zbMATH — the first resource for mathematics

Uniqueness sets for Gevrey classes. (English) Zbl 0442.30031
30D55 \(H^p\)-classes (MSC2000)
Full Text: DOI
[1] R. B. Saunas, ”Functions with null moments,” Rev. Acad. Ciencias Madrid,49, 331–368 (1955).
[2] L. Carleson, ”Sets of uniqueness for functions regular in the unit circle,” Acta Math.,87, 325–345 (1952). · Zbl 0046.30005 · doi:10.1007/BF02392289
[3] W. P. Novinger, ”Holomorphic functions with infinitely differentiable boundary values,” Illinois J. Math.,15, No. 1, 80–90 (1971). · Zbl 0205.42401
[4] B. I. Korenblyum, ”On functions holomorphic in the circle and smooth up to its boundary,” Dokl. Akad. Nauk SSSR,200, No. 1, 24–27 (1971).
[5] B. A. Taylor and D. L. Williams, ”Zeros of Lipschitz functions analytic in the unit disc,” Michigan Math. J.,18, 129–139 (1972). · Zbl 0197.05501
[6] B. A. Taylor and D. L. Williams, ”Boundary zero sets of Afunctions satisfying growth conditions,” Proc. Am. Math. Soc.,35, No. 1, 155–159 (1972). · Zbl 0258.30003
[7] A. -M. Chollét, ”Ensembles de zéros de fonctions analytiques dan le disque, appartenant á une classe de Gevrey sur le bord,” C. R. Acad. Sci. Paris, Ser. A-B,269, 447–449 (1969). · Zbl 0209.10001
[8] B. S. Pavlov and M. G. Suturin, ”On the accuracy of a uniqueness theorem,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,30, 170–171 (1972). · Zbl 0377.30003
[9] M. G. Suturin, ”On interior factors of functions from the Gevrey classes,” in: Probl. Mat. Fiz., No. 7, Leningrad State Univ. (1974), pp. 149–162.
[10] V. S. Korolevich and E. A. Pogorelyi, ”On the zeros of analytic functions belonging to the Gevrey classes,” Mat. Zametki,15, No. 6, 857–863 (1974).
[11] B. I. Korenblyum, ”Closed ideals in the ring An,” Funkts. Anal. Prilozhen.,6, No. 3, 38–52 (1972).
[12] A.-M. Chollet, ”Zéros dans les classes the Gevrey de type analytique,” Bull. Sci. Math.,96, No. 2, 65–68 (1972).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.