×

zbMATH — the first resource for mathematics

Finite groups. (English. Russian original) Zbl 0664.20010
J. Sov. Math. 44, No. 3, 237-318 (1989); translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 24, 3-120 (1986).
See the review in Zbl 0632.20009.
MSC:
20D05 Finite simple groups and their classification
20-02 Research exposition (monographs, survey articles) pertaining to group theory
20Dxx Abstract finite groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. N. Adamov, ”On finite p-groups with Abelian groups of automorphisms,” in: Algebraic Investigations, Sverdlovsk (1976), pp. 3–5.
[2] S. P. Azletskii, ”Some criteria of solvability of finite groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 3–5 (1975).
[3] S. P. Azletskii, ”On finite nonsolvable groups all terms of the series of commutants of which have a unique minimal system of Sylow classes,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 3–7 (1978).
[4] S. P. Azletskii, ”On the description of the structure of finite nonsolvable groups with a length of the principal series equal to two,” Preprint, Ural. Elektromekh. Inst. Inzh. Zh.-D. Transp., Sverdlovsk (1981).
[5] V. G. Aksyutenkova, ”On a property of the normalizer condition for nilpotent groups,” Preprint, Kuban. Univ., Krasnodar (1981).
[6] R. Zh. Aleev, ”Fusion simple finite groups with decomposable Sylow 2-subgroups,” Mat. Zametki,27, No. 6, 833–837 (1980). · Zbl 0436.20007
[7] R. Zh. Aleev, ”The condition of standardness of a component of a centralizer of an involution,” Mat. Zametki,30, No. 2, 161–170 (1981). · Zbl 0477.20008
[8] A. G. Aleksandrov and E. A. Komissarchik, ”Simple groups with a small number of conjugacy classes,” J. Sov. Math.,37, No. 2 (1987). · Zbl 0442.20019
[9] A. G. Aleksandrov and E. A. Komissarchik, ”A group and the graph of its cyclic subgroups,” Mat. Nauk,32, No. 6, 239–240 (1977).
[10] A. G. Aleksandrov and E. A. Komissarchik, ”Simple groups with a small number of conjugacy classes,” in: Algorithmic Investigations in Combinatorics, Moscow (1978), pp. 162–172. · Zbl 0442.20019
[11] Yu. A. Alekseenko, V. A. Gavrilin, and Yu. M. Gorchakov, ”Groups with one class of non-complementable subgroups,” Preprint, Kuban. Univ., Krasnodar (1983).
[12] V. G. Alyab’eva, ”A geometric interpretation of simple finite groups and their parabolic subgroups,” Ukr. Geomet. Sb. (Kharkov), No. 26, 3–6 (1983).
[13] V. S. Anashin, ”Solvable groups with transitive polynomials,” Preprint, Redkol. ”Sib. Mat. Zh.,” Sib. Otd. AN SSSR, Novosibirsk (1979). · Zbl 0437.20015
[14] A. G. Anishchenko, ”On an estimate of the \(\pi\)-length of \(\pi\)-solvable groups,” in: Subgroup Structure of Finite Groups. Proc. Gomel’sk. Seminar, Minsk, 1981, pp. 13–16.
[15] A. G. Anishchenko and V. S. Monakhov, ”Central intersections and p-length of p-solvable groups,” Dokl. AN Bel. SSR,21, No. 11, 968–971 (1977). · Zbl 0379.20023
[16] A. G. Anishchenko and V. V. Shlyk, ”Finite groups with supersolvable zpd-subgroups,” in: Finite Groups [in Russian], Minsk (1978), pp. 7–17. · Zbl 0398.20025
[17] V. A. Antonov, ”Groups of Gaschütz type and groups close to them,” Mat. Zametki,27, No. 6, 839–857 (1980). · Zbl 0451.20025
[18] M. Aschbacher, ”Finite simple groups and their classification,” Usp. Mat. Nauk,36, No. 2, 141–172 (1981). · Zbl 0456.20004
[19] A. F. Barannik, ”On groups close to Hamiltonian groups,” Ukr. Mat. Zh.,30, No. 5, 579–585 (1978).
[20] P. P. Baryshovets, ”Finite groups having -separating subgroups,” in: Some Questions of Group Theory [in Russian], Kiev (1975), pp. 75–99.
[21] P. P. Baryshovets, ”On finite non-Abelian groups with complementable non-Abelian subgroups,” Ukr. Mat. Zh.,29, No. 6, 733–737 (1977).
[22] P. P. Baryshovets, ”Finite non-Abelian 2-groups with complementable non-Abelian subgroups,” in: Group Theoretic Investigations [in Russian], Kiev (1978), pp. 34–50. · Zbl 0437.20021
[23] P. P. Baryshovets, ”On finite non-Abelian p-groups with complementable non-Abelian subgroups,” in: The Structure of Groups and Properties of Their Subgroups [in Russian], Kiev (1978), pp. 39–62.
[24] P. P. Baryshovets, ”On finite groups with complementable non-metacyclic subgroups,” Ukr. Mat. Zh.,31, No. 1, 6–12 (1978).
[25] P. P. Baryshovets, ”Non-Abelian groups with complementable non-Abelian subgroups,” Ukr. Mat. Zh.,32, No. 1, 99–101 (1980). · Zbl 0427.20020 · doi:10.1007/BF01087185
[26] P. P. Baryshovets, ”Finite non-Abelian p-groups with complementable non-Abelian subgroups,” Ukr. Mat. Zh.,32, No. 6, 798–802 (1980). · Zbl 0455.20017 · doi:10.1007/BF01087185
[27] P. P. Baryshovets, ”Finite nonsolvable groups in which subgroups of nonprimary index are nilpotent or are Schmidt groups,” Ukr. Mat. Zh.,33, No. 1, 47–50 (1981). · Zbl 0457.20022
[28] P. P. Baryshovets, ”Finite nonnilpotent groups in which all non-Abelian subgroups are complementable,” Ukr. Mat. Zh.,33, No. 2, 147–153 (1981). · Zbl 0462.20019
[29] P. P. Baryshovets, ”On a class of finite groups with complementable non-Abelian subgroups,” Ukr. Mat. Zh.,33, No. 3, 291–297 (1981). · Zbl 0461.20006
[30] P. M. Beletskii, ”On groups of automorphisms of finite two-step nilpotent groups of prime period,” Usp. Mat. Nauk,35, No. 6, 153–154 (1980).
[31] P. M. Beletskii and E. Morgado, ”On a group of automorphisms of a finite Abelian p-group,” Ukr. Mat. Zh.,33, No. 5, 589–596 (1981).
[32] V. A. Belonogov, ”Normal complements and conjugacy of involutions in a finite group,” Algebra Logika,15, No. 1, 22–38 (1976). · Zbl 0365.20036 · doi:10.1007/BF01875928
[33] V. A. Belonogov, ”On a reducible representation of a p-group over a finite field,” in: Investigations in Modern Algebra [in Russian], Sverdlovsk (1981), pp. 3–12.
[34] V. A. Belonogov and A. N. Fomin, Matrix Representations in the Theory of Finite Groups [in Russian], Nauka, Moscow (1976).
[35] Ya. G. Berkovich, ”Automorphisms of semidirect products with a characteristic commutative kernel,” Izv. Sev.-Kavkaz. Nauch. Tsentra Vyssh. Shkoly. Estest. Nauk, No. 2, 5–7 (1978).
[36] Ya. G. Berkovich, ”Finite p-groups containing fewer than pP cyclic subgroups of order p2,” Questions of Group Theory and Homological Algebra, Yaroslavl’, No. 2, 69–73 (1979).
[37] Ya. G. Berkovich, ”Subgroups of symmetric and alternating groups,” Izv. Sev.-Kavkaz. Nauch. Tsentra Vyssh. Shkoly. Estesty. Nauk, No. 1, 5–9 (1981). · Zbl 0492.20005
[38] Ya. G. Berkovich, ”Finite p-groups containing fewer than pP cyclic subgroups of order pn, n>1,” in: Mathematical Analysis and Its Applications [in Russian], Rostov (1981), pp. 10–16.
[39] Ya. G. Berkovich, ”A generalization of a theorem of F. Hall and J. Thompson on Hall subgroups of a symmetric group,” Questions of Group Theory and Homological Algebra, Yaroslavl’ (1981), pp. 79–92.
[40] V. V. Bludov and A. I. Kokorin, ”Use of the computer in solving known problems in algebra,” Kibernetika, No. 6, 95–101, 110 (1982). · Zbl 1164.20301
[41] Yu. V. Bodnarchuk and V. I. Sushchanskii, ”Calculation in a Sylow 2-subgroup of a symmetric group of degree 2n,” in: Calculations in Algebra and Combinatorics. Application in Algebra and Combinatorial-Theoretic Investigations [in Russian], Kiev (1978), pp. 87–101.
[42] A. V. Borovik, ”A 2-local characterization of the group Sp6(2),” Preprint, Redkol. ”Sib. Mat. Zh.” SO AN SSSR, Novosibirsk (1981).
[43] A. V. Borovik, ”A 3-local characterization of the Held group,” Algebra Logika,19, No. 4, 387–404 (1980). · Zbl 0473.20012 · doi:10.1007/BF01674469
[44] A. V. Borovik, ”On normalizers of 2-subgroups in finite groups,” Sib. Mat. Zh.,22, No. 4, 62–78 (1981). · Zbl 0471.20007
[45] M. T. Borovikov, ”On Wielandt’s p-length in finite groups,” in: Finite Groups [in Russian], Minsk (1978), pp. 62–78. · Zbl 0405.20025
[46] E. G. Bryukhanova, ”The 2-length and 2-period of a finite solvable group,” Algebra Logika,18, No. 1, 9–31 (1979). · Zbl 0457.20026 · doi:10.1007/BF01669309
[47] E. G. Bryukhanova, ”The connection between 2-length and the derived length of a Sylow 2-subgroup of a finite solvable group,” Mat. Zametki,29, No. 2, 161–170 (1981). · Zbl 0528.20010
[48] E. G. Bryukhanova, ”On groups of automorphisms of 2-automorphic 2-groups,” Algebra Logika,20, No. 1, 5–21 (1981). · Zbl 0528.20023 · doi:10.1007/BF01669491
[49] A. S. Bulgak, ”The Möbius function of the lattice of subgroups of a finite group,” Tr. Mosk. Inst. Inzh. Zh.-D. Transp., No. 653, 103–109 (1981).
[50] A. I. Burtsev, ”Groups with arithmetic conditions for classes of conjugate elements,” Preprint, Rybin. Avits. Tekhnol. Inst., Rybinsk (1982). · Zbl 0572.20014
[51] A. I. Burtsev, ”Finite groups with conjugate p-elements of the same order,” Preprint, Rybin. Aviats. Tekhnol. Inst. Rybinsk (1983). · Zbl 0577.20017
[52] A. I. Burtsev, ”Finite groups with conditions on classes of conjugate elements,” Questions of Group Theory and Homological Algebra [in Russian], Yaroslavl’ (1982), pp. 139–140.
[53] V. M. Busarkin, ”Finite groups with Abelian centralizers of elements of odd order,” Algebra Logika,16, No. 4, 381–388 (1977). · Zbl 0405.20019 · doi:10.1007/BF01669276
[54] V. M. Busarkin and B. K. Durakov, ”A criterion for nonsimplicity of finite groups,” Sib. Mat. Zh.,16, No. 4, 684–690 (1975). · Zbl 0349.20010
[55] V. N. Busarkin and V. R. Maier, ”Finite groups with nilpotent centralizers of elements of odd order,” in: 6th All-Union Sympos. on Group Theory, Kiev (1980), pp. 168–179.
[56] Yu. P. Vasil’ev, ”An algorithm for constructing on a computer automorphisms and solutions of questions of the isomorphism of finite groups,” Kibernetika, No. 5, 151–152 (1978).
[57] Yu. P. Vasil’ev, ”Description of finite nonsimple groups by means of a computer. IV,” Kibernetika, No. 6, 17–20 (1981).
[58] Yu. P. Vasil’ev and A. K. Zherlov, ”Description of finite nonsimple groups by means of a computer. III,” Kibernetika, No. 5, 145–146 (1976).
[59] A. V. Vasil’eva, ”On centralizer lattices of finite simple groups,” Sib. Mat. Zh.,18, No. 2, 263–273 (1977). · Zbl 0411.20016 · doi:10.1007/BF00967150
[60] A. V. Vasil’eva, ”Characterization of the group PSL3 by the centralizer lattice,” Algebra Logika,15, No. 5, 509–534 (1976). · Zbl 0442.20020 · doi:10.1007/BF02069106
[61] V. A. Vedernikov, ”On finite factorizable groups,” V All-Union Algebra Conf. Texts of Reports, Part 1, Krasnoyarsk (1979), p. 34.
[62] V. A. Vedernikov and N. G. Duka, ”On theorems of Schmidt, Chunikhin, and Ito,” in: Subgroup Structure of Finite Groups. Proc. Gomel’sk. Seminar, Minsk (1981), pp. 16–23. · Zbl 0459.20025
[63] V. A. Vedernikov, V. S. Monakhov, and L. A. Shemetkov, ”On the connectivity of the graph of intersections of subgroups of a finite simple group,” Dokl. Akad. Nauk Bel. SSR,21, No. 5, 398–401 (1977).
[64] B. M. Veretennikov, ”On finite groups with an involution whose centralizer has a factor-group isomorphic to L2(2n),” Algebra Logika (Novosibirsk),21, No. 4, 402–409 (1982).
[65] B. M. Veretennikov, ”Finite groups in which elements of odd order do not centralize subgroups of order 8,” Preprint, Ural. Politekhn. Inst., Sverdlovsk (1983).
[66] V. M. Veretennikov and A. A. Makhnev, ”On finite groups with a restricted centralizer of an involution,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 8–14 (1982). · Zbl 0509.20010
[67] A. L. Vishnevetskii, ”Groups of class 2 and exponent p with commutant of order p2,” Dokl. Akad. Nauk UkrSSR, A, No. 9, 9–11 (1980).
[68] XIV All-Union Algebra Conference. Novosibirsk, September, 1977, Part 1, Groups. Algebraic Systems. Texts of Reports. Inst. Mat. SO AN SSSR, Novosibirsk (1977).
[69] XV All-Union Algebra Conference. Krasnoyarsk, 3–6 July, 1979. Texts of Reports. Part 1. Groups, Krasnoyarsk Univ., Krasnoyarsk (1979).
[70] XVI All-Union Algebra Conference. Leningrad, 22–25 Sept., 1981. Texts of Reports. LOMI AN SSSR, Leningrad, Parts 1 and 2, 1981.
[71] XVII All-Union Algebra Conference. Minsk, 14–17 Sept., 1983. Texts of Reports, Inst. Mat. AN BSSR, Minsk, Parts 1 and 2, 1983.
[72] V All-Union Symposium on Group Theory. Krasnodar, 1–3 Oct., 1976. Texts of Reports (Inst. Mat. Sib. Otd. AN SSSR, Kuban. Univ.), Novosibirsk (1976).
[73] VI All-Union Symposium on Group Theory. Cherkassy, 19–21 Sept., 1978. Texts of Reports, Kiev. Naukova Dumka (1978).
[74] VII All-Union Symposium on Group Theory. Shushenskoe, 9–12 Sept., 1980. Texts of Reports. Krasnoyarsk Univ., Krasnoyarsk (1980).
[75] VI All-Union Symposium on Group Theory. Sb. Nauch. Tre., Inst. Mat. AN UkrSSR, Kiev: Naukova Dumka, 1980.
[76] VIII All-Union Symposium on Group Theory. Sumy, 25–27 May, 1982, Texts of Reports, Inst. Mat. AN UkrSSR, Kiev (1982).
[77] Calculations in Algebra and Number Theory [Russian translation], Mir, Moscow (1976).
[78] A. G. Ganyushkin, ”Enumeration of the subgroups of a finite Abelian group (algorithm),” in: Calculations in Algebra and Combinatorics. Application in Algebra and Combinatorial Theoretic Investigations, Kiev (1978), pp. 123–136. · Zbl 0543.20034
[79] A. G. Ganyushkin, ”Enumeration of the subgroups of a finite Abelian group (theory),” in: Calculations in Algebra and Combinatorics. Application in Algebra and Combinatorial Theoretic Investigations [in Russian], Kiev (1978), pp. 148–164.
[80] A. G. Ganyushkin, ”Semidirect and fibered products of groups,” Dokl. Akad. Nauk SSSR,266, No. 6, 1291–1294 (1982).
[81] N. D. Gogin, ”The Mathieu groups M11 and M12 and projective planes of order 9,” in: Problems of Algebra and Functional Analysis [in Russian], Petrozavodsk (1978), pp. 3–5.
[82] M. I. Golovanov, ”Subnormal Abelian subgroups of finite p-groups,” in: Investigations in Group Theory [in Russian], Krasnoyarsk (1975), pp. 15–23.
[83] T. D. Gormash, ”On the existence of normal subgroups in finite groups,” Dokl. Akad. Nauk BSSR,23, No. 5, 399–401 (1979).
[84] T. D. Gormash, ”On the normal structure of finite groups,” Dokl. Akad. Nauk BSSR,24, No. 11, 978–979 (1980). · Zbl 0444.20021
[85] T. D. Gormash, ”On the solvability and p-solvability of finite groups,” in: Subgroup Structure of Finite Groups, Tr. Gomel’sk. Sem., Minsk (1981), pp. 23–29.
[86] G. A. Davtyan, ”On a class of finite p-groups,” Uch. Zap. Erevan. Univ. Estestv. Nauk,1 (134), 10–15 (1977).
[87] O. V. Damova, ”On the lattice of maximal subgroups of a finite group,” Sib. Mat. Zh.,23, No. 6, 74–79 (1982). · Zbl 0508.20012
[88] Yu. V. Dmitruk and V. I. Sushchanskii, ”The structure of Sylow 2-subgroups of alternating groups and normalizers of Sylow subgroups in symmetric and alternating groups,” Ukr. Mat. Zh.,33, No. 3, 304–312 (1981). · Zbl 0462.20003
[89] I. P. Doktorov, ”On finite groups with complementable normalizers of Sylow subgroups,” Mat. Zametki,14, No. 2, 149–159 (1978). · Zbl 0428.20015
[90] I. P. Doktorov, ”On finite ABA-groups with nilpotent subgroups A and B,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 29–34. · Zbl 0459.20032
[91] I. P. Doktorov and L. F. Kosvintsev, ”Finite SP-factorizable groups,” Uch. Zap. Perm. Univ., No. 343, 46–47 (1975).
[92] N. G. Duka, ”Finite groups the maximal chains of subgroups of which contain p-subnormal subgroups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 9, 2–10 (1979). · Zbl 0476.20016
[93] B. K. Durakov, ”Finite groups with given centralizers of elements of order 3. I-II,” Preprint, Redkol. ”Sib. Mat. Zh.,” Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1975).
[94] B. K. Durakov, ”Characterization of some simple finite groups by centralizers of elements of order 3,” Mat. Sb.,109, No. 4, 533–554 (1979). · Zbl 0417.20020
[95] F. D’apiash, ”One criterion of p-nilpotence of finite groups,” Ann, Univ. Sci. Budapest. Sec. Math.,20, 99–106 (1977).
[96] G. G. Dyadchenko, U. M. Pachev, and V. N. Shokuev, ”On an identity in the theory of p-groups,” in: Structural Properties of Algebraic Systems [in Russian], Nal’chik (1981), pp. 31–34.
[97] A. K. Zherlov and V. I. Mart’yanov, ”Automation of the proof of theorems of group theory,” in: Algorithmic Questions of Algebraic Systems and Computation [in Russian], Irkutsk (1979), pp. 36–64.
[98] E. M. Zhmud’. ”On the structure of finite groups with uniquely generated normal divisors,” Questions of Group Theory and Homological Algebra, No. 1, 59–71 (1977).
[99] N. A. Zhuromskaya, ”A generator of finite groups with cyclic Sylow subgroups,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 34–38.
[100] A. Kh. Zhurtov and V. N. Shokuev, ”On coverings of finite sets,” Algebra Teor. Chisel, No. 2, 78–81 (1977).
[101] D. I. Zaitsev, ”Factorizations of polycyclic groups,” Mat. Zametki,29, No. 4, 481–490 (1981). · Zbl 0457.20033
[102] D. I. Zaitsev, ”Ito’s theorem and products of groups,” Mat. Zametki,33, No. 6, 807–818 (1983).
[103] A. E. Zalesskii, ”Linear groups,” Usp. Mat. Nauk,36, No. 5, 57–107 (1981).
[104] A. E. Zalesskii, ”Linear groups,” J. Sov. Math.,31, No. 3 (1985).
[105] E. D. Zaplatina, ”On finite groups with restrictions on the indices of subgroups in their normalizers,” in: Investigations in Modern Algebra. Sverdlovsk (1981), pp. 35–37. · Zbl 0504.20010
[106] V. I. Zenkov, ”Finite groups with a small number of classes of iso-order nonmodular subgroups,” in: Investigations in Modern Algebra. Sverdlovsk (1977), pp. 43–55.
[107] V. I. Zenkov, ”On 2-Sylow intersections in finite groups,” in: Investigations in Modern Algebra. Sverdlovsk (1979), pp. 48–53.
[108] V. I. Zenkov, ”On intersections of Sylow 2-subgroups in centralizers of involutions,” Preprint, Ural’sk. Univ. Sverdlovsk (1980).
