-1430, (1986) · Zbl 0615.62041
[7] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12, http://www.gap-system.org, 2008.
[8] Godsil, C.; Meagher, K., A new proof of the Erdős-ko-Rado theorem for intersecting families of permutations, European J. combin., 30, 404-414, (2009) · Zbl 1177.05010
[9] Green, J.A., The characters of the finite general linear groups, Trans. amer. math. soc., 80, 402-447, (1955) · Zbl 0068.25605
[10] Isaacs, M.I., Character theory of finite groups, (2006), AMS Chelsea Publishing · Zbl 1119.20005
[11] James, G.; Liebeck, M., Representations and characters of groups, (2001), Cambridge University Press · Zbl 0981.20004
[12] Katona, G., Two applications (for search theory and truth functions) of sperner type theorems, Period. math. hungar., 3, 19-26, (1973) · Zbl 0266.05001
[13] Kleitman, D.J.; Spencer, J., Families of k-independent sets, Discrete math., 6, 255-262, (1973) · Zbl 0269.05002
[14] Ku, C.Y.; Wong, T.W., Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. combin., 14, (2007), 15 pp · Zbl 1111.05093
[15] Larose, B.; Malvenuto, C., Stable sets of maximal size in Kneser-type graphs, European J. combin., 25, 5, 657-673, (2004) · Zbl 1048.05078
[16] Liggett, T.M., Extensions of the Erdős-ko-Rado theorem and a statistical application, J. combin. theory ser. A, 23, 15-21, (1977) · Zbl 0361.05011
[17] Xiang, Q., Association schemes from ovoids in \(\operatorname{PG}(3, q)\), J. geom., 76, 294-301, (2003) · Zbl 1041.51005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.