[109] V. I. Zenkov, ”On central intersections of Sylow 2-subgroups in finite groups,” Preprint, Ural’sk. Univ., Sverdlovsk (1979). · Zbl 0425.20015
[110] V. I. Zenkov, ”Finite groups with a given centralizer of a central involution,” Algebra Logika,19, No. 5, 566–581 (1980). · Zbl 0471.20008 · doi:10.1007/BF01669609
[111] V. I. Zenkov, ”Intersections of Sylow 2-subgroups in finite groups,” in: Investigations in Modern Algebra. Sverdlovsk (1981), pp. 38–47.
[112] A. A. Ivanov, M. Kh. Klin, and I. A. Faradzhev, ”Primitive representations of non-Abelian simple groups of order less than 106,” Preprint, VNII Sistem. Issled., Moscow (1982). · Zbl 0511.20009
[113] N. F. Ivakhori, ”Centralizers of involutions in finite Chevalley groups,” in: Seminar on Algebraic Groups [Russian translation], Mir, Moscow (1973), pp. 263–287.
[114] A. P. Il’inykh, ”Characterization of the simple O’Nan-Sims groups by the centralizer of an element of order three,” Mat. Zametki,24, No. 4, 487–497 (1978).
[115] A. P. Il’inykh, ”Construction of some finite groups,” in: Investigation of Algebraic Systems on the Basis of Properties of Their Subsystems. Sverdlovsk (1980), pp. 68–75.
[116] A. P. Il’inykh, ”Finite groups with a standard component of type ,” Algebra Logika,21, No. 2, 162–169 (1982).
[117] V. V. Kabanov, ”Finite groups with large intersections of Sylow 2-subgroups,” Sib. Mat. Zh.,17, No. 5, 1188–1189 (1976). · Zbl 0374.20029
[118] V. V. Kabanov, ”On intersections of Sylow 2-subgroups in finite groups,” Mat. Zametki,24, No. 5, 615–619 (1978). · Zbl 0389.20017
[119] V. V. Kabanov, ”The intersection of Sylow 2-subgroups in finite groups,” in: 6th All-Union Symposium on Group Theory, Kiev (1980), pp. 60–68. · Zbl 0469.20012
[120] V. V. Kabanov and A. S. Kondrat’ev, ”Sylow 2-subgroups of finite groups,” Preprint, Sverdlovsk, Inst. Mat. Mekh. Ural’sk. Nauch. Tsentr AN SSSR (1979). · Zbl 0409.20022
[121] V. V. Kabanov, A. A. Makhnev, and A. I. Starostin, ”Finite groups with normal intersections of Sylow 2-subgroups,” Algebra Logika,15, No. 6, 655–659 (1976). · Zbl 0382.20025 · doi:10.1007/BF01877481
[122] L. S. Kazarin, ”On some criteria of nonsimplicity and solvability of finite factorizable groups,” Questions of Group Theory and Homological Algebra, No. 1, 72–93 (1977).
[123] L. S. Kazarin, ”On the product of two groups close to nilpotent groups,” Mat. Sb.,110, No. 1, 51–65 (1979).
[124] L. S. Kazarin, ”Criteria of nonsimplicity of factorizable groups,” Izv. AN SSSR, Ser. Mat.,44, No. 2, 288–308 (1980).
[125] L. S. Kazarin, ”On groups with a factorization,” Dokl. AN SSSR,256, No. 1, 26–29 (1981). · Zbl 0544.20021
[126] L. S. Kazarin, ”On groups with isolated classes of conjugate elements,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 40–45 (1981). · Zbl 0516.20011
[127] L. S. Kazarin, ”Groups with a factorization,” Preprint, Yaroslav. Univ. (1981). · Zbl 0544.20021
[128] L. S. Kazarin, ”On the product of an Abelian group and a group with a nontrivial center,” Preprint, Redkol. ”Sib. Mat. Zh.” SO AN SSSR, Novosibirsk (1981).
[129] L. S. Kazarin, ”Automorphisms, factorizations, and theorems of Sylow type,” Mat. Sb.,120, No. 2, 190–199 (1983).
[130] L. S. Kazarin, ”On the product of finite groups,” Dokl. AN SSSR,269, No. 3, 528–531 (1983).
[131] L. S. Kazarin, ”Theorems of Sylow type for finite groups,” in: Structural Properties of Algebraic Systems [in Russian], Nal’chik (1981), pp. 42–52.
[132] L. S. Kazarin and Yu. A. Korzyukov, ”Finite solvable groups with supersolvable maximal subgroups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 22–27 (1980). · Zbl 0503.20004
[133] L. S. Kazarin and P. I. Trofimov, ”Investigation of criteria for the existence of solvable normal subgroups and criteria of solvability for finite groups with a factorization,” Questions of Group Theory and Homological Algebra [in Russian], Yaroslavl’, No. 2, 90–101 (1979).
[134] L. A. Kaluzhnin, ”On groups of automorphisms of finite p-groups,” Inst. Mat. AN Ukr. SSR, Preprint, No. 23, 3–5 (1980).
[135] L. A. Kaluzhnin, V. I. Sushchanskii, and V. A. Ustimenko, ”Application of the computer in the theory of permutation groups and its applications,” Kibernetika, No. 6, 83–94 (1982).
[136] P. J. Cameron, ”Finite permutation groups and finite simple groups,” Usp. Mat. Nauk,38, No. 3, 135–157 (1983). · Zbl 0522.20004
[137] N. K. Kasabov, ”Reflection generated by the symmetric group,” Godishn. Vissh. Uchebni Zaved. Prilozhen. Mat., 1974,10, No. 3, 55–59 (1975).
[138] K. Sh. Kemkhadze, ”Finite groups satisfying a normalizer condition for nonprimary non-Abelian subgroups,” in: Group-Theoretic Investigations [in Russian], Kiev (1978), pp. 138–153. · Zbl 0444.20022
[139] A. P. Kovalenko, ”Characterization of groups of Janko-Ree type and of the Hall-Janko group,” Algebra Logika,15, No. 3, 292–299 (1976). · Zbl 0356.20016 · doi:10.1007/BF01876319
[140] A. P. Kovalenko, ”On ranks of intersections of centralizers of involutions in finite groups,” Sib. Mat. Zh.,18, No. 4, 821–829 (1977).
[141] A. P. Kovalenko, ”On groups with a given centralizer of an involution,” Preprint, Krasnoyar. Politekh. Inst., Krasnoyarsk (1983).
[142] G. S. M. Coxeter and W. O. J. Moser, Generating Elements and Defining Relations of Discrete Groups [Russian translation], Nauka, Moscow (1980).
[143] E. A. Komissarchik, ”Simple groups with a number of conjugacy classes less than thirteen,” Dokl. AN SSSR,237, No. 6, 1269–1272 (1977).
[144] E. A. Komissarchik, ”Organization of a program on a computer for enumerating simple groups with a small number of classes of conjugate elements,” in: Computations in Algebra and Combinatorics. Application in Algebra and Combinatorial Theoretic Investigations, Kiev (1978), pp. 165–190. · Zbl 0543.20013
[145] A. S. Kondrat’ev, ”Finite simple groups whose Sylow 2-subgroup is an extension of an Abelian group by means of a group of rank 1,” Algebra Logika,14, No. 3, 288–303 (1975). · Zbl 0364.20024 · doi:10.1007/BF01668552
[146] A. S. Kondrat’ev, ”Finite simple groups whose Sylow 2-subgroups have a cyclic commutant,” Sib. Mat. Zh.,17, No. 1, 86–90 (1976). · Zbl 0347.20008 · doi:10.1007/BF00969292
[147] A. S. Kondrat’ev, ”Finite nonprimary groups with complementable biprimary subgroups of even order,” Mat. Zap. Ural’sk. Univ.,9, No. 3, 44–52 (1975).
[148] A. S. Kondrat’ev, ”Finite simple groups with Sylow 2-subgroups of order 27,” Izv. AN SSSR, Ser. Mat.,41, No. 4, 752–767 (1977).
[149] A. S. Kondrat’ev, ”Finite groups whose Sylow 2-subgroup contains an elementary Abelian subgroup of index 4,” Algebra Logika,16, No. 5, 557–576 (1977). · Zbl 0407.20017 · doi:10.1007/BF01669477
[150] A. S. Kondrat’ev, ”Some remarks on finite groups with a decomposalbe Sylow 2-subgroup,” Sib. Mat. Zh.,20, No. 3, 665–666 (1979).
[151] A. S. Kondrat’ev, ”Finite groups with a Sylow 2-subgroup having an elementary commutant of order 8,” Mat. Zametki,27, No. 5, 673–681 (1980). · Zbl 0435.20008
[152] A. S. Kondrat’ev, ”Sylow 2-subgroups of finite nonsolvable groups,” in: 6th All-Union Symposium on Group Theory, Kiev, 1980, pp. 69–81.
[153] A. S. Kondrat’ev, ”On 2-local subgroups of finite groups,” Algebra Logika,21, No. 2, 178–192 (1982).
[154] A. S. Kondrat’ev, ”On solvable 2-local subgroups of finite groups,” Algebra Logika,21, No. 6, 670–689 (1982).
[155] A. S. Kondrat’ev, ”Finite groups whose Sylow 2-subgroups possess a Hamiltonian maximal subgroup,” Mat. Zap. Ural’sk. Univ.,13, No. 3, 81–86 (1983).
[156] N. P. Kontorovich and V. T. Nagrebetskii, ”On finite minimal groups which are not p-supersolvable,” Mat. Zap. Ural’sk. Univ.,9, No. 3, 53–59 (1975).
[157] Yu. A. Korzyukov, ”Finite. \=cN-groups,” Uch. Zap. Perm. Univ., No. 343, 48–52 (1975).
[158] Yu. A. Korzyukov, ”Finite ssN-groups. I,” Questions of Group Theory and Homological Algebra, Yaroslavl’ (1981), pp. 57–62; II (1982), pp. 141–142.
[159] L. F. Kosvintsev and V. M. Sosnin, ”On the connectivity of the graph of intersections of maximal subgroups of a finite group,” Preprint, Perm Univ. (1980).
[160] L. F. Kosvintsev and V. M. Sosnin, ”On a finite group in which each proper subgroup of composite order has a nonconnected graph of intersections of subgroups,” Preprint, Perm Univ., (1980).
[161] I. F. Kosvintsev and V. M. Sosnin, ”On a class of finite groups with a restriction on the maximal subgroups,” Preprint, Perm Univ. (1981).
[162] A. I. Kostrikin, ”Finite groups,” Algebra. 1964 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1966), pp. 7–46.
[163] A. I. Kostrikin, I. A. Kostrikin, and V. A. Ufnarovskii, ”Multiplicative decompositions of simple Lie algebras,” Dokl. AN SSSR,262, No. 1, 29–33 (1982). · Zbl 0505.17006
[164] V. D. Mazurov et al. (eds.), Kourovskaya Notebook. Unsolved Questions of Group Theory, Inst. Mat. SO AN SSSR, Novosibirsk, 6th Ed. (1978); 7th Ed. (1980); 8th Ed. (1982); 9th Ed. (1984).
[165] N. G. Kokhan, ”The structure of some classes of finite rational groups,” in: Finite Groups [in Russian], Minsk (1978), pp. 22–26.
[166] A. P. Kokhno, ”A criterion for solvability of finite groups,” in: Finite Groups [in Russian], Minsk (1978), pp. 26–28.
[167] M. I. Kravchuk, ”On finite factorizable groups,” in: Finite Groups [in Russian], Minsk (1978), pp. 28–30. · Zbl 0399.20019
[168] V. A. Kreknin, ”On a criterion of simplicity of a finite group,” in: Algebraic Systems and Their Manifolds [in Russian], Sverdlovsk (1982), pp. 49–63. · Zbl 0512.20008
[169] V. A. Kreknin and V. V. Tsybulenko, ”Finite groups with a primary-normalizer condition,” Sib. Mat. Zh.,21, No. 3, 110–119 (1980). · Zbl 0434.20009
[170] S. L. Krupetskii and V. N. Shokuev, ”Subgroups of a finite unitary group containing the diagonal,” in: Structural Properties of Algebraic Systems [in Russian], Nal’chik (1981), pp. 69–79.
[171] On the Theory of Finite Groups [Russian translation], Mir, Moscow (1979).
[172] N. F. Kuzennyi, ”On nondispersive groups,” Ukr. Mat. Zh.,30, No. 4, 481–487 (1978). · Zbl 0407.20032
[173] N. F. Kuzennyi and S. S. Levishchenko, ”Finite solvable minimal nondispersive groups,” Ukr. Mat. Zh.,27, No. 4, 526–528 (1975). · Zbl 0316.20011
[174] N. F. Kuzennyi and S. S. Levishchenko, ”On finite nondispersive groups,” Preprint, Inst. Mat. AN UkrSSR, No. 7 (1978). · Zbl 0407.20032
[175] N. I. Kuleshov, ”Finite completely \(\pi\)-factorizable groups,” Dokl. AN BSSR,21, No. 5, 393–394 (1977).
[176] N. I. Kuleshov, ”Completely \(\pi\)-factorizable groups,” in: Finite Groups [in Russian], Minsk (1978), pp. 38–44.
[177] N. I. Kuleshov, ”Finite \(\pi\)-separable groups with \(\pi\)-maximally sensitive subgroups,” in: Finite Groups [in Russian], Minsk (1978), pp. 31–38.
[178] N. I. Kuleshov, ”On finite t\(\pi\)-groups,” in: Subgroup Structure of Finite Groups, Tr. Gomel’sk. Seminara, Minsk (1981), pp. 44–45.
[179] P. Lakatosh, ”On the structure of wreath products of two cyclic groups of orders of powers of a prime number,” Publ. Math.,22, No. 3–4, 293–305 (1975).
[180] S. S. Levishchenko, ”Finite groups with nilpotent subgroups of nonprimary index,” in: Some Questions of Group Theory [in Russian], Kiev (1975), pp. 173–196.
[181] S. S. Levishchenko, ”Finite quasibiprimary groups,” in: Groups Determined by Properties of Subgroups [in Russian], Kiev (1979), pp. 83–97.
[182] S. S. Levishchenko and N. F. Kuzennyi, ”Finite nondispersive groups in which any subgroup of nonprimary index is nilpotent or is a Schmidt group,” in: Constructive Description of Groups with Given Properties of Subgroups [in Russian], Kiev (1980), pp. 117–132.
[183] S. S. Levishchenko and N. F. Kuzennyi, ”Finite biprimary dispersive groups in which any subgroup of nonprimary index is nilpotent or is a Schmidt group,” in: Investigations of Groups with Given Properties of a System of Subgroups [in Russian], Kiev (1981), pp. 93–104.
[184] S. S. Levishchenko and N. F. Kuzennyi, ”Finite dispersive nonbiprimary groups any non-nilpotent subgroup of nonprimary index of which is a Schmidt group,” in: Subgroup Characterization of Groups [in Russian], Kiev (1982), pp. 74–84.
[185] T. G. Lelechenko, ”On a class of groups with separating subgroups,” Ukr. Mat. Zh.,33, No. 5, 604–609 (1981). · Zbl 0478.20020
[186] V. P. Lobych and A. I. Skopin, ”On relations in groups of exponent 8,” J. Sov. Math.,17, No. 2 (1981). · Zbl 0462.20031
[187] V. I. Loginov, ”A remark on finite groups admitting coprime automorphisms,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 6, 58–61 (1980). · Zbl 0456.20011
[188] V. I. Loginov, ”Subgroups in finite quasithin groups,” Mat. Sb.,114, No. 3, 355–377 (1981). · Zbl 0464.20014
[189] V. I. Loginov, ”On the question of triple factorization and pushing up for finite 2-constrained groups,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 2, 58–61 (1982).
[190] V. I. Loginov, ”Triple factorizations and pushing up for finite 2-constrained groups,” Preprint VNII Sistem. Issled., Moscow (1982). · Zbl 0517.20006
[191] V. I. Loginov, ”A model problem for investigating finite, quasithin groups,” Preprint, VNII Sistem. Issled., Moscow (1982). · Zbl 0525.20005
[192] V. I. Loginov and S. V. Tsaranov, ”Extremal pairs of finite groups,” Commun. Algebra,9, No. 18, 1787–1862 (1981). · Zbl 0474.20008 · doi:10.1080/00927878108822684
[193] V. D. Mazurov, ”On solvable subgroups of finite simple groups,” Proc. Int. Congr. Math., Vancouver, 1974, Vol. 1, Sec. 1, 1975, pp. 321–323.
[194] V. D. Mazurov, ”Finite groups,” Algebra. Topologiya. Geometriya, Vol. 14 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1976), pp. 5–56.
[195] V. D. Mazurov, ”On the p-length of solvable groups,” in: 6th All-Union Symposium on Group Theory [in Russian], Kiev (1980), pp. 50–60.
[196] V. D. Mazurov, ”Characterization of the Rudvalis group,” Mat. Zametki,31, No. 3, 321–339 (1982). · Zbl 0491.20016
[197] V. D. Mazurov and A. N. Fomin, ”On finite simple non-Abelian groups,” Mat. Zametki,34, No. 6, 821–824 (1983). · Zbl 0555.20010
[198] V. R. Maier, ”On finite groups with nilpotent centralizers of elements of order three,” Mat. Sb.,114, No. 4, 643–651 (1981). · Zbl 0464.20017
[199] D. Mackey, ”Graphs, singularities, and finite groups,” Usp. Mat. Nauk,38, No. 3, 159–164 (1983).
[200] A. A. Makhnev, ”Weak closure of an involution in its centralizer,” Preprint, Inst. Mat. Mekh. Ural. Nauch. Tsentra AN SSSR, Sverdlovsk (1977).
[201] A. A. Makhnev, ”On groups with a centralizer of order 6,” Mat. Zametki,22, No. 1, 153–159 (1977).
[202] A. A. Makhnev, ”Generalization of Prince’s theorem,” Sib. Mat. Zh.,19, No. 1, 100–107 (1978). · Zbl 0411.20013 · doi:10.1007/BF00967366
[203] A. A. Makhnev, ”On finite groups with a centralizer of order 6,” Algebra Logika,16, No. 4, 432–441 (1977). · Zbl 0411.20012 · doi:10.1007/BF01669281
[204] A. A. Makhnev, ”On generation of finite groups by classes of involutions,” Mat. Sb.,111, No. 2, 266–278 (1980). · Zbl 0431.20012
[205] A. A. Makhnev, ”Finite groups with a selfcentralizing subgroup of order 6. I, II,” Algebra Logika,19, No. 1, 91–102 (1980);22, No. 5, 518–525 (1983).
[206] A. A. Makhnev, ”Finite groups with a noninvariant four kernel,” Sib. Mat. Zh.,22, No. 2, 212–214 (1981). · Zbl 0462.20016
[207] A. A. Makhnev, ”On elementary TI-subgroups in finite groups,” Mat. Zametki,30, No. 2, 179–184 (1981). · Zbl 0473.20011
[208] A. A. Makhnev, ”On thin 2-local subgroups of finite groups,” Preprint, Inst. Mat. Mekh. Ural. Nauch. Tsentra AN SSSR, Sverdlovsk (1981). · Zbl 0473.20011
[209] A. A. Makhnev, ”On subgroups of nonroot type in finite groups,” Preprint, Inst. Mat. Mekh. Ural. Nauch. Tsentra AN SSSR, Sverdlovsk (1981).
[210] A. A. Makhnev, ”On densely imbedded subgroups of finite groups,” Mat. Sb.,121, No. 4, 523–532 (1983).
[211] R. P. Medvedeva, ”Solvable minimal non-t-groups,” Preprint, Redkol. Zh. ”Izv. AN BSSR, Ser. Fiz.-Mat. Nauk,” Minsk (1977).
[212] Yu. I. Merzlyakov, ”Linear groups,” J. Sov. Math.,14, No. 1 (1980). · Zbl 0446.20032
[213] L. S. Mozharovskaya, ”Finite supersolvable groups with c-complementable subgroups,” in: Group-Theoretic Investigations [in Russian], Kiev (1978), pp. 87–94.
[214] L. S. Mozharovskaya, ”Some properties of finite supersolvable groups,” Ukr. Mat. Zh.,30, No. 2, 247–249 (1978). · Zbl 0408.20009 · doi:10.1007/BF01085644
[215] L. S. Mozharovskaya, ”Some properties of finite supersolvable groups,” in: Structure of Groups and Properties of Their Subgroups [in Russian], Kiev (1978), pp. 100–113.
[216] L. S. Mozharovskaya, ”On a class of finite c-factorizable groups,” in: Investigations of Groups with Given Properties of a System of Subgroups [in Russian], Kiev (1981), pp. 59–66.
[217] V. S. Monakhov, ”A product of finite groups close to nilpotent groups,” in: Finite Groups [in Russian], Minsk, Nauka i Tekhnika (1975), pp. 70–100.
[218] V. S. Monakhov, ”Invariant subgroups of biprimary groups,” Mat. Zametki,18, No. 6, 877–886 (1975).
[219] V. S. Monakhov, ”On the product of two groups with nilpotent subgroups of index not exceeding 2,” Algebra Logika,16, No. 1, 46–62 (1977). · Zbl 0385.20008 · doi:10.1007/BF01669433
[220] V. S. Monakhov, ”On orders of Sylow subgroups of a general linear group,” Algebra Logika,17, No. 1, 79–85 (1978). · Zbl 0399.20043 · doi:10.1007/BF01670123
[221] V. S. Monakhov, ”The product of a supersolvable and a cyclic or primary group,” in: Finite Groups [in Russian], Minsk (1978), pp. 50–63.
[222] V. S. Monakhov, ”The product of a biprimary and a 2-decomposable group,” Mat. Zametki,23, No. 5, 641–649 (1978). · Zbl 0387.20021
[223] V. S. Monakhov, ”The product of a solvable and a cyclic group,” in: 6th All-Union Symposium on Group Theory [in Russian], Kiev (1980), pp. 188–195.
[224] V. S. Monakhov, ”On triply factorizable groups,” Izv. AN BSSR, Ser. Fiz.-Mat. Nauk, No. 6, 18–23 (1981). · Zbl 0482.20014
[225] V. S. Monakhov, ”Factorizable groups with solvable factors of odd index,” Preprint, Redkol. Zh. ”Izv. AN BSSR, Ser. Fiz.-Mat. Nauk,” Minsk (1983).
[226] E. R. Morgado, ”On the group of automorphisms of a finite Abelian p-group,” Ukr. Mat. Zh.,32, No. 5, 617–622 (1980). · Zbl 0456.20012
[227] E. P. Morgado, ”Characterization of commutativity of a core group of automorphisms of a finite Abelian p-group,” Inst. Mat. AN UkrSSR, Preprint, No. 23, 6–11 (1980).
[228] E. R. Morgado, ”The degree of nilpotence of a core group of automorphisms of a finite Abelian p-group. Description of the upper central series,” Inst. Mat. AN UkrSSR, Preprint, No. 23, 12–28 (1980).
[229] V. S. Muldagaliev, ”Periodic centrally factorizable groups,” Inst. Mat. AN UkrSSR, Preprint, No. 47 (1982). · Zbl 0535.20014
[230] V. S. Muldagaliev, ”On centrally factorizable groups,” Ukr. Mat. Zh.,35, No. 1, 58–63 (1983). · Zbl 0535.20014 · doi:10.1007/BF01093163
[231] V. T. Nagrebetskii, ”The group of automorphisms of a finite, minimal group which is not p-supersolvable,” in: Algebraic Investigations [in Russian], Sverdlovsk (1976), pp. 33–40.
[232] V. T. Nagrebetskii, ”The group of automorphisms of finite Miller-Moreno groups,” Dokl. AN UkrSSR, A, No. 5, 75–77 (1980).
[233] V. T. Nagrebetskii, ”On the group of automorphisms of the finite group K(pm, n),” Ukr. Mat. Zh.,34, No. 1, 119–120 (1982). · Zbl 0497.20009 · doi:10.1007/BF01086145
[234] N. Nachev, Nauch. Tr. Plovdiv. Univ. Mat.,19, No. 1, 27–48 (1981).
[235] K. G. Nekrasov, ”On the connection of the structure of a finite group with a portion of its nonsymmetric two-element subsets,” Questions of Group Theory and Homological Algebra [in Russian], Yaroslavl’ (1982), pp. 130–135.
[236] E. T. Ogarkov, ”Characterization of some classes of finite groups in terms of biprimary subgroups,” Preprint, Redkol. Zh. ”Izv. AN BSSR. Ser. Fiz.-Mat. Nauk,” Minsk (1978). · Zbl 0423.20020
[237] E. T. Ogarkov, ”On a class of finite groups,” Izv. AN BSSR, Ser. Fiz.-Mat. Nauk, Minsk (1978). · Zbl 0459.20010
[238] A. Yu. Ol’shanskii, ”On the question of the number of generators and orders of Abelian subgroups of finite p-groups,” Mat. Zametki,23, No. 3, 337–341 (1978). · Zbl 0388.20018
[239] S. A. Onishko, ”Groups of automorphisms and characteristic subgroups of the groups Syl2(Sn),” Dokl. AN UkrSSR, A, No. 12, 16–18 (1981). · Zbl 0486.20004
[240] E. M. Pal’chik. ”On a class of finite groups,” Izv. AN BSSR, Ser. Fiz.-Mat. Nauk, No. 5, 46–52 (1975).
[241] E. M. Pal’chik, ”On finite S4-free groups,” Dokl. AN BSSR,20, No. 12, 1061–1063 (1976).
[242] E. M. Pal’chik, ”Finite simple groups whose Sylow 2-subgroup contains a cyclic subgroup of index 16,” Mat. Sb.,109, No. 2, 203–228 (1979).
[243] E. M. Pal’chik, ”p-factor groups of finite groups,” Izv. AN BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 53–59 (1981).
[244] E. M. Pal’chik, ”On finite groups with a p-closed maximal subgroup,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 55–62.
[245] A. P. Petravchuk, ”Finite groups in which noncyclic nonprimary subgroups are complemental,” Inst. Mat. AN UkrSSR, Preprint, No. 29 (1982).
[246] N. T. Petrov, Godishn. Vissh. Ped. Inst. Shumen. Prirodo-Mat. Fak.,5B, 37–42 (1981).
[247] N. T. Petrov, ”Some maximal subgroups of the group G2(F). I, II,” Pliska, Bulg. Mat. Stud.,2, 83–88, 89–94 (1981). · Zbl 0483.20012
[248] N. T. Petrov, ”Finite groups with a maximal dihedral subgroup,” Pliska, Bulg. Mat. Stud.,2, 23–29 (1981). · Zbl 0487.20009
[249] O. S. Pilyavskaya, ”Classification of groups of order p6 (p>3),” Preprint, Inst. Mat. AN UkrSSR, Kiev (1983). · Zbl 0568.20027
[250] B. A. Pogorelov, ”Primitive permutation groups of small degrees,” in: 6th All-Union Symposium on Group Theory, Kiev (1980), pp. 146–157. · Zbl 0498.20005
[251] B. A. Pogorelov, ”Primitive permutation groups of small degrees. I, II,” Algebra Logika,19, No. 3, 348–379; No. 4, 423–457 (1980).
[252] B. M. Pogrebinskii, ”Finite groups in which all maximal subgroups of even order are Frobenius groups,” in: Mat. Analiz i Ego Prilozhen., Vol. 7, Rostov. Univ., Rostov-on-Don (1975), pp. 91–95.
[253] B. M. Pogrebinskii, ”On normal divisors of finite groups,” Sib. Mat. Zh.,17, No. 1, 141–147 (1976). · Zbl 0347.20016 · doi:10.1007/BF00969296
[254] B. M. Pogrebinskii, ”Finite groups in which all maximal subgroups with nonunit cores are Frobenius groups,” Tr. Tbilis. Univ.,185, 43–49 (1977).
[255] B. M. Pogrebinskii, ”Finite groups with given properties of noninvariant maximal subgroups,” Izv. Sev.-Kavkaz. Nauch. Tsentra Vyssh. Shkoly, Estestv. Nauk, No. 3, 10–13 (1979).
[256] A. G. Podgornyi, ”On fusion of classes of conjugate elements of Sylow subgroups,” Preprint, Kirov. Gos. Pedagog. Inst., Kirov (1982).
[257] N. D. Podufalov, ”On simple finite groups containing strongly isolated subgroups,” Mat. Sb.,100, No. 3, 447–454 (1976).
[258] N. D. Podufalov, ”On the existence of strongly p-imbedded subgroups in finite groups,” Algebra Logika,15, No. 1, 71–88 (1976). · Zbl 0361.20035 · doi:10.1007/BF01875931
[259] N. D. Podufalov, ”Finite simple groups without elements of order 6,” Algebra Logika,16, No. 2, 200–203 (1977). · Zbl 0411.20011 · doi:10.1007/BF01668596
[260] N. D. Podufalov, ”3-characterizations of finite groups,” Algebra Logika,18, No. 4, 442–462 (1979). · Zbl 0444.20016 · doi:10.1007/BF01673945
[261] N. D. Podufalov, ”Strongly p-imbedded subgroups in groups of characteristic-2 type,” in: 6th All-Union Symposium on Group Theory, Kiev (1980), pp. 195–200. · Zbl 0457.20018
[262] N. D. Podufalov, ”On finite simple groups with 3-constrained, 3-local subgroups,” Algebra Logika,20, No. 2, 182–206 (1981). · Zbl 0489.20013 · doi:10.1007/BF01735739
[263] N. D. Podufalov, ”Finite simple groups of characteristic-2 and -3 type,” Usp. Mat. Nauk,36, No. 6, 227–228 (1981). · Zbl 0482.20010
[264] L. Ya. Polyakov, ”Classes of finite groups with a nontrivial measure of solvability,” Dokl. AN BSSR,20, No. 4, 297–299 (1976). · Zbl 0334.20010
[265] L. Ya. Polyakov, ”Maximal subgroups of finite groups,” in: Finite Groups [in Russian], Minsk (1978), pp. 61–69. · Zbl 0398.20024
[266] L. Ya. Polyakov, ”On normal subgroups of finite groups,” Dokl. AN BSSR,25, No. 1, 965–966 (1981). · Zbl 0473.20017
[267] S. V. Putilov, ”Finite groups with nilpotent epimorphic images,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 66–68. · Zbl 0459.20024
[268] S. V. Putilov, ”On solvability of finite groups,” Dokl. AN BSSR,26, No. 5, 393–396 (1982). · Zbl 0493.20015
[269] S. V. Putilov, ”Classes of maximal subgroups and solvability in finite groups,” Preprint, Inst. Mat. AN BSSR (1982). · Zbl 0493.20015
[270] S. V. Putilov, ”On the \(\pi\)-length of \(\pi\)-solvable finite groups,” Vestsi AN BSSR, Ser. Fiz.-Mat. Nauk, No. 3, 9–12 (1983). · Zbl 0522.20012
[271] A. G. Pshenichnyi and M. V. Khoroshevskii, ”Supersolvable groups of odd order without outer automorphisms,” Preprint, Redkol. ”Sib. Mat. Zh.” SO AN SSSR, Novosibirsk (1982).
[272] V. V. Pylaev, ”Finite groups with a dense system of subnormal subgroups,” in: Some Questions of Group Theory [in Russian], Kiev (1975), pp. 197–217.
[273] V. V. Pylaev, ”Finite groups with a generalized dense system of subnormal subgroups,” in: Investigations in Group Theory [in Russian], Kiev (1976), pp. 111–138.
[274] V. V. Pylaev and N. F. Kuzennyi, ”Finite nonnilpotent groups with a generalized dense system of invariant subgroups,” Preprint, Kiev. Gos. Pedagog. Inst., Kiev (1979). · Zbl 0407.20018
[275] I. F. Red’ko and G. N. Titov, ”On a criterion that finite groups be quasi-Hamiltonian,” Preprint, Kuban. Univ., Krasnodar (1982).
[276] K. A. Reshko and V. I. Kharlamova, ”Characterization of finite groups by maximal chains of subgroups,” in: Finite Groups [in Russian], Minsk (1978), pp. 69–78. · Zbl 0398.20038
[277] B. A. Rozenfel’d, N. I. Kharitonova, and I. N. Kashirina, ”Finite geometries with simple, semisimple and quasisimple fundamental groups,” Tr. Geomtr. Seminara. Kazan. Univ., No. 13, 63–70 (1981). · Zbl 0505.20004
[278] A. V. Romanovskii, ”On finite groups with a Frobenius subgroup,” Dokl. AN BSSR,20, No. 2, 177–186 (1976).
[279] A. V. Romanovskii, ”On the invariant complement to a Frobenius subgroup,” Dokl. AN BSSR,21, No. 4, 293–295 (1977).
[280] A. V. Romanovksii, ”On Feit’s and Ito’s theorems regarding Zassenhaus groups,” Dokl. AN BSSR,22, No. 4, 293–295 (1978).
[281] A. V. Romanovskii, ”On finite simple groups with a complementable F-subgroup,” in: Finite Groups [in Russian], Minsk (1978), pp. 78–81.
[282] A. V. Romanovksii, ”Finite groups with a Frobenius subgroup,” Mat. Sb.,108, No. 4, 609–635 (1979).
[283] A. V. Romanovskii, ”On finite groups with a Frobenius section,” in: 6th All-Union Symposium on Group Theory, Kiev (1980), pp. 200–208.
[284] A. V. Romanovskii, ”On a criterion of nonsimplicity of a group,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 71–77.
[285] A. V. Romanovskii, ”Simple groups with large Sylow subgroups,” Mat. Sb.,115, No. 3, 426–444 (1981). · Zbl 0471.20006
[286] A. V. Romanovskii, ”Finite groups with large Sylow subgroups,” Dokl. AN SSSR,259, No. 3, 540–541 (1981).
[287] M. I. Saluk, ”Finite groups with normalizer properties of their subgroups,” in: Finite Groups [in Russian], Minsk (1978), pp. 130–143. · Zbl 0398.20033
[288] M. I. Saluk, ”Finite groups with nonabnormal intersections of nonconjugate maximal subgroups,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 94–108.
[289] M. I. Saluk, ”Finite groups with nonabnormal pairs of subgroups,” Mat. Zametki,31, No. 3, 351–356 (1982). · Zbl 0518.20017
[290] V. N. Semenchuk, ”On a class of finite solvable groups,” Dokl. AN BSSR,20, No. 2, 104–105 (1976).
[291] V. N. Semenchuk, ”Finite groups with given properties of subgroups,” Dokl. AN BSSR,23, No. 1, 12–15 (1979).
[292] A. A. Kirillov (ed.), Seminar on Algebraic Groups. Collection of Papers [Russian translation], Mir, Moscow (1973).
[293] V. V. Sergeichuk, ”On classification of metabelian p-groups,” in: Matrix Problems [in Russian], Kiev (1977), pp. 150–161.
[294] V. I. Sergienko, ”Complements in finite groups,” Dokl. AN BSSR,25, No. 3, 200–203 (1981). · Zbl 0468.20016
[295] V. I. Sergienko, ”An algorithm for calculating the product in corepresentations of finite groups,” in: Subgroup Structure of Finite Groups, Tr. Gomel’sk. Semin ara, Minsk (1981), 152–155.
[296] V. I. Sergienko, ”Some properties of quasinormal subgroups of finite groups,” in: Subgroup Structure of Finite Groups, Tr. Gomel’sk. Seminara, Minsk. (1981), pp. 149–152.
[297] V. M. Sitnikov, ”Finite groups with a self-centralizing subgroup of order 8,” in: Algebraic Investigations [in Russian], Sverdlovsk (1976), pp. 40–52.
[298] V. M. Sitnikov, ”Finite groups with a given 2-local subgroup in the centralizer of an involution,” Preprint, Inst. Mat. i Mekh., Ural. Nauch. Tsentra AN SSSR, Sverdlovsk (1977).
[299] V. M. Sitnikov, ”On finite groups with a standard component isomorphic to M24,” Mat. Zametki,26, No. 3, 321–335 (1979).
[300] A. I. Skopin, ”On relations in groups of exponent 8,” J. Sov. Math.,11, No. 4 (1975). · Zbl 0401.20028
[301] A. I. Skopin, ”On a group of exponent 8,” J. Sov. Math.,37, No. 2 (1987). · Zbl 0612.20018
[302] A. I. Skopin, ”A metabelian group of exponent 9 with two generators,” J. Sov. Math.,24, No. 4 (1984). · Zbl 0529.20026
[303] T. A. Springer and R. Steinberg, ”Classes of conjugate elements,” in: Seminar on Algebraic Groups [Russian translation], Mir, Moscow (1973), pp. 162–262.
[304] R. Steinberg, Lectures on Chevalley Groups [Russian translation], Mir, Moscow (1975).
[305] I. Ya. Subbotin, ”Finite solvable groups with an invariator condition for normal divisors,” in: Investigations in Group Theory [in Russian], Kiev (1976), pp. 139–161.
[306] I. Ya. Subbotin, ”Finite nonsolvable groups with an invariator condition for normal divisors,” in: Group-Theoretic Investigations [in Russian], Kiev (1978), pp. 94–117. · Zbl 0419.20018
[307] I. Ya. Subbotin, ”Finite nonsolvable groups with an invariator condition for normal divisors,” in: Theoretical and Applied Questions of Differential Equations and Algebra [in Russian], Kiev (1978), pp. 241–243. · Zbl 0419.20018
[308] M. Suzuki, The Structure of a Group and the Structure of Its Subgroups [Russian translation], IL, Moscow (1960).
[309] V. K. Suchkov, ”Finite groups with unitary third maximal 2-critical subgroups,” in: Proceedings of the 6th Scientific-Technological Conference, Mogilev (1979), pp. 396–400.
[310] N. M. Suchkov, ”On some linear groups with complementable subgroups,” Algebra Logika,16, No. 5, 603–620 (1977). · Zbl 0405.20024 · doi:10.1007/BF01669480
[311] N. M. Suchkov, ”Automorphically factorizable groups,” Algebra Logika,18, No. 4, 481–487 (1979). · Zbl 0444.20026 · doi:10.1007/BF01673947
[312] Ya. P. Sysak, ”Finite, elementarily factorizable groups,” Mat. Sb., Kiev: Naukova Dumka (1976), pp. 108–111.
[313] Ya. P. Sysak, ”Finite, elementarily factorizable groups,” Ukr. Mat. Zh.,29, No. 1, 67–76 (1977). · Zbl 0413.20021 · doi:10.1007/BF01085515
[314] Ya. P. Sysak, ”Groups with complementable subgroups of type (p, p),” in: The Structure of Groups and Properties of Their Subgroups [in Russian], Kiev (1978), pp. 63–79.
[315] Ya. P. Sysak, ”On groups with complementable elementary Abelian subgroups of given rank,” in: Groups Determined by Properties of Subgroups [in Russian], Kiev (1979), pp. 38–56.
[316] Ya. P. Sysak, ”On ABA-factorizable groups,” in: Constructive Description of Groups with Given Properties of Subgroups [in Russian], Kiev (1980), pp. 41–55.
[317] Ya. P. Sysak, ”On finite groups of ABA type,” Algebra Logika,21, No. 3, 344–356 (1982). · Zbl 0518.20019 · doi:10.1007/BF01980631
[318] S. A. Syskin, ”Finite groups with primary centralizers of fourfold subgroups,” Izv. AN SSSR, Ser. Mat.,42, No. 5 1132–1150 (1978).
[319] S. A. Syskin, ”On centralizers of 2-subgroups in finite groups,” Algebra Logika,17, No. 3, 316–354 (1978). · Zbl 0415.20007 · doi:10.1007/BF01670291
[320] S. A. Syskin, ”On a question of R. Ber,” Sib. Mat. Zh.,20, No. 3, 679–681 (1979). · Zbl 0423.20014
[321] S. A. Syskin, ”On the action of the group L2(q) on a 2-group,” Algebra Logika,18, No. 2, 224–231 (1979). · Zbl 0438.20012 · doi:10.1007/BF01669506
[322] S. A. Syskin, ”Abstract properties of simple sporadic groups,” Usp. Mat. Nauk,35, No. 5, 181–212 (1980). · Zbl 0466.20006
[323] S. A. Syskin, ”2-local subgroups of finite groups,” in: 6th All-Union Symposium on Group Theory, Kiev (1980), pp. 209–217. · Zbl 0454.20016
[324] S. A. Syskin, ”A 3-characterization of the O’Nan-Sims group,” Mat. Sb.,114, No. 3, 471–478 (1981). · Zbl 0458.20020
[325] S. A. Syskin, ”On standard components of type F3,” Algebra Logika,20, No. 4, 465–482 (1981). · Zbl 0496.20012 · doi:10.1007/BF01669114
[326] G. N. Titov, ”On groups containing a cyclic subgroup of index p3,” Mat. Zametki,28, No. 1, 17–24 (1980). · Zbl 0444.20019
[327] G. N. Titov and T. E. Fedenok, ”Groups with certain conditions of complementability of subgroups,” Preprint, Kuban. Univ., Krasnodar (1983).
[328] Kh. Ya. Unachev, ”On p-groups with dependent subgroups,” Algebra and Number Theory, Issue 1, Nal’chik (1973), pp. 32–39.
[329] Kh. Ya. Unachev, ”On finite groups the fourth maximal subgroups of which are independent,” Algebra and Number Theory. Nal’chik, No. 2 (1977), pp. 127–138. · Zbl 0404.20009
[330] Kh. Ya. Unachev, ”On the effect of the number of independent subgroups on solvability of a group,” Algebra and Number Theory. Nal’chik, No. 4 (1979), pp. 71–92.
[331] A. D. Ustyuzhaninov, ”Finite 2-groups with a unique nonmetacyclic subgroup of index 2,” Mat. Zap. Ural’sk. Univ.,9, No. 3, 90–106 (1975). · Zbl 0409.20021
[332] S. I. Faershtein, ”On groups with invariant intersections of nonincident subgroups,” Questions of Group Theory and Homological Algebra [in Russian], Yaroslavl’, No. 2 (1979), pp. 211–215.
[333] A. N. Fedorov, ”Quasiidentities of finite simple groups,” Preprint, Moscow State Univ. (1982).
[334] W. Feit, ”Some consequences of the classification of finite simple groups,” Usp. Mat. Nauk,38, No. 3, 127–133 (1983). · Zbl 0522.20010
[335] D. G. Flaass, ”2-local subgroups of Fischer groups,” Mat. Zametki,35, No. 3, 333–342 (1984). · Zbl 0541.20007
[336] A. N. Fomin, ”On generation of finite simple groups by simple subgroups,” Mat. Zametki,18, No. 2, 223–225 (1975).
[337] A. N. Fomin, ”A permutation characterization of some Mathieu groups,” Algebra Logika,18, No. 2, 232–249 (1979). · Zbl 0438.20001 · doi:10.1007/BF01669507
[338] V. I. Kharlamova, ”Arithmetic criteria of solvability and supersolvability of finite groups,” Dokl. AN BSSR,19, No. 12, 1065–1066 (1975).
[339] V. I. Kharlamova and K. A. Reshko, ”Characterization of finite groups with particular maximal chains,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 185–195. · Zbl 0459.20030
[340] E. I. Khukhro, ”Finite groups admitting a 2-automorphism without fixed points,” Mat. Zametki,23, No. 5, 651–657 (1978).
[341] E. I. Khukhro, ”Verbal commutatitivity and fixed points of p-automorphisms of finite p-groups,” Mat. Zametki,25, No. 4, 505–512 (1979). · Zbl 0411.20015
[342] E. I. Khukhro, ”A solvable group admitting a splitting regular automorphism of prime order is nilpotent,” Algebra Logika,17, No. 5 611–618 (1978).
[343] E. I. Khukhro, ”On finite groups of period p\(\alpha\)q\(\beta\),” Algebra Logika,17, No. 6, 727, 740 (1978). · Zbl 0419.20019
[344] E. I. Khukhro, ”On the connection between the Hughes conjecture and relations in finite groups of prime period,” Mat. Sb.,116, No. 2, 253–264 (1981). · Zbl 0473.20016
[345] E. I. Khukhro, ”On the associated Lie ring of a free 2-generated group of prime period and the Hughes conjecture for 2-generated p-groups,” Mat. Sb.,118, No. 4, 567–575 (1982).
[346] S. V. Tsaranov, ”Groups with a small number of distinct degrees of irreducible representations,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 6, 51–54 (1980). · Zbl 0454.20005
[347] S. V. Tsaranov, ”Investigation of 2-local subgroups of finite quasithin groups by methods of weak closure,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 5 70–73 (1982).
[348] S. V. Tsaranov, ”Investigation of 2-local sections of odd characteristic finite quasithin groups,” Preprint, Moscow State Univ. (1983).
[349] S. V. Tsaranov, ”On 2-local sections in finite quasithin groups,” Preprint, Moscow State Univ. (1983).
[350] T. A. Tsaturyan and V. N. Shokuev, ”On some relations between group-theoretic invariants of finite p-groups. II,” Algebra i Teoriya Chisel, No. 2, 139–146 (1977).
[351] V. V. Tsybulenko, ”On the structure of SN-groups, ” Ukr. Mat. Zh.,27, No. 5, 624–630 (1975). · Zbl 0326.20021
[352] V. V. Tsybulenko, ”On seminilpotent groups,” Ukr. Mat. Zh.,28, No. 1, 116–122 (1976). · Zbl 0364.20030 · doi:10.1007/BF01559237
[353] V. V. Tsybulenko and V. A. Kreknin, ”Finite seminiipotent groups,” Preprint, Redkol. ”Sib. Mat. Zh.,” Sib. Otd. AN SSSR, Novosibirsk (1976). · Zbl 0412.20017
[354] Kerope B. Chak’ryan, ”Finite groups with maximal subgroups of orders pn and pq,” Pliska. Bulg. Mat. Stud.,2, 116–118 (1981). · Zbl 0492.20012
[355] N. S. Chernikov and A. P. Petravchuk, ”On a condition of complementability,” in: The Structure of Groups and Properties of Their Subgroups [in Russian], Kiev (1978), pp. 131–147.
[356] S. N. Chernikov, ”Groups with a dense system of complementable subgroups,” in: Some Questions of Group Theory [in Russian], Kiev (1975), pp. 5–29.
[357] S. N. Chernikov, ”Groups with a primitively dense system of complementable subgroups,” in: Investigations in Group Theory [in Russian], Kiev (1976), pp. 3–25.
[358] S. N. Chernikov, ”Finite supersolvable groups with Abelian Sylow subgroups,” in: Groups Determined by Properties of Subgroups [in Russian], Kiev (1979), pp. 3–15.
[359] V. D. Chertok, ”Generalized solvable finite groups with cyclic intersection of Sylow subgroups,” Dokl. AN BSSR,21, No. 6, 500–502 (1977).
[360] V. D. Chertok, Finite groups with a factorizable Sylow subgroup,” in: Finite Groups, [in Russian], Minsk (1978), pp. 151–155. · Zbl 0398.20036
[361] V. D. Chertok, ”On factorizable p-solvable groups,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 195–199.
[362] M. N. Chudinov, ”A condition of quasinormality for cyclic subgroups of composite order,” Questions of Group Theory and Homological Algebra, Yaroslavl’, No. 1, 198–202 (1977).
[363] S. A. Chunikhin, ”On groups with prescribed subgroups,” Mat. Sb.,4, No. 3, 531–532 (1938).
[364] S. A. Chunikhin, ”Subgroups with a common component,” Dokl. AN SSSR,224, No. 2, 297–300 (1975). · Zbl 0336.20017
[365] S. A. Chunikhin, ”On conjugacy of subgroups of finite groups,” Dokl. AN SSSR,225, No. 5, 1031–1034 (1975).
[366] S. A. Chunikhin, ”On the Sepa-Zappa theorem on Sylowizers,” Dokl. AN SSSR,232, No. 1, 44–46 (1977). · Zbl 0373.20023
[367] S. A. Chunikhin, ”Complexes and subgroups,” Dokl. AN BSSR,22, No. 1, 5–8 (1978). · Zbl 0376.20019
[368] S. A. Chunikhin, ”On Kegel’s lemma,” Dokl. AN BSSR,22, No. 2, 101–103 (1978). · Zbl 0376.20026
[369] S. A. Chunikhin, ”On the Schur-Zassenhaus theorem,” Dokl. AN BSSR,24, No. 11, 965–967 (1980). · Zbl 0444.20020
[370] S. A. Chunikhin, ”On the conditions of the Wedderburn-Remack-Krull-Schmidt theorem,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 5–13.
[371] S. A. Chunikhin and L. A. Shemetkov, ”Finite groups,” Algebra. Topologiya. Geometriya, 1969 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1971), pp. 7–70.
[372] G. S. Shevtsov and G. A. Malan’ina, ”On finite groups all second maximal subgroups of which are completely factorizable,” Preprint, Redkol. Zh. ”Izv. Vuzov. Mat.,” Kazan (1979).
[373] L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978). · Zbl 0496.20014
[374] L. I. Shidov, ”On nonnilpotent subgroups of finite groups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 87–97 (1976). · Zbl 0354.20014
[375] L. I. Shidov, ”On finite groups with a normalizer condition,” Sib. Mat. Zh.,21, No. 6, 141–145 (1980). · Zbl 0455.20018
[376] L. I. Shidov, ”Finite groups with independent Abelian subgroups,” in: The Structure of Properties of Algebraic Systems, Nal’chik (1981), pp. 129–132.
[377] V. V. Shlyk, ”Finite Np z-groups,” in: Subgroup Structure of Finite Groups. Tr. Gomel’sk. Seminara, Minsk (1981), pp. 199–211.
[378] E. F. Shmigirev, ”Complements to invariant subgroups,” in: Finite Groups [in Russian], Minsk (1978), pp. 155–166.
[379] V. N. Shokuev, ”On finite p-groups,” Algebra i Teoriya Chisel, Issue 1, Nal’chik, 42–66 (1979).
[380] V. N. Shokuev, ”On some relations between group-theoretic invariants of finite p-groups. III,” Algebra i Teoriya Chisel, Nal’chik, No. 4, 99–102 (1979).
[381] S. V. Shpektorov, ”On the question of pushing up in finite quasithin groups,” Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 5, 29–32 (1982).
[382] E. D. Éristova, ”On some p-groups close to wreath products,” Algebra Teoriya Chisel, Issue 1, Nal’chik, 67–82 (1973).
[383] E. D. Éristova, ”The wreath product of elementary p-groups,” Soobshch. AN GruzSSR,83, No. 3, 573–576 (1976). · Zbl 0338.20047
[384] E. D. Éristova, ”On a Sylow p-subgroup holomorphic to an elementary p-group,” Algebra Teoriya Chisel, No. 2, 169–171 (1977).
[385] S. P. Yakimov, ”Simple groups of length 9,” Usp. Mat. Nauk,33, No. 2, 212 (1978). · Zbl 0398.20022
[386] S. P. Yakimov, ”Simple groups of length 9,” Serdika. Bulg. Mat. Spisanie,5, No. 3, 209–221 (1979). · Zbl 0436.20009
[387] E. Ademaj, ”A characterization of the simple group Ln(2),” Glas. Mat.,13 (33), 15–37 (1978). · Zbl 0379.20015
[388] S. Adnan, ”A characterization of PSL(2, 7), I,” J. London Math Soc.,13, No. 2, 215–225 (1976). · Zbl 0367.20016 · doi:10.1112/jlms/s2-13.2.215
[389] S. Adnan, ”A further characterization of a projective special linear group,” Austral. Math. Soc.,124, No. 1, 112–116 (1977). · Zbl 0372.20009 · doi:10.1017/S1446788700020103
[390] S. Adnan, ”On conjugacy classes of p-elements,” Period. Math. Hung.,9, No. 3, 237–239 (1978). · Zbl 0326.20016 · doi:10.1007/BF02018089
[391] S. Adnan, ”On Frobenius groups,” Period. Math. Hung.,12, No. 2, 99–101 (1981). · doi:10.1007/BF01849699
[392] S. Adnan, ”Über faktorisierbare nichtauflösbare gruppen,” Arch. Math.,39, No. 5, 394–406 (1982). · Zbl 0507.20014 · doi:10.1007/BF01899539
[393] R. K. Agrawal, ”Finite groups whose subnormal subgroups permute with all Sylow subgroups,” Proc. Am. Math. Soc.,47, No. 1, 77–83 (1975). · Zbl 0299.20014 · doi:10.1090/S0002-9939-1975-0364444-4
[394] R. K. Agrawal, ”Generalized center and hypercenter of a finite group,” Proc. Am. Math. Soc.,58, 13–21 (1976). · Zbl 0342.20011 · doi:10.1090/S0002-9939-1976-0409651-8
[395] L. J. Alex, ”Diophantine equations related to finite groups,” Commun. Algebra,4, No. 1, 77–100 (1976). · Zbl 0324.20010 · doi:10.1080/00927877608822095
[396] L. J. Alex, ”Index two simple groups. II,” Algebra,57, No. 1, 144–150 (1979). · Zbl 0408.20007 · doi:10.1016/0021-8693(79)90213-8
[397] L. J. Alex, ”A characterization of the simple group L(3, 5),” Arch. Math.,36, No. 2, 113–119 (1981). · Zbl 0438.20009 · doi:10.1007/BF01223677
[398] L. J. Alex, ”Simple groups and a diophantine equation,” Pac. J. Math.,104, No. 2, 257–262 (1983). · Zbl 0516.20007 · doi:10.2140/pjm.1983.104.257
[399] L. J. Alex and D. C. Morrow, ”Index four simple groups,” Can. J. Math.,30, No. 1, 1–21 (1978). · Zbl 0349.20004 · doi:10.4153/CJM-1978-001-x
[400] L. J. Alex and D. C. Morrow, ”Simple groups with a Sylow normalizer of order 3p,” J. Algebra,61, No. 2, 311–327 (1979). · Zbl 0427.20009 · doi:10.1016/0021-8693(79)90283-7
[401] R. B. J. T. Allenby, ”Normal subgroups contained in Frattini subgroups are Frattini subgroups,” Proc. Am. Math. Soc.,78, No. 3, 315–318 (1980). · Zbl 0387.20019 · doi:10.1090/S0002-9939-1980-0553365-1
[402] W. O. Alltop, ”On the Frattini normal embeddability of products of p-groups,” Isr. J. Math.,23, No. 1, 31–38 (1976). · Zbl 0324.20022 · doi:10.1007/BF02757232
[403] J. Alonso, ”Groups of square-free order, an algorithm,” Math. Comput.,30, No. 135, 632–637 (1976). · Zbl 0335.20002 · doi:10.1090/S0025-5718-1976-0506898-5
[404] J. Alonso, ”Groups of order pqm with elementary Abelian Sylow q-subgroups,” Proc. Am. Math. Soc.,65, No. 1, 16–18 (1977). · Zbl 0372.20016
[405] J. L. Alperin, ”Finite groups viewed locally,” Bull. Am. Math. Soc.,83, No. 6, 1271–1285 (1977). · Zbl 0381.20010 · doi:10.1090/S0002-9904-1977-14411-X
[406] E. Ambrosiewicz, ”The property W for regular p-groups and for nilpotent groups of degree 2,” Demonstr. Math.,13, No. 3, 613–617 (1980).
[407] B. A. Anderson, ”Sequencings and starters,” Pac. J. Math.,64, No. 1, 17–24 (1976). · Zbl 0322.05024 · doi:10.2140/pjm.1976.64.17
[408] Z. Arad, ”A characteristic subgroup of \(\pi\)-stable groups,” Can. J. Math.,26, No. 6, 1509–1514 (1974). · Zbl 0261.20012 · doi:10.4153/CJM-1974-146-6
[409] Z. Arad, ”\(\pi\)-closure of finite insolvable groups,” Austral. Math. Soc.,21, Pt. 1, 118–119 (1976). · Zbl 0322.20012 · doi:10.1017/S1446788700016992
[410] Z. Arad, ”Abelian and nilpotent subgroups of maximal order of groups of odd order,” Pac. J. Math.,62, No. 1, 29–35 (1976). · Zbl 0306.20018 · doi:10.2140/pjm.1976.62.29
[411] Z. Arad, ”A classification of 3 CC-groups and applications to Glauberman-Gold-Schmidt theorem,” J. Algebra,43, No. 1, 176–180 (1976). · Zbl 0368.20013 · doi:10.1016/0021-8693(76)90151-4
[412] Z. Arad, ”Classification of groups with a centralizer condition,” Bull. Austral. Math. Soc.,15, No. 1, 31–85 (1976). · Zbl 0335.20010 · doi:10.1017/S0004972700036789
[413] Z. Arad and D. Chillag, ”On finite groups with conditions of the centralizers of p-elements,” J. Algebra,51, No. 1, 164–172 (1987). · Zbl 0373.20014 · doi:10.1016/0021-8693(78)90142-4
[414] Z. Arad and D. Chillag, ”On finite groups containing a CC-subgroup,” Arch. Math.,29, No. 3, 225–234 (1977). · Zbl 0366.20016 · doi:10.1007/BF01220399
[415] Z. Arad and D. Chillag, ”On a theorem of N. Ito on factorizable groups,” Arch. Math.,30, No. 3, 236–239 (1978). · Zbl 0416.20017 · doi:10.1007/BF01226045
[416] Z. Arad and D. Chillag, ”Finite groups with conditions on the centralizers of \(\pi\)-elements,” Commun. Algebra,7, No. 14, 1447–1468 (1979). · Zbl 0432.20017 · doi:10.1080/00927877908822412
[417] Z. Arad and D. Chillag, ”On centralizers of elements of odd order in finite groups,” J. Algebra,61, No. 1, 269–280 (1979). · Zbl 0447.20021 · doi:10.1016/0021-8693(79)90317-X
[418] Z. Arad and D. Chillag, ”\(\pi\)-solvability and nilpotent Hall subgroups,” Santa Cruz Conf. Finite Groups. Santa Cruz, Calif., 1979. Providence, R.I., 1980, pp. 197–199.
[419] Z. Arad and D. Chillag, ”Finite groups containing a nilpotent Hall subgroup of even order,” Houston J. Math.,7, No. 1, 23–32 (1981). · Zbl 0467.20024
[420] Z. Arad, D. Chillag, and M. Herzog, ”Classification of finite groups of a maximal subgroup,” J. Algebra,71, No. 1, 235–244 (1981). · Zbl 0468.20014 · doi:10.1016/0021-8693(81)90118-6
[421] Z. Arad, D. Chillag and M. Herzog, ”On a problem of Frobenius,” J. Algebra,74, No. 2, 516–523 (1982). · Zbl 0482.20017 · doi:10.1016/0021-8693(82)90037-0
[422] Z. Arad and P. Ferguson, ”On finite groups containing three CC-subgroups,” Proc. Am. Math. Soc.,80, No. 1, 27–33 (1980). · Zbl 0437.20010
[423] Z. Arad and E. Fisman, ”On finite factorizable groups,” J. Algebra,86, No. 2, 522–548 (1984). · Zbl 0526.20014 · doi:10.1016/0021-8693(84)90046-2
[424] Z. Arad and G. Glauberman, ”A characteristic subgroup of a group of odd order,” Pac. J. Math.,56, No. 2, 305–319 (1975). · Zbl 0306.20017 · doi:10.2140/pjm.1975.56.305
[425] Z. Arad and M. Herzog, ”A classification of groups with a centralizer condition. II,” Bull. Austral. Math. Soc.,16, No. 1, 55–60 (1977). · Zbl 0328.20015 · doi:10.1017/S0004972700022991
[426] Z. Arad and M. Herzog, ”On fundamental subgroups of order divisible by three,” Houston J. Math.,3, No. 3, 309–313 (1977). · Zbl 0383.20014
[427] Z. Arad and M. Herzog and A. Shaki, ”On finite groups with almost nilpotent maximal subgroups,” J. Algebra,65, No. 2, 445–452 (1980). · Zbl 0437.20011 · doi:10.1016/0021-8693(80)90232-X
[428] Z. Arad and M. Herzog, ”On maximal subgroups with a nilpotent subgroup of index 2,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 201–203.
[429] Z. Arad and M. B. Ward, ”New criteria for the solvability of finite groups,” J. Algebra,77, No. 1, 234–246 (1982). · Zbl 0486.20018 · doi:10.1016/0021-8693(82)90288-5
[430] M. Asaad, ”On the existence of a normal p-complement in finite groups,” Ann. Univ. Sci. Budapest. Sec. Math.,24, 13–15 (1981). · Zbl 0482.20016
[431] M. Asaad, ”Transfer theorem for groups with dc(P) where P Sylp(G) and p is the is the smallest odd prime in \(\pi\)(G),” Ann. Univ. Sci. Budapest. Sec. Math.,24, 17–19 (1981). · Zbl 0485.20015
[432] M. Asaad, ”On the supersolvability of finite groups, I,” Acta Math. Acad. Sci. Hung.,38, No. 1–5, 57–59 (1981). · Zbl 0488.20019 · doi:10.1007/BF01917519
[433] A. O. Asar, ”Involutory automorphisms of groups of odd order,” Arch. Math.,36, No. 2, 97–103 (1981). · Zbl 0461.20008 · doi:10.1007/BF01223675
[434] M. Aschbacher, ”On finite groups of component type,” Ill. J. Math.,19, No. 1, 87–115 (1975). · Zbl 0299.20013
[435] M. Aschbacher, ”2-components in finite groups,” Commun. Algebra,3, No. 10, 901–911 (1975). · Zbl 0326.20024 · doi:10.1080/00927877508822079
[436] M. Aschbacher, ”Finite groups in which the generalized Fitting group of the centralizer of some involution is sympletic but not extraspecial,” Commun. Algebra,4, No. 7, 595–616 (1976). · Zbl 0345.20024 · doi:10.1080/00927877608822122
[437] M. Aschbacher, ”Tightly embedded subgroups of finite groups,” J. Algebra,42, No. 1, 85–101 (1976). · Zbl 0372.20012 · doi:10.1016/0021-8693(76)90028-4
[438] M. Aschbacher, ”On finite groups in which the generalized Fitting group of the centralizer of some involution is extraspecial,” Ill. J. Math.,21, No. 2, 347–363 (1977). · Zbl 0358.20024
[439] M. Aschbacher, ”A characterization of Chevalley groups over fields of odd order. I. II.,” Ann. Math.,106, No. 2, 353–398 (1977); No. 3, 399–468, Correction. Ann. Math.,111, No. 2, 411–414 (1980). · Zbl 0393.20011 · doi:10.2307/1971100
[440] M. Aschbacher, ”A pushing up theorem for characteristic 2 type groups,” Ill. J. Math.,22, No. 1, 108–125 (1978). · Zbl 0381.20012
[441] M. Aschbacher, ”Thin finite simple groups,” Bull. Am. Math. Soc.,82, No. 3, 484 (1976); J. Algebra,54, No. 1, 50–152 (1978). · Zbl 0326.20011 · doi:10.1090/S0002-9904-1976-14063-3
[442] M. Aschbacher, ”On finite groups of Lie type and odd characteristic,” J. Algebra,66, No. 2, 400–424 (1980). · Zbl 0445.20008 · doi:10.1016/0021-8693(80)90095-2
[443] M. Aschbacher, ”Some results on pushing up in finite groups,” Math. Z.,177, No. 1, 61-ip (1981). · Zbl 0453.20009 · doi:10.1007/BF01214339
[444] M. Aschbacher, ”Groups of characteristic 2-type,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 29–36.
[445] M. Aschbacher, ”Finite groups of rank 3. I–II.,” Invent. Math.,63, No. 3, 357–402 (1981);71, No. 1, 51–163 (1983). · Zbl 0459.20005 · doi:10.1007/BF01389061
[446] M. Aschbacher, ”Weak closure in finite groups of even characteristic,” J. Algebra,70, No. 2, 561–627 (1981). · Zbl 0472.20006 · doi:10.1016/0021-8693(81)90236-2
[447] M. Aschbacher, ”On the failure of the Thompson factorization in 2-constrained groups,” Proc. London Math. Soc.,43, No. 3, 425–449 (1981). · Zbl 0486.20011 · doi:10.1112/plms/s3-43.3.425
[448] M. Aschbacher, ”A factorization theorem for 2-constrained groups,” Proc. London Math. Soc.,43, No. 3, 450–477 (1981). · Zbl 0486.20012 · doi:10.1112/plms/s3-43.3.450
[449] M. Aschbacher, ”A survey of the classification program for finite simple groups of even characteristic,” Proc. Int. Congr. Math., 15–23, Aug., 1978. Vol. I. Helsinki, 1980, pp. 281–284.
[450] M. Aschbacher, ”The uniqueness case for groups of characteristic 2 type,” Finite Simple Groups. II., Proc. London Math. Soc. Res. Symp., Durham. July–Aug., 1978, London, 1980 pp. 133–149.
[451] M. Aschbacher, ”A characterization of some finite groups of characteristic 3,” J. Algebra,76, No. 2, 400–441 (1982). · Zbl 0488.20016 · doi:10.1016/0021-8693(82)90222-8
[452] M. Aschbacher, ”GF(2)-representations of finite groups,” Am. J. Math.,104, No. 4, 683–771 (1982). · Zbl 0497.20007 · doi:10.2307/2374202
[453] M. Aschbacher, ”The Tits group as a standard subgroup,” Math. Z.,181, No. 2, 229–252 (1982). · Zbl 0498.20014 · doi:10.1007/BF01215022
[454] M. Aschbacher, ”The uniqueness case for finite groups. I, II.,” Ann. Math.,117, No. 2, No. 3, 383–454, 455–551 (1983). · Zbl 0518.20009 · doi:10.2307/2007081
[455] M. Aschbacher, ”Flag structures of Tits geometries,” Geom. Dedic.,14, No. 1, 21–32 (1983). · Zbl 0523.51008 · doi:10.1007/BF00182268
[456] M. Aschbacher, D. Gorenstein, and R. Lyons, ”The embedding of 2-locals in finite groups of characteristic 2-type. I. II.,” Ann. Math.,114, No. 2, 335–404 (1981); No. 3, 405–456 (1981). · Zbl 0476.20014 · doi:10.2307/1971297
[457] M. Aschbacher and R. Guralnick, ”Solvable generation of groups and Sylow subgroups of the lower central series,” J. Algebra,77, No. 1, 189–201 (1983). · Zbl 0485.20012 · doi:10.1016/0021-8693(82)90286-1
[458] M. Aschbacher and M. Hall Jr., ”Groups generated by a class of elements of order 3,” J. Algebra,24, No. 3, 591–612 (1973). · Zbl 0253.20018 · doi:10.1016/0021-8693(73)90129-4
[459] M. Aschbacher and G. M. Seitz, ”Involutions in Chevalley groups over fields of even order,” Nagoya Math. J.,63, 1–91 (1976). Corrections. Nagoya Math. J.,72, 135–136 (1978). · Zbl 0359.20014 · doi:10.1017/S0027763000017438
[460] M. Aschbacher and G. M. Seitz, ”On groups with a standard component of known type,” Osaka J. Math.,13, 439–482 (1980); II,18, No. 3, 703–723 (1981). · Zbl 0374.20015
[461] J. A. Ascione, ”On 3-groups of second maximal class,” Bull. Austral. Math. Soc.,21, No. 3, 473–474 (1980). · Zbl 0417.20022 · doi:10.1017/S0004972700006298
[462] J. A. Ascione, G. Havas, and C. R. Leedham-Green, ”A computer aided classification of certain groups of prime power order,” Bull. Austral. Math. Soc.,17, No. 2, 257–274 (1977). · Zbl 0359.20018 · doi:10.1017/S0004972700010467
[463] S. B. Assa, ”A characterization of2F4(2)’ and the Rudvalis group,” J. Algebra,41, No. 2, 473–495 (1976). · Zbl 0407.20014 · doi:10.1016/0021-8693(76)90194-0
[464] S. B. Assa, ”A characterization of M(22),” J. Algebra,69, No. 2, 455–466 (1981). · Zbl 0454.20022 · doi:10.1016/0021-8693(81)90215-5
[465] D. M. A. Aviñó, ”Descomposicionen product semidirecto del grupo de automorfismos de un p-grupo abeliano G de tipo [2m, 2m 2], m1>m2. Cienc. Mat.,3, No. 1, 101–106 (1982).
[466] D. M. A. Aviñó ”Serie central superior del grupo nuclear de automorfismo de un p-group abeliano finito de tipo \([p^{m_1 } , p^{m_2 } , ..., p^{m_r } ], m_i > m_{i + 1} , i = 1, 2, ..., r - 1\) .” Cienc. Mat.,3, No. 2, 47–54 (1982).
[467] M. A. Aviñó, ”Sobre los hipercentros del grupo nucleo del grupo de automorfismos de un p-grupo abeliano de tipo pm, pm, ..., pm,” Cienc. Mat.,2, No. 2, 137–144 (1981).
[468] H. Azad, ”Semisimple elements of order 3 in finite Chevalley groups,” J. Algebra,56, No. 2, 481–498 (1979). · Zbl 0398.20019 · doi:10.1016/0021-8693(79)90351-X
[469] A. H. Baartmans, ”Groups whose proper factors are Abelian,” Acta Math. Acad. Sci. Hung.,27, No. 1–2, 33–36 (1976). · Zbl 0365.20028 · doi:10.1007/BF01896752
[470] A. H. Baartmans and J. J. Woeppel, ”The automorphism group of a p-group of maximal class with an Abelian maximal subgroup,” Fund. Math.,93, No. 1, 41–46 (1976). · Zbl 0356.20027
[471] R. Baer, ”Kriterien fur die Zugehorigkeit von Elementen zu OwG,” Math. Z.,162, No. 3, 207–222 (1977). · Zbl 0408.20014 · doi:10.1007/BF01488965
[472] C. Baginski, ”Some remarks on finite p-groups,” Demonstr. Math.,14, No. 2, 279–285, (1981). · Zbl 0481.20013
[473] C. Baginski, ”On the property W in finite p-groups,” Demonstr. Math.,15, No. 3, 609–614 (1982). · Zbl 0524.20009
[474] B. J. Bailey, ”Nilpotent groups acting fixed point freely on solvable groups,” Bull. Austral. Math. Soc.,15, No. 3, 339–346 (1976). · Zbl 0362.20014 · doi:10.1017/S0004972700022760
[475] B. O. Balogun, ”Groups with large conjugacy classes,” J. Austral. Math. Soc.,A24, No. 3, 257–265 (1977). · Zbl 0374.20034 · doi:10.1017/S1446788700020280
[476] W. Bannuscher, ”Eine Verallgemeinerung des Regularitatsbegriffes bei p-Gruppen. I–II,” Wiss. Beitr. M-Luther-Univ. Halle-Wittenberg, M, No. 21, 51–63 (1981). Beitr. Algebra und Geom. Bd.,12, Berlin, 77–91 (1982). · Zbl 0468.20015
[477] O. E. Barriga, ”On a problem about cyclic subgroups of finite groups,” Proc. Edinburgh Math. Soc.,20, No. 3, 225–228 (1977). · Zbl 0354.20019 · doi:10.1017/S0013091500026316
[478] M. J. J. Barry, ”Large Abelian subgroups of Chevalley groups,” J. Austral. Math. Soc.,A27, No. 1, 59–87, (1979). · Zbl 0394.20034 · doi:10.1017/S1446788700016645
[479] M. J. J. Barry, ”On commutators in Chevalley groups,” Proc. R. Irish Acad.,A80, No. 2, 290–215 (1980). · Zbl 0439.20027
[480] M. J. J. Barry and W. J. Wong, ”Abelian 2-subgroups of finite symplectic groups in characteristic 2,” J. Austral. Math. Soc.,A33, No. 3, 345–350 (1982). · Zbl 0501.20029 · doi:10.1017/S1446788700018760
[481] D. Bartels, ”Subnormality and invariant relations on conjugacy classes in finite groups,” Math. Z.,157, No. 1, 13–17 (1977). · Zbl 0348.20019 · doi:10.1007/BF01214675
[482] S. Baskaran, ”CLT- and non-CLT groups of order p2q2,” Fund. Math.,92, No. 1, 1–7 (1976). · Zbl 0347.20010
[483] S. Baskaran, ”A note on CLT numbers,” Indian J. Pure Appl. Math.,9, No. 1, 82–86 (1978). · Zbl 0373.20027
[484] S. Baskaran, ”On product of two CLT normal subgroups,” Math. Nachr.,83, 89–91 (1978). · Zbl 0314.20017 · doi:10.1002/mana.19780830107
[485] S. Bauman, ”The intersection map of subgroups,” Arch. Math.,25, No. 4, 337–340 (1974). · Zbl 0291.20028 · doi:10.1007/BF01238683
[486] S. Bauman, ”Subgroups with trivial maximal intersection,” Ill. J. Math.,21, No. 3, 568–574 (1977). · Zbl 0561.20019
[487] B. Baumann, ”Endliche nichtauflösbare Gruppen mit einer nilpotenten maximalen Untergruppe,” J. Algebra,38, No. 1, 119–135 (1975). · Zbl 0325.20012 · doi:10.1016/0021-8693(76)90249-0
[488] B. Baumann, ”Endliche Gruppen, die von je zwei verschiedenen ihrer 2-sylow gruppen erzeugt werden,” Arch. Math.,28, No. 1, 34–40 (1977). · Zbl 0387.20012 · doi:10.1007/BF01223885
[489] B. Baumann, ”Uberdeckungen von Konjugiertenklassen endlicher Gruppen,” Geom. Dedic.,5, No. 3, 295–305 (1976). · doi:10.1007/BF02414894
[490] B. Baumann, ”Endliche Gruppen mit einer 2-zentralen Involution, deren Zentralizator 2-abgeschlossen ist,” Ill. J. Math.,22, No. 4, 240–261 (1978). · Zbl 0402.20013
[491] B. Baumann, ”Uber endliche Gruppen mit einer zu L2(2n) isomorphen Faktorgruppe,” Proc. Am. Math. Soc.,74, No. 2, 215–222 (1978). · Zbl 0409.20009
[492] G. Baumslag, ”Problem areas in infinite group theory for finite group theorists,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I. (1980), pp. 217–223.
[493] H. Bechtell, ”Inseparable finite solvable groups,” Trans. Am. Math. Soc.,216, 47–60 (1976); II, Proc. Am. Math. Soc.,64, No. 1, 25–29 (1977). · Zbl 0302.20019 · doi:10.1090/S0002-9947-1976-0427469-1
[494] H. Bechtell, ”Splitting systems for finite solvable groups,” Arch. Math.,36, No. 4, 295–301 (1981). · Zbl 0443.20017 · doi:10.1007/BF01223704
[495] B. Beisiegel, ”Über einfache endliche Gruppen mit Sylow-2-Gruppen der Ordnung höchsten 210,” Commun. Algebra,5, No. 2, 113–170 (1977). · Zbl 0361.20025 · doi:10.1080/00927877708822162
[496] B. Beisiegel, ”Semi-extraspezielle p-Gruppen,” Math. Z.,156, No. 3, 247–254 (1977). · Zbl 0346.20016 · doi:10.1007/BF01214412
[497] B. Beisiegel, ”A note on Harada’s simple group F,” J. Algebra,48, No. 1, 142–149 (1977). · Zbl 0366.20011 · doi:10.1016/0021-8693(77)90298-8
[498] B. Beisiegel, ”Die Automorphismengruppen homozyklischer p-Gruppen,” Arch. Math.,29, No. 4, 363–366 (1977). · Zbl 0366.20010 · doi:10.1007/BF01220419
[499] B. Beisiegel, ”Finite p-groups with nontrivial p-automorphisms,” Arch. Math.,31, No. 3, 209–216 (1978). · Zbl 0404.20016 · doi:10.1007/BF01226439
[500] B. Beisiegel, ”Automorphisms and ultraspecial groups,” J. Algebra,56, No. 1, 43–49 (1979). · Zbl 0403.20018 · doi:10.1016/0021-8693(79)90322-3
[501] T. M. C. Bellani and L. Di Martino, ”I sottogruppi nilpotenti autonormalizzanti di Sn e di An,” Rend. Ist. Lombardo. Accad. Sci. Lett.,A110, No. 2, 235–241 (1976).
[502] M. Bernard and H. Finkelstein, ”Some counting theorems for finite groups,” Arch. Math.,26, No. 3, 236–239 (1975). · Zbl 0314.20021 · doi:10.1007/BF01229733
[503] H. Bender, ”Goldschmidt’s 2-signalizer functor theorem,” Isr. J. Math.,22, No. 3–4, 208–213 (1975). · Zbl 0325.20016 · doi:10.1007/BF02761590
[504] H. Bender, ”On the normal p-structure of a finite group and related topics, I,” Hokkaido Math. J.,7, No. 2, 271–288 (1978). · Zbl 0405.20015 · doi:10.14492/hokmj/1381758452
[505] H. Bender, ”Finite groups with dihedral Sylow 2-subgroups,” J. Algebra,70, No. 1, 216–228 (1981). · Zbl 0458.20018 · doi:10.1016/0021-8693(81)90254-4
[506] H. Bender and G. Glauberman, ”Characters of finite groups with dihedral Sylow 2-subgroups,” J. Algebra,70, No. 1, 200–215 (1981). · Zbl 0458.20004 · doi:10.1016/0021-8693(81)90253-2
[507] T. R. Berger, ”Fixed point free automorphism groups,” Lect. Notes Math.,573, 1–5 (1977). · Zbl 0414.20019 · doi:10.1007/BFb0087807
[508] T. R. Berger, ”A converse to Lagrange’s theorem,” J. Austral. Math. Soc.,A25, No. 3, 291–313 (1978). · Zbl 0407.20020 · doi:10.1017/S1446788700021042
[509] T. R. Berger and F. Gross, ”2-length and the derived length of a Sylow-2-subgroup,” Proc. London Math. Soc.,34, No. 3, 520–534 (1977). · Zbl 0402.20015 · doi:10.1112/plms/s3-34.3.520
[510] T. R. Berger and M. Herzog, ”Criteria for nonperfectness,” Commun. Algebra,6, No. 9, 959–968 (1978). · Zbl 0378.20009 · doi:10.1080/00927877808822275
[511] T. R. Berger and M. Herzog, ”On characters in the principal 2-block,” J. Austral. Math. Soc.,A25, No. 3, 264–268 (1978). · Zbl 0409.20013 · doi:10.1017/S1446788700021017
[512] T. R. Berger, L. G. Kovacs, and M. F. Newman, ”Groups of prime power order with cyclic Frattini subgroup,” Proc. Kon. Ned. Akad. Wetensch.,A83, No. 1, 13–18 (1980). · Zbl 0434.20008 · doi:10.1016/1385-7258(80)90004-9
[513] E. A. Bertram, ”On large cyclic subgroups of finite groups,” Proc. Am. Math. Soc.,56, 63–66 (1976). · Zbl 0355.20020 · doi:10.1090/S0002-9939-1976-0399019-5
[514] E. A. Bertram, ”Some applications of graph theory to finite groups,” Discrete Math.,44, No. 1, 31–43 (1983). · Zbl 0506.05060 · doi:10.1016/0012-365X(83)90004-3
[515] P. Bhattacharya, ”On groups containing the projective special linear group,” Arch. Math.,37, No. 4, 295–299 (1981). · Zbl 0453.20004 · doi:10.1007/BF01234360
[516] A. Bialostocki, ”On products of two nilpotent subgroups of a finite group,” Isr. J. Math.,20, No. 2, 178–188 (1975). · Zbl 0325.20018 · doi:10.1007/BF02757885
[517] M. Bianchi, ”Sui gruppi a sottogruppi normali ciclici,” Rend. Ist. Lombardo. Accad. Sci. E. Lett.,A112, No. 2, 302–310 (1978).
[518] M. Bianchi and B. M. C. Tamburini, ”Sugli IM-gruppi finite i loro duali,” Rend. Ist. Lombardo. Accad. Sci. E. Lett.,A111, No. 2, 420–436 (1977).
[519] J. Bierbrauer, ”A characterization, of the aby MonsterF2 including a note on2E6(2),” J. Algebra,56, No. 2, 384–395, (1979). · Zbl 0401.20007 · doi:10.1016/0021-8693(79)90344-2
[520] J. Bierbrauer, ”A 2-local characterization of the Rudvalis simple group,” J. Algebra,58, No. 2, 563–571 (1979). · Zbl 0409.20012 · doi:10.1016/0021-8693(79)90180-7
[521] J. Bierbrauer, ”On a certain class of 2-local subgroups in finite simple groups,” Rend. Sem. Mat. Univ. Padova,62, 137–163 (1980). · Zbl 0435.20012
[522] N. Blackburn, ”Über Involutionen in 2-Gruppen,” Arch. Math.,35, No. 1–2, 75–78 (1980). · Zbl 0435.20013 · doi:10.1007/BF01235321
[523] H. I. Blau, ”Inequalities for some finite linear groups,” J. Algebra,38, No. 2, 407–413 (1976). · Zbl 0328.20008 · doi:10.1016/0021-8693(76)90231-3
[524] H. I. Blau, ”Brauer trees and character degrees,” Var. Publs. Ser. Mat. Inst. Aarhus Univ., No. 29, 10–11 (1978).
[525] M. Blaum, ”Factorizations of the simple groups PSL(3, q) and PSU(3, q2),” Arch. Math.,40, No. 1, 8–13 (1983). · Zbl 0502.20005 · doi:10.1007/BF01192746
[526] E. Bombierei, ”Thompson’s problem (\(\sigma\)2=3),” Invent. Math.,58, No. 1, 77–100 (1980). · Zbl 0442.20016 · doi:10.1007/BF01402275
[527] A. Brandis, ”Verschränkte Homomorphismen endlicher Gruppen,” Math. Z.,162, No. 3, 205–217 (1978). · Zbl 0386.20009 · doi:10.1007/BF01186363
[528] A. Brandis, ”Zur Verlagerungstheorie endlicher Gruppen,” Math. Z.,166, No. 1, 13–19, (1979). · Zbl 0399.20018 · doi:10.1007/BF01173843
[529] R. Brandi, ”A covering property of finite groups,” Bull. Austral. Math. Soc.,23, No. 2, 227–235 (1981). · Zbl 0462.20022 · doi:10.1017/S0004972700007085
[530] R. Brandl, ”A characterization of finite p-soluble groups of p-length one by commutator identities,” J. Austral. Math. Soc.,A230, No. 3, 257–263 (1981). · Zbl 0465.20016 · doi:10.1017/S1446788700017158
[531] R. Brauer, ”On finite groups with cyclic Sylow subgroups. I. II.,” J. Algebra,40, No. 2, 556–584 (1976);58, No. 2, 291–318 (1979). · Zbl 0367.20019 · doi:10.1016/0021-8693(76)90211-8
[532] R. Brauer, ”Blocks of characters and structure of finite groups,” Bull Am. Math. Soc.,1, No. 1, 21–28 (1979). · Zbl 0418.20006 · doi:10.1090/S0273-0979-1979-14548-8
[533] J. L. Brenner and L. Carlitz, ”Covering theorems for finite non-Abelian simple groups III. Solutions of the equation \(\alpha\)x2+\(\beta\)t2+\(\gamma\)t=a in a finite field,” Rend. Sem. Mat. Univ. Padova,55, 81–90 (1976) (1977).
[534] J. L. Brenner, R. M. Cranwell and J. Riddell, ”Covering theorems for finite nonabelian simple groups, V,” Pac. J. Math.,58, No. 1, 55–60 (1975). · Zbl 0277.20002 · doi:10.2140/pjm.1975.58.55
[535] R. M. Bryant and L. G. Kovacs, ”Lie representations and groups of prime power order,” J. London Math. Soc.,17, No. 3, 415–421 (1978). · Zbl 0384.20017 · doi:10.1112/jlms/s2-17.3.415
[536] D. C. Buchthal, ”Maximal subgroups of solvable groups,” Arch. Math.,26, No. 3, 234–235 (1975). · Zbl 0308.20017 · doi:10.1007/BF01229732
[537] J. Buckley, ”Finite groups whose minimal subgroups are normal,” Math. Z.,116, No. 1, 15–17 (1970). · Zbl 0202.02303 · doi:10.1007/BF01110184
[538] J. Buckley, ”Automorphism groups of isoclinic p-groups,” J. London Math. Soc.,12, No. 1, 37–44 (1975). · Zbl 0358.20035 · doi:10.1112/jlms/s2-12.1.37
[539] F. Buekenhout, ”Diagrams for geometries and groups,” J. Combin. Theory,A27, No. 2, 121–151 (1979). · Zbl 0419.51003 · doi:10.1016/0097-3165(79)90041-4
[540] F. Buekenhout, ”On the geometry of diagrams,” Geom. Dedic.,8, No. 3, 253–237 (1979). · Zbl 0426.51005
[541] F. Buekenhout, ”Geometries for the Mathieu group M12,” Lect. Notes Math.,969, 74–85 (1982). · doi:10.1007/BFb0062987
[542] N. Burgoyne, ”Finite groups with Chevalley-type components,” Pac. J. Math.,72, No. 2, 341–350 (1977). · Zbl 0418.20010 · doi:10.2140/pjm.1977.72.341
[543] N. Burgoyne, R. Griess and R. Lyons, ”Maximal subgroups and automorphisms of Chevalley groups,” Pac. J. Math.,71, No. 2, 365–403 (1977). · Zbl 0334.20022 · doi:10.2140/pjm.1977.71.365
[544] N. Burboyne and C. Williamson, ”On a theorem of Borel and Tits for finite Chevalley groups,” Arch. Math.,27, No. 5, 489–491 (1976). · Zbl 0345.20044 · doi:10.1007/BF01224705
[545] N. Burgoyne and C. Williamson, ”Semisimple classes in Chevalley type groups,” Pac. J. Math.,70, No. 1, 83–100 (1977). · Zbl 0379.20041 · doi:10.2140/pjm.1977.70.83
[546] G. Butler, ”The maximal subgroups of the sporadic simple group of Held,” J. Algebra,69, No. 1, 67–81 (1981). · Zbl 0457.20024 · doi:10.1016/0021-8693(81)90127-7
[547] G. Butler, ”The maximal subgroups of the Chevalley group G2(4),” London Math. Soc. Lect. Note Ser., No. 71, 186–200 (1982).
[548] G. Butler and J. J. Cannon, ”Computing in permutation and matrix groups. 1. Normal closure, commutator subgroups, series,” Math. Comput.,39, No. 160, 663–670 (1982). · Zbl 0552.20002
[549] A. R. Calderbank and D. B. Wales, ”A global code invariant under the Higman-Sims group,” J. Algebra,75, No. 1, 233–260 (1982). · Zbl 0492.20011 · doi:10.1016/0021-8693(82)90073-4
[550] P. J. Cameron and W. M. Kantor, ”2-transitive and antiflag transitive collineation groups of finite protective spaces,” J. Algebra,60, No. 2, 384–422 (1979). · Zbl 0417.20044 · doi:10.1016/0021-8693(79)90090-5
[551] P. J. Cameron, P. M. Newmann, and D. N. Teague, ”On the degrees of primitive permutation groups,” Math. Z.,180, No. 2, 141–149 (1982). · Zbl 0471.20002 · doi:10.1007/BF01318900
[552] P. J. Cameron, C. E. Praeger, J. Saxl, and G. M. Seitz, ”On the Sims conjecture and distance transitive graphs,” Bull. London Math. Soc.,15, No. 5, 499–506 (1983). · Zbl 0536.20003 · doi:10.1112/blms/15.5.499
[553] A. R. Camina, ”Some conditions which almost characterize Frobenius groups,” Isr. J. Math.,31, No. 2, 153–160 (1978). · Zbl 0654.20019 · doi:10.1007/BF02760546
[554] A. R. Camina and T. M. Gagen, ”A class of Frobenius regular groups,” Arch. Math.,28, No. 5, 449–454 (1977). · Zbl 0387.20002 · doi:10.1007/BF01223950
[555] A. R. Camina and T. M. Gagen, ”Finite groups with maximal subgroups of odd order,” Arch. Math.,28, No. 4, 357–368 (1977). · doi:10.1007/BF01223935
[556] A. R. Camina and M. Herzog, ”Character tables determine Abelian Sylow 2-subgroups,” Proc. Am. Math. Soc.,80, No. 3, 533–535 (1980). · Zbl 0447.20004
[557] C. M. Campbell and E. F. Robertson, ”A deficiency zero presentation for SL(2, p),” Bull. London Math. Soc.,12, No. 1, 17–20 (1980). · Zbl 0393.20020 · doi:10.1112/blms/12.1.17
[558] C. M. Campbell and E. F. Robertson, ”The efficiency of simple groups of order <105,” Commun. Algebra,10, No. 2, 217–225 (1982). · Zbl 0478.20024 · doi:10.1080/00927878208822711
[559] C. M. Campbell and E. F. Robertson, ”Groups related to Fa,b,c involving Fibonacci numbers,” Geom. Vein: Coxeter Festschrift, New York (1981), pp. 569–576.
[560] N. R. Campbell, ”Pushing up in finite groups,” Thesis Doct., California Inst. Technol., (1979).
[561] J. J. Cannon, ”Software tools for group theory,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 495–502.
[562] J. J. Cannon, ”Effective procedures for the recognition of primitive groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R. I., 1980, pp. 487–493.
[563] J. J. Cannon, J. McKay, and Kiang-Chuen Young, ”The non-Abelian simple groups G, |G|<105-presentations,” Commun. Algebra,7, No. 13, 1397–1406 (1979). · Zbl 0428.20010 · doi:10.1080/00927877908822409
[564] A. Garanti, ”Sui gruppi finiti soddisfacenti a una condizione sui normalizanti,” Ric. Mat.,29, No. 1, 3016 (1980).
[565] A. Caranti and P. Legovini, ”On finite groups whose endomorphic images are characteristic subgroups,” Arch. Math.,38, No. 5, 388–390 (1982). · Zbl 0465.20019 · doi:10.1007/BF01304805
[566] J. G. Carr, ”On groups admitting a fixed-point free automorphism of order the square of a prime,” J. London Math. Soc.,11, No. 2, 129–133 (1975). · Zbl 0311.20005 · doi:10.1112/jlms/s2-11.2.129
[567] J. G. Carr, ”A solubility criterion for factorized groups,” Arch. Math.,27, No. 3, 225–231 (1976). · Zbl 0297.20037 · doi:10.1007/BF01224664
[568] R. W. Carter, ”Centralizers of semisimple elements in finite groups of Lie type,” Proc. London Math. Soc.,37, No. 3, 491–507 (1978). · Zbl 0408.20031 · doi:10.1112/plms/s3-37.3.491
[569] R. W. Carter, ”Centralizers of semisimple elements in the finite classical groups,” Proc. London Math. Soc.,42, No. 1, 1–41 (1981). · Zbl 0455.20035 · doi:10.1112/plms/s3-42.1.1
[570] C. Cato, ”The orders of the known simple groups as far as one trillion,” Math. Comput.,31, No. 138, 574–577 (1977). · Zbl 0382.20009 · doi:10.1090/S0025-5718-1977-0430052-X
[571] V. Cepulić, ”A characterization of the simple group L6(2),” J. Algebra,52, No. 1, 182–200 (1978). · Zbl 0382.20011 · doi:10.1016/0021-8693(78)90267-3
[572] P. Chabot, ”Some Sylow 2-groups of type A\(\times\)B, A abelian,” J. Algebra,33, No. 2, 200–205 (1975). · Zbl 0316.20014 · doi:10.1016/0021-8693(75)90121-0
[573] P. Chabot, ”Weakly closed elementary eight-groups,” J. London Math. Soc.,17, No. 1, 47–57 (1978). · Zbl 0393.20014 · doi:10.1112/jlms/s2-17.1.47
[574] P. Chabot, ”Weakly closed eight-groups in characteristic 2-type groups,” J. Algebra,51, No. 2, 562–572 (1978). · Zbl 0474.20007 · doi:10.1016/0021-8693(78)90122-9
[575] Zon-I Chang, ”Finite groups with prime p to the first power,” Trans. Am. Math. Soc.,222, 267–288 (1976). · Zbl 0312.20010
[576] Miao-Sheng Chen, ”A note on Glauberman theorem,” Tamkang J. Math.,7, No. 1, 111–114 (1976). · Zbl 0368.20014
[577] Miao-Sheng Chen, ”A remark on finite groups,” Tamkang J. Math.,8, No. 1, 105–109 (1977). · Zbl 0358.20030
[578] Kai-Nah Cheng and D. Held, ”Finite groups with a standard component of type L3(4) I,” Rend. Sem. Math. Univ. Padova,65, 59–75 (1981); II.73, 147–167 (1985). · Zbl 0478.20014
[579] Ying Cheng, ”On double centralizer subgroups of some finite p-groups,” Proc. Am. Math. Soc.,86, No. 2, 205–208 (1982). · Zbl 0477.20010
[580] Ying Cheng, ”On finite p-groups with cyclic commutator subgroup,” Arch. Math.,39, No. 4, 295–298 (1982). · Zbl 0515.20014 · doi:10.1007/BF01899434
[581] A. Chermak, ”Finite BN-pairs of rank two and even characteristic, having a nontrivial Cartan subgroup,” J. Algebra,62, No. 1, 170–202 (1980). · Zbl 0445.20009 · doi:10.1016/0021-8693(80)90211-2
[582] A. Chermak, ”On certain groups with parabolic-type subgroups over Z2,” J. London Math. Soc.,23, No. 2, 265–279 (1981). · Zbl 0464.20018 · doi:10.1112/jlms/s2-23.2.265
[583] D. Chillag and J. Sonn, ”Sylow-metacyclic groups and Q-admissibility,” Isr. J. Math.,40, No. 3–4, 307–323 (1981). · Zbl 0496.20027 · doi:10.1007/BF02761371
[584] G. H. Cliff and A. H. Rhemtulla, ”Permuting the elements of a finite solvable group,” Can. Math, Bull.,22, No. 3, 327–330 (1979). · Zbl 0432.20021 · doi:10.4153/CMB-1979-040-6
[585] E. Cline, B. Parshall, and L. Scott, ”Minimal elements of U(H; p) and conjugacy of Levi complements in finite Chevalley groups,” J. Algebra,34, No. 3, 521–523 (1975). · Zbl 0324.20051 · doi:10.1016/0021-8693(75)90172-6
[586] M. Coates and M. Dwan, ”A note on Burnside’s other p\(\alpha\)q\(\beta\)-theorem,” J. London Math. Soc.,14, No. 1, 160–166 (1976). · Zbl 0353.20014 · doi:10.1112/jlms/s2-14.1.160
[587] M. J. Collins, ”A note on Alperin’s fusion theorem,” J. London Math. Soc.,10, No. 2, 222–224 (1975). · Zbl 0324.20023 · doi:10.1112/jlms/s2-10.2.222
[588] M. J. Collins, ”Introduction: a survey of the classification project,” Finite Simple Groups, II, Proc. London Math. Soc., Res. Symp., Durham, July–Aug., 1978. London e.a., 1980, pp. 3–40.
[589] M. J. Collins and B. Rickman, ”Finite groups admitting an automorphism with two fixed points,” J. Algebra,49, No. 2, 547–563 (1977). · Zbl 0402.20024 · doi:10.1016/0021-8693(77)90258-7
[590] M. D. E. Conder, ”Generators for alternating and symmetric groups,” J. London Math. Soc.,22, No. 1, 75–86 (1980). · Zbl 0427.20023 · doi:10.1112/jlms/s2-22.1.75
[591] M. D. E. Conder, ”More on generators for alternating and symmetric groups,” Quart. J. Math.,32, No. 126, 137–163 (1981). · Zbl 0463.20029 · doi:10.1093/qmath/32.2.137
[592] S. B. Conlon, ”p-groups with an Abelian maximal subgroup and cyclic center,” J. Austral. Math. Soc.,22, No. 2, 221–233 (1976). · Zbl 0338.20024 · doi:10.1017/S1446788700015330
[593] S. B. Conlon, ”Three-groups with cyclic centre and central quotient of maximal class,” J. Austral. Math. Soc.,A24, No. 1, 25–28 (1978). · Zbl 0368.20022 · doi:10.1017/S1446788700038891
[594] S. B. Conlon, ”Nonabelian subgroups of prime-power order of classical groups of the simple prime degree,” Lect. Notes Math.,573, 17–50 (1977). · Zbl 0356.20046 · doi:10.1007/BFb0087809
[595] J. H. Conway and S. P. Norton, ”Monstrous moonshine,” Bull. London Math. Soc.,11, No. 3, 308–339 (1979). · Zbl 0424.20010 · doi:10.1112/blms/11.3.308
[596] J. H. Conway and N. J. A. Sloane, ”The Coxeter-Todd lattice, the Mitchell group, and related sphere packings,” Math. Proc. Cambridge Philos. Soc.,93, No. 3, 421–440 (1983). · Zbl 0518.10035 · doi:10.1017/S0305004100060746
[597] B. N. Cooperstein, ”Some geometries associated with parabolic representations of groups in Lie type,” Can. J. Math.,28, No. 5, 1021–1031 (1976). · Zbl 0321.50010 · doi:10.4153/CJM-1976-100-9
[598] B. N. Cooperstein, ”Subgroups of the group E6(q) which are generated by root subgroups,” J. Algebra,46, No. 2, 355–388 (1977). · Zbl 0394.20035 · doi:10.1016/0021-8693(77)90376-3
[599] B. N. Cooperstein, ”An enemies list for factorization theorems,” Commun. Algebra,6, No. 12, 1239–1288 (1978). · Zbl 0377.20039 · doi:10.1080/00927877808822291
[600] B. N. Cooperstein, ”Minimal degree for a permutation representation of a classical group,” Isr. J. Math.,30, No. 3, 213–235 (1978). · Zbl 0383.20027 · doi:10.1007/BF02761072
[601] B. N. Cooperstein, ”The geometry of root subgroups in exceptional groups, I–II,” Geom. Dedic.,8, No. 3, 317–381 (1979),15, No. 1, 1–45 (1983). · Zbl 0443.20005 · doi:10.1007/BF00151515
[602] B. N. Cooperstein, ”Maximal subgroups of G2(2n),” J. Algebra,70, No. 1, 23–36 (1981). · Zbl 0459.20007 · doi:10.1016/0021-8693(81)90241-6
[603] B. N. Cooperstein, ”Subgroups of exceptional groups of Lie type generated by long root elements. I. Odd characteristic. II. Characteristic two,” J. Algebra,70, No. 1, 270–282, 283–298 (1981). · Zbl 0463.20014 · doi:10.1016/0021-8693(81)90259-3
[604] K. Corradi and P. Hermann, ”A normal p-complement theorem for odd primes,” Ann. Univ. Sci. Budapest Sec. Math., 22–23, 139–142 (1979–1980).
[605] K. Corradi and P. Hermann, ”p-nilpotence and factor groups of p-subgroups,” Acta Math. Acad. Sci. Hung.,40, No. 1–2, 165–167 (1982). · Zbl 0506.20008 · doi:10.1007/BF01897317
[606] T. G. Corsi, ”Su una congettura di J. D. Durbin e M. McDonald,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur.,69, No. 3–4, 106–110 (1980) (1981).
[607] P. Cuccia and M. Liotta, ”Una condizione sui sottogruppi minimali di un gruppo finito,” Boll. Unione Mat. Ital.,A1, No. 2, 303–308 (1982). · Zbl 0494.20006
[608] M. J. Curran, ”Centralizers involving Mathieu groups,” Bull. Austral. Math. Soc.,13, No. 3, 321–323 (1975). · Zbl 0328.20020 · doi:10.1017/S0004972700024564
[609] M. J. Curran, ”Groups with decomposable involution centralizers,” Osaka J. Math.,13, No. 2, 385–398 (1976). · Zbl 0363.20010
[610] M. J. Curran, ”Decomposable involution centralizers involving exceptional Lie type simple groups,” J. Austral. Math. Soc.,A33, No. 1, 59–66 (1977). · Zbl 0376.20015 · doi:10.1017/S1446788700017341
[611] M. J. Curran, ”Non-CLT groups of small order,” Commun. Algebra,11, No. 2, 111–126 (1983). · Zbl 0518.20021 · doi:10.1080/00927878308822841
[612] M. J. Curran, ”A non-Abelian automorphism group with all automorphisms central,” Bull. Austral. Math. Soc.,26, No. 3, 393–397 (1982). · Zbl 0487.20015 · doi:10.1017/S0004972700005864
[613] C. M. Curtis, W. M. Kantor, and G. M. Seitz, ”The 2-transitive permutation representations of the finite Chevalley groups,” Trans. Am. Math. Soc.,218, 1–59 (1976). · Zbl 0374.20002
[614] R. T. Curtis, ”A new combinatorial approach to M24,” Math. Proc. Cambridge Philos. Soc.,79, No. 1, 25–42 (1976). · Zbl 0321.05018 · doi:10.1017/S0305004100052075
[615] R. T. Curtis, ”The maximal subgroups of M24,” Math. Proc. Cambridge Philos. Soc.,81, No. 2, 185–192 (1977). · Zbl 0364.20006 · doi:10.1017/S0305004100053251
[616] R. T. Curtis, ”On subgroups of O. II. Local structure,” J. Algebra,63, No. 2, 413–434 (1980). · Zbl 0427.20010 · doi:10.1016/0021-8693(80)90081-2
[617] E. C. Dade, ”On normal complements to sections of finite groups,” J. Austral. Math. Soc.,19, No. 3, 257–262 (1976). · Zbl 0319.20031 · doi:10.1017/S1446788700031451
[618] S. Danielson, M. Guterman, and M. Weiss, ”On Fischer’s characterizations of \(\Sigma\)5 and \(\Sigma\)n,” Commun. Algebra,11, No. 13, 1501–1510 (1983). · Zbl 0515.20012 · doi:10.1080/00927878308822916
[619] K. H. Dar, ”Location and construction of the simple group PSL3(3) within the Tits group2F4(2)’,” J. Natur. Sci. Math.,17, No. 1, 43–57 (1977). · Zbl 0371.20018
[620] K. H. Dar, ”Maximal subgroups of the Tits simple group,” J. Natur. Sci. Math.,19, No. 1, 45–55 (1979). · Zbl 0446.20011
[621] J. D’Arcy, ”Abelian subgroups of large p-groups,” Arch. Math.,30, No. 3, 253–255 (1978). · Zbl 0381.20018 · doi:10.1007/BF01226049
[622] R. S. Dark, ”A complete group of odd order,” Math. Proc. Cambridge Philos. Soc.,77, No. 1, 21–28 (1975). · Zbl 0303.20018 · doi:10.1017/S0305004100049392
[623] R. S. Dark and M. L. Newell, ”On 2-generator metabelian groups of prime-power exponent,” Arch. Math.,37, No. 5, 385–400 (1981). · Zbl 0471.20026 · doi:10.1007/BF01234373
[624] G. Daues and H. Heineken, ”Dualitäten und Gruppen der Ordnung p6,” Geom. Dedic.,4, No. 2–4, 215–220 (1975). · Zbl 0334.20011 · doi:10.1007/BF00148755
[625] S. L. Davis and R. Solomon, ”Some sporadic characterizations,” Commun. Algebra,9, No. 17, 1625–1742 (1981). · Zbl 0472.20007 · doi:10.1080/00927878108822679
[626] R. M. Davitt, ”On the automorphism group of a finite p-group with a small central quotient,” Can. J. Math.,32, No. 5, 1168–1176 (1980). · Zbl 0452.20025 · doi:10.4153/CJM-1980-088-3
[627] U. Dempwolff, ”A factorization lemma and an application,” Arch. Math.,27, No. 1, 18–21; II, No. 5, 476–479 (1976). · Zbl 0323.20022
[628] U. Dempwolff, ”Some subgroups of Gn, 2) generated by involution, I–II,” J. Algebra,54, No. 2, 332–352 (1978);56, No. 1, 255–261 (1979). · Zbl 0399.20045 · doi:10.1016/0021-8693(78)90004-2
[629] U. Dempwolff, ”On extensions of elementary Abelian 2-groups by \(\Sigma\)n,” Glas. Mat., ser. 3,14, No. 1, 35–40 (1979). · Zbl 0408.20026
[630] U. Dempwolff, ”Some subgroups of SL(n, 2m), I,” Result. Math.,4, No. 1, 1–21 (1981). · Zbl 0467.20038 · doi:10.1007/BF03322962
[631] U. Dempwolff and S. K. Wong, ”On finite groups whose centralizer of an involution has normal extraspecial and Abelian subgroups, I–II,” J. Algebra,45, No. 1, 247–253 (1977);52, No. 1 210–217 (1978). · Zbl 0349.20006 · doi:10.1016/0021-8693(77)90370-2
[632] U. Dempwolff and S. K. Wong, ”Another characterization of Ln(2),” Arch. Math.,28, No. 1, 41–44 (1977). · Zbl 0358.20028 · doi:10.1007/BF01223886
[633] U. Dempwolff and S. K. Wong, ”On cyclic subgroups of finite groups,” Proc. Edinburgh Math. Soc.,25, No. 1, 19–20 (1982). · Zbl 0479.20013 · doi:10.1017/S0013091500004065
[634] D. I. Deriziotis, ”Centralizers of semisimple elements in a Chevalley group,” Commun. Algebra,9, No. 19, 1997–2014 (1981). · Zbl 0473.20036 · doi:10.1080/00927878108822693
[635] W. E. Deskins, ”When is an automorphism inner,” J. Indian Math. Soc.,38, No. 1–4, 37–41 (1974) (1975). · Zbl 0355.20031
[636] N. K. Dickson, ”2-groups normalized by SL(2, 2n),” J. Algebra,47, No. 2, 529–546 (1977). · Zbl 0365.20023 · doi:10.1016/0021-8693(77)90239-3
[637] N. K. Dickson, ”Structure theorems for groups with dihedral 3-normalizers,” Proc. Edinburgh Math. Soc.,21, No. 2, 175–186 (1978). · Zbl 0401.20006 · doi:10.1017/S001309150001614X
[638] N. K. Dickson, ”Groups with dihedral 3-normalizers of order 4k. I–II,” J. Algebra,54, No. 2, 309–409; 410–443 (1978). · Zbl 0391.20009
[639] N. K. Dickson and D. R. Page, ”Groups with dihedral 3-normalizers of order 4k. III,” J. Algebra,58, No. 2, 462–480 (1979). · Zbl 0408.20006 · doi:10.1016/0021-8693(79)90173-X
[640] D. Z. Djokovic, ”A class of finite group-amalgams,” Proc. Am. Math. Soc.,80, No. 1, 22–26 (1980). · Zbl 0441.20015 · doi:10.2307/2042139
[641] D. Z. Djoković, ”Automorphisms of regular graphs and finite simple group-amalgams,” Alg. Methods in Graph Theory, Vol. I, Amsterdam, Budapest (1981), pp. 95–118.
[642] D. Z. Djoković and J. Malzan, ”Irreducible automorphisms of certain p-groups,” Can. J. Math.,29, No. 2, 333–348 (1977). · Zbl 0364.20033 · doi:10.4153/CJM-1977-037-8
[643] S. W. Dolan, ”Local conjugation in finite groups,” J. Algebra,43, No. 2, 506–516 (1976). · Zbl 0367.20035 · doi:10.1016/0021-8693(76)90123-X
[644] J. L. Donley, ”A characterization of the groups E6 1(22n), n,” J. Algebra,40, No. 2, 466–498 (1976). · Zbl 0356.20018 · doi:10.1016/0021-8693(76)90207-6
[645] S. Doro, ”Counterexamples on the fusion of involutions in finite groups,” Proc. Am. Math. Soc.,59, No. 1, 23–24 (1976). · Zbl 0369.20001 · doi:10.1090/S0002-9939-1976-0409626-9
[646] R. H. Dye, ”On the conjugacy classes of involutions of the simple orthogonal groups over perfect fields of characteristic two,” J. Algebra,18, No. 3, 414–425 (1971). · Zbl 0219.20030 · doi:10.1016/0021-8693(71)90071-8
[647] R. H. Dye, ”On the conjugacy classes of involutions of the orthogonal groups over perfect fields of characteristic 2,” Bull. London Math. Soc.,3, No. 1, 61–66 (1971). · Zbl 0224.20040 · doi:10.1112/blms/3.1.61
[648] R. H. Dye, ”On the involution classes of the linear groups GLn(K), SLn(K), PGLn(K), PSLn(K) over fields of characteristic two,” Proc. Cambridge Philos. Soc.,72, No. 1, 1–6 (1972). · doi:10.1017/S030500410005088X
[649] R. H. Dye, ”The anomalous involution classes of Sp2n(2p),” J. London Math. Soc.,6, No. 3, 459–463 (1973). · Zbl 0272.20043 · doi:10.1112/jlms/s2-6.3.459
[650] R. H. Dye, ”On the conjugacy classes of involutions of the unitary groups Um(K), SUm(K), PUm(K), PSUm(K) over perfect fields of characteristic 2,” J. Algebra,24, No. 3, 453–459 (1973). · Zbl 0265.20038 · doi:10.1016/0021-8693(73)90118-X
[651] R. H. Dye, ”The classes and characters of certain maximal and other subgroups of O2n+2(2),” Ann. Mat. Pura. Ed. Appl.,107, 13–47 (1975). · Zbl 0333.20006 · doi:10.1007/BF02416467
[652] R. H. Dye, ”Elementary 2-subgroups of the classical groups over perfect fields of characteristic 2 containing all involution types,” J. Algebra,38, No. 2, 398–406 (1976). · Zbl 0328.20038 · doi:10.1016/0021-8693(76)90230-1
[653] R. H. Dye, ”Interrelations of symplectic and orthogonal groups in characteristic two,” J. Algebra,59, No. 1, 202–221 (1979). · Zbl 0409.20033 · doi:10.1016/0021-8693(79)90157-1
[654] R. H. Dye, ”Symmetric groups as maximal subgroups of orthogonal and symplectic groups over the field of two elements,” J. London Math. Soc.,20, No. 2, 227–237 (1979). · Zbl 0407.20036 · doi:10.1112/jlms/s2-20.2.227
[655] R. H. Dye, ”On the maximality of the orthogonal groups in the symplectic groups in characteristic two,” Math. Z.,172, No. 3, 203–212 (1980). · Zbl 0415.20033 · doi:10.1007/BF01215085
[656] R. H. Dye, ”Maximal subgroups of GL2n(K), SL2n(K), PGL2n(K), and PSL2n(K) associated with symplectic polarities,” J. Algebra,66, No. 1, 1–11 (1980). · Zbl 0444.20036 · doi:10.1016/0021-8693(80)90110-6
[657] R. H. Dye, ”Alternating groups as maximal subgroups of the special orthogonal groups over the field of two elements,” J. Algebra,71, No. 2, 472–480 (1981). · Zbl 0473.20035 · doi:10.1016/0021-8693(81)90186-1
[658] Yoshimi Egawa, ”Standard components of type M24,” Commun. Algebra,9, No. 5, 451–476 (1981). · Zbl 0457.20020 · doi:10.1080/00927878108822593
[659] Yoshimi Egawa and Tomoyuki Yoshida, ”Standard subgroups of type 2\(\Omega\)+(8, 2),” Hokkaido Math. J.,11, No. 3, 279–285 (1982). · Zbl 0499.20011 · doi:10.14492/hokmj/1381757805
[660] M. Emaldi, ”Caratterizzazione di gruppi mediante proiezioni sui loro sottogruppi,” Matematiche,34, No. 1–2, 188–193 (1979).
[661] Endliche Gruppen und Permutationsgruppen, Bearb. Rhode M. (Tagungsber. 18.8–24.8, 1974, No. 35). Math. Porschungsinst. Oberwolfach, 1974, pp. 11 S.
[662] Endliche Gruppen und Permutationsgruppen. Tagungsber. Math. Forschungsinst. Oberwolfach, No. 34, 1–16 (1976).
[663] M. Enguehard and L. Puig, ”Un critére d’existence de {p, q}-complément normal,” J. Algebra,55, No. 2, 281–292 (1978). · Zbl 0396.20016 · doi:10.1016/0021-8693(78)90221-1
[664] Hikoe Enomoto, ”The conjugacy classes of Chevalley groups of type (G2) over finite fields of characteristic 2 or 3,” J. Fac. Sci. Univ. Tokyo, Sec. 1,16, No. 3, 497–512 (1970). · Zbl 0242.20049
[665] G. M. Enright, ”A description of the Fischer group F22,” J. Algebra,46, No. 2, 334–343 (1977). · Zbl 0356.20011 · doi:10.1016/0021-8693(77)90374-X
[666] G. M. Enright, ”A description of the Fischer group F23,” J. Algebra,46, No. 2, 344–354 (1977). · Zbl 0356.20012 · doi:10.1016/0021-8693(77)90375-1
[667] G. M. Enright, ”Subgroups generated by transpositions in F22 and F23,” Commun. Algebra,6, No. 8, 823–837 (1978). · Zbl 0379.20017 · doi:10.1080/00927877808822270
[668] P. Erdös and E. G. Straus, ”How Abelian is a finite group?” Linear Multilinear Algebra,3, No. 4, 307–312 (1976). · doi:10.1080/03081087608817122
[669] T. Exarchakos, ”On the number of automorphisms of a finite p-group,” Can. J. Math.,12, No. 6, 1448–1458 (1980). · Zbl 0458.20026 · doi:10.4153/CJM-1980-114-0
[670] T. Exarchakos, ”LA-groups,” J. Math. Soc. Jpn.,33, No. 2, 185–190 (1981). · Zbl 0467.20022 · doi:10.2969/jmsj/03320185
[671] G. Faina and G. Korchmaros, ”Una caratterizzazione del gruppo lineare PGL(2, K) e delle coniche astratte nel senso di Buekenhout,” Boll. Unione Mat. Ital.,2, suppl., 195–208 (1980). · Zbl 0462.51007
[672] V. Fedri and U. Tiberio, ”Sui gruppi finiti i cui sottogruppi locali propri sono supersolubibi,” Boll. Unione Mat. Ital.,A17, No. 1, 73–78 (1980). · Zbl 0511.20011
[673] W. Feit and G. J. Zuckerman, ”Reality properties of conjugacy classes in spin groups and symplectic groups,” Contemp. Math.,13, 239–253 (1982). · Zbl 0511.20035 · doi:10.1090/conm/013/685957
[674] A. D. Feldman, ”Fitting height of solvable groups admitting fixed-point-free automorphism groups,” J. Algebra,53, No. 1, 268–295 (1978). · Zbl 0413.20015 · doi:10.1016/0021-8693(78)90216-8
[675] A. D. Feldman, ”Fitting height of solvable groups admitting an automorphism of prime order with Abelian fixed-point subgroup,” J. Algebra,68, No. 1, 97–108 (1981). · Zbl 0462.20021 · doi:10.1016/0021-8693(81)90287-8
[676] V. Felsch, ”The computation of a counterexample to the class-breadth conjecture for p-groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 503–506.
[677] V. Felsch and J. Neubüser, ”An algorithm for the computation of conjugacy classes and centralizers in p-groups,” Lect. Notes Comput. Sci.,72, 452–465 (1979). · Zbl 0433.20017 · doi:10.1007/3-540-09519-5_95
[678] V. Felsch, J. Neubüser, and W. Plesken, ”Space groups and groups of prime-power order. IV. Counterexamples to the class-breadth conjecture,” J. London Math. Soc.,24, No. 1, 113–122 (1982). · Zbl 0426.20016
[679] K. Fenchel, ”On a theorem of Frobenius,” Prepr. Ser. Math. Inst. Aarhus Univ.,12, No. 2 (1977–1978).
[680] K. Fenchel, ”On a theorem of Frobenius,” Math. Scand.,42, No. 2, 243–250 (1978). · Zbl 0392.20015 · doi:10.7146/math.scand.a-11751
[681] P. A. Ferguson, ”An application of the Glauberman-Goldschmidt theorem to 3’-homogeneous groups,” J. Algebra,43, No. 1, 212–215 (1976). · Zbl 0445.20011 · doi:10.1016/0021-8693(76)90155-1
[682] P. A. Ferguson, ”On 3-closure of 3’-homogeneous finite groups,” J. Algebra,44, No. 1, 239–242 (1977). · Zbl 0357.20017 · doi:10.1016/0021-8693(77)90178-8
[683] P. A. Ferguson, ”On \(\pi\)-closure of \(\pi\)-homogeneous groups,” Proc. Am. Math. Soc.,66, No. 1, 9–12 (1977). · Zbl 0374.20028
[684] P. A. Ferguson, ”On finite simple groups with a self-centralization system of type [2(n)],” Proc. Am. Math. Soc.,72, No. 3, 443–444 (1978). · Zbl 0399.20014
[685] P. A. Ferguson, ”On a problem of Frobenius,” J. Algebra,56, No. 1, 111–118 (1979); II, No. 2, 436–456. · Zbl 0398.20034 · doi:10.1016/0021-8693(79)90327-2
[686] P. A. Ferguson, ”On bounded simple groups of type [2, (n)],” Commun. Algebra,7, No. 17, 1817–1833 (1979). · Zbl 0422.20015 · doi:10.1080/00927877908822431
[687] P. A. Ferguson, ”On finite groups of type (2, 4, 4),” Commun. Algebra,9, No. 3, 283–297 (1981). · Zbl 0459.20009 · doi:10.1080/00927878108822581
[688] P. A. Ferguson, ”Relative normal complements in finite groups,” Proc. Am. Math. Soc.,87, No. 1, 38–40 (1983). · Zbl 0509.20013 · doi:10.1090/S0002-9939-1983-0677226-5
[689] P. A. Ferguson and S. D. Smith, ”Strongly self-centralizing Sylow 3-groups,” J. Algebra,58, No. 2, 572–580 (1979). · Zbl 0416.20012 · doi:10.1016/0021-8693(79)90181-9
[690] M. B. Powell and G. Higman (Eds.), ”Finite simple groups,” Proc. Instructional Conf., Oxford, Sept., 1969, Academic Press (1971), pp. X+327.
[691] N. Iwahori (Ed.), ”Finite groups,” Sapporo and Kyoto, 1974. Proc. Taniguchi Intern. Symp., Hokkaido Univ., Kyoto Univ., Sept., 1974, Japan Soc. Promotion Sci., 1976, pp. XIII+187.
[692] M. J. Collins (Ed.), ”Finite simple groups, II,” Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, Academic Press (1980), pp. XVI+345.
[693] D. Finkel, ”On the solvability of certain factorizable groups,” J. Algebra,47, No. 2, 223–230 (1977). · Zbl 0365.20029 · doi:10.1016/0021-8693(77)90222-8
[694] D. Finkel and J. R. Lundgren, ”Solvability of factorizable groups, I–II,” J. Algebra,57, No. 1, 230–235 (1979),60, No. 1, 43–50 (1979). · Zbl 0406.20021 · doi:10.1016/0021-8693(79)90220-5
[695] D. Finkel and M. B. Ward, ”Products of supersolvable and nilpotent finite groups,” Arch. Math.,36, No. 5, 385–393 (1981). · Zbl 0443.20020 · doi:10.1007/BF01223714
[696] H. Finkelstein, ”The automorphism-order in finite groups,” Period. Math. Hung.,7, No. 1, 11–26 (1976). · Zbl 0281.20020 · doi:10.1007/BF02019990
[697] H. Finkelstein, ”Solving equations in groups: A survey of Frobenius’ theorem,” Period. Math. Hung.,9, No. 3, 187–204 (1978). · Zbl 0452.20026 · doi:10.1007/BF02018086
[698] L. Finkelstein, ”Finite groups with a standard component of type Janko Ree,” J. Algebra,36, No. 3, 4q6–426 (1975). · Zbl 0321.20018 · doi:10.1016/0021-8693(75)90142-8
[699] L. Finkelstein, ”Finite groups with a standard component isomorphic to M22,” J. Algebra,40, No. 2, 541–555 (1976). · Zbl 0442.20018 · doi:10.1016/0021-8693(76)90210-6
[700] L. Finkelstein, ”Finite groups with a standard component isomorphic to HJ or HJM,” J. Algebra,43, No. 1, 61–114 (1976). · Zbl 0362.20010 · doi:10.1016/0021-8693(76)90145-9
[701] L. Finkelstein, ”Finite groups with a standard component isomorphic to M22,” J. Algebra,44, No. 2, 558–572 (1977). · Zbl 0377.20015 · doi:10.1016/0021-8693(77)90201-0
[702] L. Finkelstein, ”Finite groups with a standard component whose centraliser has cyclic Sylow 2-subgroups,” Proc. Am. Math. Soc.,62, No. 2, 237–241 (1977). · Zbl 0416.20011
[703] L. Finkelstein, ”Finite groups with a standard component of type J4,” Pac. J. Math.,71, No. 1, 41–56 (1977). · Zbl 0374.20016 · doi:10.2140/pjm.1977.71.41
[704] L. Finkelstein, ”Open standard form problems,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I. (1980), pp. 99–102.
[705] L. Finkelstein and D. Frohardt, ”A 3-local characterization of L7(2),” Trans. Am. Math. Soc.,250, 181–194 (1979). · Zbl 0408.20005
[706] L. Finkelstein and D. Frohardt, ”Standard 3-components of type Sp(6, 2),” Trans. Am. Math. Soc.,266, No. 1, 71–92 (1981). · Zbl 0472.20008
[707] L. Finkelstein and D. Frohardt, ”Simple groups with a standard 3-component of type An(2), with n,” Proc. London Math. Soc.,43, No. 3, 385–424 (1981). · Zbl 0477.20007 · doi:10.1112/plms/s3-43.3.385
[708] L. Finkelstein and A. Rudvalis, ”Maximal subgroups of the Hall-Janko-Wales group,” J. Algebra,24, No. 3, 496–493 (1973). · Zbl 0265.20012 · doi:10.1016/0021-8693(73)90122-1
[709] L. Finkelstein and R. Solomon, ”Standard components of type M12 and 3,” Osaka J. Math.,16, No. 3, 759–774 (1979). · Zbl 0429.20018
[710] L. Finkelstein and R. Solomon, ”Finite simple groups with a standard 3-component of type Sp(2n, 2), n,” J. Algebra,59, No. 2, 466–480 (1979). · Zbl 0415.20008 · doi:10.1016/0021-8693(79)90141-8
[711] L. Finkelstein and R. Solomon, ”A presentation of the symplectic and orthogonal groups,” J. Algebra,60, No. 2, 423–438 (1979). · Zbl 0426.20035 · doi:10.1016/0021-8693(79)90091-7
[712] L. Finkelstein and R. Solomon, ”Finite groups with a standard 3-component isomorphic to \(\Omega\)+(2m, 2), m, F4(2) or En(2), n=6, 7, 8,” J. Algebra,73, No. 1, 70–183 (1981). · Zbl 0491.20013 · doi:10.1016/0021-8693(81)90350-1
[713] H. Finken, J. Neubuser, and W. Plesken, ”Space groups of prime-power order. II. Classification of space groups by finite factor groups,” Arch. Math.,35, No. 3, 203–209 (1980). · Zbl 0434.20028 · doi:10.1007/BF01235339
[714] J. Fischer and J. McKay, ”The non-Abelian simple groups G, |G|<106-maximal subgroups,” Math. Comput.,32, No. 144, 1293–1302 (1978). · Zbl 0388.20010
[715] E. Fisman, ”Nonsimplicity of certain finite factorizable groups,” J. Algebra,75, No. 1, 198–208 (1982). · Zbl 0498.20019 · doi:10.1016/0021-8693(82)90070-9
[716] E. Fisman, ”On the product of two finite solvable groups,” J. Algebra,80, No. 2, 517–536 (1983). · Zbl 0503.20005 · doi:10.1016/0021-8693(83)90008-X
[717] D. Flannery and D. MacHale, ”Some finite groups which are rarely automorphism groups, I,” Proc.R. Irish Acad.,A81, No. 2, 209–215 (1981). · Zbl 0479.20015
[718] D. E. Flesner, ”The geometry of subgroups of PSp4(2n),” Ill. J. Math.,19, No. 1, 48–70 (1975). · Zbl 0303.20003
[719] D. E. Flesner, ”Maximal subgroups of PSp4(2n) containing central elations or noncentered skew elations,” Ill. J. Math.,19, No. 2, 247–268 (1975). · Zbl 0304.20002
[720] L. R. Fletcher, B. Stellmacher, and W. B. Stewart, ”Endliche Gruppen, die kein Element der Ordnung 6 enthalten,” Q. J. Math.,28, No. 110, 143–154 (1977). · Zbl 0363.20018 · doi:10.1093/qmath/28.2.143
[721] P. Fong, ”Characters arising in the monster-modular connection,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I. (1980), pp. 557–559.
[722] P. Fong and M. E. Harris, ”A note on strongly closed 2-subgroups,” Can. Math. Bull.,23, No. 1, 99–101 (1980). · Zbl 0432.20011 · doi:10.4153/CMB-1980-013-4
[723] P. Fong and G. M. Seitz, ”Groups with a (B, N)-pair of rank 2, I, II,” Invent. Math.,21, No. 1–2, 1–57 (1973),24, No. 3, 191–239 (1974). · Zbl 0295.20048 · doi:10.1007/BF01389689
[724] R. Foote, ”Finite groups with components of 2-rank I. I, II,” J. Algebra,41, No. 1, 6–46; 47–57 (1976). · Zbl 0364.20020
[725] R. Foote, ”Finite groups with maximal 2-components of type L2(q), q odd,” Proc. London Math. Soc.,37, No. 3, 422–458 (1978). · Zbl 0418.20011 · doi:10.1112/plms/s3-37.3.422
[726] R. Foote, ”Finite groups with Sylow 2-subgroups of type L6(q), q (mod 4),” J. Algebra,68, No. 2, 378–389 (1981). · Zbl 0453.20011 · doi:10.1016/0021-8693(81)90270-2
[727] R. Foote, ”Aschbacher blocks,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., (1980), pp. 37–42.
[728] R. Foote, ”Component type theorems for finite groups in characteristic 2,” Ill. J. Math.,26, No. 1, 62–111 (1982). · Zbl 0469.20010
[729] R. Foote and M. E. Harris, ”Tightly embedded subgroups with cores,” Arch. Math.,38, No. 6, 481–490 (1982). · Zbl 0497.20006 · doi:10.1007/BF01304820
[730] R. Foote and S. K. Wong, ”On certain blocks of orthogonal type,” Commun. Algebra,9, No. 10, 1067–1091 (1981). · Zbl 0468.20013 · doi:10.1080/00927878108822633
[731] A. Fort, ”Gruppi finite debolmente modulari,” Rend. Sem. Mat. Univ. Padova,53, 269–290 (1975). · Zbl 0357.20021
[732] A. Fort, ”Gruppi finiti in cui ogni sottogruppo é Dedekind-sensitivo,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,62, No. 4, 444–450 (1977). · Zbl 0384.20021
[733] A. Fort, ”Grouppi finite debolmenta supersolubili,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fiz., Mat. Natur.,64, No. 3, 270–272 (1978).
[734] T. A. Fournelle, ”Finite groups of automorphisms of infinite groups,” J. Algebra,70, No. 1, 16–22 (1981); II,80, No. 1, 106–112 (1983). · Zbl 0457.20040 · doi:10.1016/0021-8693(81)90240-4
[735] P. Frankl, ”On commutator subgroups,” Acta Math. Acad. Sci. Hung.,27, No. 1–2, 193–195 (1976). · Zbl 0342.20019 · doi:10.1007/BF01896774
[736] R. Friedlander, ”Sequences in non-Abelian groups with distinct partial products,” Aequat. Math.,14, No. 1–2, 59–66 (1976). · Zbl 0325.20020 · doi:10.1007/BF01836206
[737] A. Frigerio, ”Gruppi finiti nei quali é transitive 1’essere sottogruppo modulare,” Atti. Ist. Veneto Sci., Lett. Ed. Arti. Cl. Sci. Mat. Natur.,132, 185–190 (1973–1974).
[738] F. J. Fritz, ”On centralizers of involutions having a component of type A6 and A7,” Rend. Sem. Mat. Univ. Padova,54, 1–29 (1975).
[739] F. J. Fritz, ”On centralizers of involutions with components of 2-rank two, I, II.,” J. Algebra,47, No. 2, 323–374; 375–399 (1977). · Zbl 0369.20005
[740] F. J. Fritz, ”On a 2-local subgroup involving F2(2n), n>2,” J. Algebra,51 No. 2, 597–607 (1978). · Zbl 0382.20015 · doi:10.1016/0021-8693(78)90125-4
[741] D. Frohardt, ”A 3-local characterization of SL(2, 2n), n odd,” Commun. Algebra,6, No. 8, 751–773 (1978). · Zbl 0404.20008 · doi:10.1080/00927877808822267
[742] D. Frohardt, ”From a 3-local plus 3-fusion to the centralizer of an involution,” Proc. Am. Math. Soc.,82, No. 3, 330–334 (1981). · Zbl 0465.20014
[743] Hiroshi Fukushina, ”Weakly closed cyclic 2-groups in finite groups,” J. Math. Soc. Jpn.,30, No. 1, 133–137 (1978). · Zbl 0364.20023 · doi:10.2969/jmsj/03010133
[744] Hiroshi Fukushima, ”Finite groups admitting an automorphism of prime order, I,” Hikkaido Math. J.,8, No. 1, 103–114 (1979). · Zbl 0412.20021 · doi:10.14492/hokmj/1381758411
[745] Hiroshi Fukushina, ”Weakly closed dihedral 2-subgroups in finite groups,” J. Math. Soc. Jpn.,32, No. 1, 193–200 (1980). · Zbl 0413.20012 · doi:10.2969/jmsj/03210193
[746] Hiroshi Fukushima, ”Finite groups admitting an automorphism of prime order fixing a 3-group,” J. Algebra,77, No. 1, 247–260 (1982). · Zbl 0491.20021 · doi:10.1016/0021-8693(82)90289-7
[747] T. M. Gagen, ”A note on groups with the inverse Lagrange property,” Lect. Notes Math.,573, 51–52 (1977). · Zbl 0381.20022 · doi:10.1007/BFb0087810
[748] T. M. Gagen, ”Topics in finite groups,” Cambridge Univ. Press (1976), pp. VIII+85. · Zbl 0324.20013
[749] T. M. Gagen, ”Some finite solvable groups with no outer automorphisms,” J. Algebra,65, No. 1, 84–94 (1980). · Zbl 0436.20014 · doi:10.1016/0021-8693(80)90239-2
[750] T. M. Gagen and D. J. S. Robinson, ”Finite metabelian groups with no outer automorphisms,” Arch. Math.,32, No. 5 417–423 (1979). · Zbl 0401.20011 · doi:10.1007/BF01238520
[751] S. M. Gagola, Jr., ”Solvable groups admitting an lmost fixed point freeautomorphism of prime order,” Ill. J. Math.,22, No. 2, 191–207 (1978).
[752] J. A. Gallian, ”The Hughes conjecture and groups with absolutely regular subgroups or ECF-subgroups,” Proc. Am. Math. Soc.,49, No. 2, 315–318 (1975). · Zbl 0282.20013
[753] J. A. Gallian, ”Computers in group theory,” Math. Mag.,49, No. 2, 69–73 (1976). · Zbl 0329.20001 · doi:10.2307/2689432
[754] J. A. Gallian, ”More on the Hughes conjecture,” J. Algebra,41, No. 2, 413–421 (1976). · Zbl 0346.20015 · doi:10.1016/0021-8693(76)90190-3
[755] D. W. Garland, ”On finite groups satisfying a certain normalizer condition,” Q. J. Math.,26, No. 104, 389–409 (1975). · Zbl 0353.20023 · doi:10.1093/qmath/26.1.389
[756] S. Garrison, ”Determining the Frattini subgroup from the character table,” Can. J. Math.,28, No. 3, 560–567 (1976). · Zbl 0308.20016 · doi:10.4153/CJM-1976-055-0
[757] W. Gaschütz, ”Existenz und Konjugiertsein von Untergruppen, die in endlichen auflösbaren Gruppen durch gewisse Indexscharanken definiert sind,” J. Algebra,53, No. 2, 389–394 (1978). · Zbl 0382.20020 · doi:10.1016/0021-8693(78)90283-1
[758] W. Gaschütz, ”Ein allgemeiner Sylowsatz in endlichen auflösbaren Gruppen,” Math. Z.,170, No. 3, 217–220 (1980). · Zbl 0423.20019 · doi:10.1007/BF01214861
[759] L. Gerhards, ”Group-theoretical investigations on computers,” Bull. Soc. Math., Mém., No. 49–50, 65–91 (1977); II, Asterisque, No. 38–39, 91–103 (1976). · Zbl 0364.20002
[760] R. Gilman, ”Components of finite groups,” Commun. Algebra,4, No. 12, 1133–1198 (1976). · Zbl 0367.20020 · doi:10.1080/00927877608822156
[761] R. Gilman, ”Odd standard components,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I. (1980), pp. 85–90.
[762] R. Gilman and R. L. Griess, Jr., ”Finite groups with standard components of Lie type over fields of characteristic two,” J. Algebra,80, No. 2, 383–516 (1983). · Zbl 0508.20010 · doi:10.1016/0021-8693(83)90007-8
[763] R. Gilman and R. Solomon, ”Finite groups with small unbalancing 2-components,” Pac. J. Math.,83, No. 1, 55–106 (1979). · Zbl 0441.20010 · doi:10.2140/pjm.1979.83.55
[764] A. L. Gilotti, ”Sui gruppi finiti in cui classi distinte di elementi conjugati hanne diversa cardinalitá,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur.,58, No. 4, 501–507 (1975). · Zbl 0343.20010
[765] A. L. Gilotti and L. Serena, ”On the existence of normal Sylow p-complements,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,69, No. 5, 228–231 (1980). · Zbl 0522.20015
[766] R. D. Girse, ”The number of conjugacy classes of the alternating group,” BIT (Dan.),20, No. 4, 515–517 (1980). · Zbl 0452.10007 · doi:10.1007/BF01933645
[767] G. Glauberman, ”Failure of factorization in p-solvable groups, II,” Q. J. Math.,26, No. 103, 257–261 (1975). · Zbl 0319.20022 · doi:10.1093/qmath/26.1.257
[768] G. Glauberman, ”On Burnside’s other paqb-theorem,” Pac. J. Math.,56, No. 2, 469–476 (1975). · Zbl 0274.20023 · doi:10.2140/pjm.1975.56.469
[769] G. Glauberman, ”On solvable signalizer functors in finite groups,” Proc. London Math. Soc.,33, No. 1, 1–27 (1976). · Zbl 0342.20008 · doi:10.1112/plms/s3-33.1.1
[770] G. Glauberman, ”Factorizations for 2-constrained groups,” Proc. London Math. Soc.,41, No. 3, 385–438 (1980). · Zbl 0394.20015 · doi:10.1112/plms/s3-41.3.385
[771] G. Glauberman, ”Factorizations in local subgroups of finite groups,” Reg. Conf. Ser. Math., No. 33 (Am. Math. Soc., Providence, 1977), 1977, pp. 77. · Zbl 0489.20012
[772] G. Glauberman, ”Local analysis in the odd order paper,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I. (1980), pp. 137.
[773] G. Glauberman, ”p-local subgroups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I. (1980), pp. 131–136.
[774] G. Glauberman, ”The revision project and pushing-up,” Finite Simple Groups, II., Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 207–223.
[775] G. Glauberman and R. Niles, ”A pair of characteristic subgroups for pushing-up in finite groups,” Proc. London Math. Soc.,46, No. 3, 411–453 (1983). · Zbl 0488.20021 · doi:10.1112/plms/s3-46.3.411
[776] D. M. Goldschmidt, ”Strongly closed 2-subgroups of finite groups,” Ann. Math.,102, No. 3, 475–489 (1975). · Zbl 0333.20013 · doi:10.2307/1971040
[777] D. M. Goldschmidt, ”Automorphisms of trivalent graphs,” Ann. Math.,111, No. 2, 377–406 (1980). · Zbl 0475.05043 · doi:10.2307/1971203
[778] D. M. Goldschmidt, ”Pushing-up in finite groups,” Finite Simple Groups, II., Proc. London Math. Soc., Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 225–230.
[779] Kensaku Gomi, ”On maximal p-local subgroups of Sn and An,” J. Fac. Sci. Univ. Tokyo, Sec. 1A,23, No. 1, 1–22 (1976). · Zbl 0374.20020
[780] Kensaku Gomi, ”Finite groups all of whose non-2-closed 2-local subgroups have Sylow 2-subgroups of class 2,” J. Algebra,35, No. 1–3, 214–223 (1975). · Zbl 0318.20011 · doi:10.1016/0021-8693(75)90046-0
[781] Kensaku Gomi, ”Sylow 2-intersections and split BN-pairs of rank two,” J. Fac. Sci. Univ. Toyko, Sec. 1A,23, No. 1, 1022 (1976). · Zbl 0374.20020
[782] Kensaku Gomi, ”Characterizations of linear groups of low rank,” J. Fac. Sci. Univ. Tokyo, Sec. 1A,23, No. 3, 465–489 (1976). · Zbl 0389.20013
[783] Kensaku Gomi, ”Finite groups with a standard subgroup isomorphic to Sp(4, 2n),” Jpn. J. Math. New Ser.,4, No. 1, 1–76 (1978). · Zbl 0395.20008
[784] Kensaku Gomi, ”Finite groups with a standard subgroup isomorphic to PSU(4, 2),” Pac. J. Math.,79, No. 2, 399–462 (1978). · Zbl 0411.20010 · doi:10.2140/pjm.1978.79.399
[785] Kensaku Gomi, ”Standard subgroups of type Sp6(2), I, II.,” J. Fac. Sci. Univ. Tokyo, Sec. 1A,27, No. 1, 87–107; 109–156 (1980). · Zbl 0434.20004
[786] Kensaku Gomi, ”A fusion theoretical approach to groups of type PSL3(2n) and PSp4(2n),” Sci. Pap. Coll. Gen. Educ. Univ. Tokyo,30, No. 1, 1–9 (1980). · Zbl 0434.20003
[787] Kensaku Gomi, ”Remarks on certain standard component problems and the unbalanced group conjecture,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 81–84.
[788] Kensaku Gomi, ”Control of Sylow 2-intersections in groups of Chev(2) type and groups of alternating type,” Sci. Pap. Coll. Gen. Educ. Univ. Tokyo,32, No. 1, 15–31 (1982). · Zbl 0488.20017
[789] A. Goncalves and C. Y. Ho, ”Hall subgroups of p-solvability,” Proc. Am. Math. Soc.,52, 97–98 (1975). · Zbl 0283.20013
[790] B. Gordon, R. M. Guralnick, and M. D. Miller, ”On cyclic commutator subgroups,” Aequat. Math.,17, No. 1, 112–113 (1978). · Zbl 0392.20022 · doi:10.1007/BF01818547
[791] B. Gordon, R. M. Guralnick, and M. D. Miller, ”On cyclic commutator subgroups,” Aequat. Math.,17., No. 2–3, 241–248 (1978). · Zbl 0392.20022 · doi:10.1007/BF01818563
[792] L. M. Gordon, ”Finite simple groups with no elements of order six,” Bull. Austral. Math. Soc.,17, No. 2, 235–246 (1977). · Zbl 0366.20007 · doi:10.1017/S0004972700010443
[793] D. Gorenstein, ”Finite simple groups and their classification,” Isr. J. Math.,19, No. 1, 1–2, 5–66 (1974). · Zbl 0328.20014 · doi:10.1007/BF02756626
[794] D. Gorenstein, ”The classification of finite simple groups. I. Simple groups and local analysis,” Bull. Am. Math. Soc.,1, No. 1, 43–199 (1979). · Zbl 0414.20009 · doi:10.1090/S0273-0979-1979-14551-8
[795] D. Gorenstein, ”An outline of the classification of finite simple groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 3–28.
[796] D. Gorenstein, Finite Groups, 2nd Ed., Chelsea, New York (1980), pp. XVII+519. · Zbl 0463.20012
[797] D. Gorenstein, ”The classification of finite simple groups,” Proc. Int. Congr. Math., Helsinki, Aug. 15–23, 1978, Vol. 1, Helsinki, 1980 pp. 129–137.
[798] D. Gorenstein, ”Finite simple groups. An introduction to their classification,” Plenum Press, New York (1982), pp. X+333. · Zbl 0483.20008
[799] D. Gorenstein, ”The classification of finite simple groups, Vol. 1. Groups of noncharacteristic 2 type,” Plenum Press, New York (1983), pp. X+487. · Zbl 0609.20006
[800] D. Gorenstein and R. Lyons, ”Nonsolvable finite groups with solvable 2-local subgroups,” J. Algebra,38, No. 2, 453–522 (1976). · Zbl 0402.20012 · doi:10.1016/0021-8693(76)90233-7
[801] D. Gorenstein and R. Lyons, ”Nonsolvable signalizer functors on finite groups,” Proc. London Math. Soc.,35, No. 1, 1–33 (1977). · Zbl 0382.20017 · doi:10.1112/plms/s3-35.1.1
[802] D. Gorenstein and R. Lyons, ”Finite groups of characteristic 2 type,” Finite Simple Groups, II., Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 89–131.
[803] D. Gorenstein and R. Lyons, ”Standard form revisited,” Abstr. Am. Math. Soc.,2, No. 1, 783-20–38 (1981).
[804] D. Gorenstein and R. Lyons, ”Signalizer functors, proper 2-generated cores, and nonconnected groups,” J. Algebra,75, No. 1, 10–22 (1982). · Zbl 0485.20010 · doi:10.1016/0021-8693(82)90060-6
[805] D. Gorenstein and R. Lyons, ”The local structure of finite groups of characteristic 2 type,” Mem. Am. Math. Soc.,42, No. 276 (1983), pp. VIII+731. · Zbl 0519.20014
[806] R. Gow, ”Representations and automorphisms of some wreath products,” Math. Proc. Cambridge Philos. Soc.,85, No. 1, 49–53 (1979). · Zbl 0391.20016 · doi:10.1017/S0305004100055481
[807] R. L. Griess, Jr., ”Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology,” Pac. J. Math.,48, No. 2, 403–422 (1973). · Zbl 0283.20028 · doi:10.2140/pjm.1973.48.403
[808] R. L. Griess, Jr., ”On a subgroup of order 215|GL(5, 2)| inE8(C), the Dempwolff group and Aut (D80D80D8),” J. Algebra,40, No. 1, 271–279 (1976). · Zbl 0348.20011 · doi:10.1016/0021-8693(76)90097-1
[809] R. L. Griess, Jr., ”The structure of the onstersimple groups,” Proc. Conf. on Finite Groups, Academic Press, New York (1976), pp. 113–118.
[810] R. L. Griess, Jr., ”A remark about groups of characteristic 2-type and p-type,” Pac. J. Math.,74, No. 2, 349–355 (1978). · Zbl 0376.20012 · doi:10.2140/pjm.1978.74.349
[811] R. L. Griess, Jr., ”Finite groups whose involutions lie in the center,” Q. J. Math.,29, No. 115, 241–247 (1978). · Zbl 0417.20019 · doi:10.1093/qmath/29.3.241
[812] R. L. Griess, Jr., ”Schur multipliers of the known finite simple groups. II.,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 279–282.
[813] R. L. Griess, Jr., ”The covering group of M22 and the associated component problems,” Abstr. Am. Math. Soc.,1, No. 2, 213 (1980).
[814] R. L. Griess, Jr., ”A construction of F1 as automorphisms of a 196,883 dimensional algebra,” Proc. Nat. Acad. Sci. USA, Phys. Sci.,78, No. 2, 689–691 (1981). · Zbl 0452.20020 · doi:10.1073/pnas.78.2.689
[815] R. L. Griess, Jr., ”Odd standard form problems. Finite Simple Groups. II., Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 199–206.
[816] R. L. Griess, Jr., ”The friendly giant,” Invent. Math.,69, No. 1, 1–102 (1982). · Zbl 0498.20013 · doi:10.1007/BF01389186
[817] R. L. Griess, Jr., ”Quotients of infinite reflection groups,” Math. Ann.,263, No. 3, 267–278 (1983). · Zbl 0496.20034 · doi:10.1007/BF01457129
[818] R. L. Griess, Jr. and R. Lyons, ”The automorphism group of the Tits simple group2F4(2),” Proc. Am. Math. Soc.,52, 75–78 (1975). · Zbl 0326.20010
[819] R. L. Griess, Jr., D. R. Mason, and G. M. Seitz, ”Bender groups as standard subgroups,” Trans. Am. Math. Soc.,238, 179–211 (1978). · Zbl 0387.20011 · doi:10.1090/S0002-9947-1978-0466300-7
[820] R. L. Griess, Jr., and R. Solomon, ”Finite groups with unbalancing 2-components of {L3(4), He}-type,” J. Algebra,60, No. 1, 96–125 (1979). · Zbl 0428.20007 · doi:10.1016/0021-8693(79)90110-8
[821] F. Gross, ”2-automorphic 2-groups,” J. Algebra,40, No. 2, 348–353 (1976). · Zbl 0341.20015 · doi:10.1016/0021-8693(76)90199-X
[822] F. Gross, ”Automorphisms which centralize a Sylow p-subgroup,” J. Algebra,77, No. 1, 202–233 (1982). · Zbl 0489.20019 · doi:10.1016/0021-8693(82)90287-3
[823] K. B. Gross and P. A. Leonard, ”The existence of strong starters in cyclic groups,” Util. Math.,7, 187–195 (1975). · Zbl 0325.05009
[824] K. B. Gross and P. A. Leonard, ”Adders for the patterned starter in non-Abelian groups,” J. Austral. Math. Soc.,21, No. 2, 185–193 (1976). · Zbl 0333.05012 · doi:10.1017/S144678870001778X
[825] J. Grover, ”Covering groups of groups of Lie type,” Pac. J. Math.,30, No. 3, 645–655 (1969). · Zbl 0185.07403 · doi:10.2140/pjm.1969.30.645
[826] J. R. J. Groves, ”Some criteria for the regularity of a direct product of regular p-groups,” J. Austral. Math. Soc.,A24, No. 1, 35–49 (1977). · Zbl 0373.20020 · doi:10.1017/S1446788700020048
[827] ”Gruppentheorie,” Tagungsber. Math. Forschungsinst. Oberwolfach, No. 19, 1–13 (1979), No. 19, 1–22 (1980).
[828] ”Gruppen und Geometrien,” Tagungsber. Math. Forschungsinst, Oberwolfach, No. 19, 14 S. (1975); No. 22, 1–11 (1977); No. 22, 1–13 (1980).
[829] I. S. Guloglu, ”A characterization of the simple group He,” J. Algebra,60, No. 1, 261–281 (1979). · Zbl 0422.20014 · doi:10.1016/0021-8693(79)90121-2
[830] R. M. Guralnick, ”On groups with decomposable commutator subgroups,” Glasgow Math. J.,19, No. 2, 159–162 (1978). · Zbl 0377.20033 · doi:10.1017/S0017089500003578
[831] R. M. Guralnick, ”On a result of Schur,” J. Algebra,59, No. 2, 302–310 (1979). · Zbl 0412.20028 · doi:10.1016/0021-8693(79)90128-5
[832] R. M. Guralnick, ”On cyclic commutator subgroups,” Aequat. Math.,19, No. 2–3, 303 (1979). · doi:10.1007/BF02189873
[833] R. M. Guralnick, ”On cyclic commutator subgroups,” Aequat. Math.,21, No. 1, 33–38 (1980). · doi:10.1007/BF02189337
[834] R. M. Guralnick, ”Commutators and commutator subgroups,” Adv. Math.,45, No. 3, 319–330 (1982). · Zbl 0505.20022 · doi:10.1016/S0001-8708(82)80008-X
[835] R. M. Guralnick, ”Subgroups of prime power index in a simple group,” J. Algebra,81, No. 2, 304–311 (1983). · Zbl 0515.20011 · doi:10.1016/0021-8693(83)90190-4
[836] M. M. Guterman, ”A characterization of F4(4n) as a group with standard 3-component B3(4n),” Commun. Algebra,7, No. 10, 1079–1102 (1979). · Zbl 0406.20017 · doi:10.1080/00927877908822392
[837] E. Halberstadt, ”On certain maximal subgroups of symmetric or alternating groups,” Math. Z.,151, No. 2, 117–125 (1976). · Zbl 0314.20001 · doi:10.1007/BF01213988
[838] J. I. Hall, ”Fusion and dihedral 2-subgroups,” J. Algebra,40, No. 1, 203–228 (1976). · Zbl 0338.20027 · doi:10.1016/0021-8693(76)90093-4
[839] J. I. Hall, ”Certain 2-local blocks with alternating sections,” Commun. Algebra,10, No. 16, 1721–1747 (1982). · Zbl 0504.20008 · doi:10.1080/00927878208822800
[840] M. Hall, Jr., ”Group problems arising from combinatorics,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 445–456.
[841] M. Hall, Jr. and C. C. Sims, ”The Burnside group of exponent 5 with two generators,” London Math. Soc. Lect. Note Ser., No. 71, 207–220 (1982).
[842] J. T. Hallett and K. A. Hirsch, ”Finite groups of exponent 12 as automorphism groups,” Math. Z.,155, No. 1, 43–53 (1977). · Zbl 0337.20015 · doi:10.1007/BF01322606
[843] H. Hanes, K. Olson, and W. R. Scott, ”Products of simple groups,” J. Algebra,36, No. 2, 167–184 (1975). · Zbl 0311.20007 · doi:10.1016/0021-8693(75)90096-4
[844] Koichiro Harada, ”On the simple group F of order 214\(\cdot\)36\(\cdot\)56\(\cdot\)7\(\cdot\)11\(\cdot\)19,” Proc. Conf. on Finite Groups, Academic Press, New York (1976), pp. 119–276. · Zbl 0353.20010
[845] Koichiro Harada, ”On Yoshida’s transfer,” Osaka J. Math.,15, No. 3, 637–646 (1978). · Zbl 0399.20007
[846] Koichiro Harada, ”The automorphism group and the Schur multiplier of the simple group of order 212\(\cdot\)36\(\cdot\)56\(\cdot\)7\(\cdot\)11\(\cdot\)19,” Osaka J. Math.,15, No. 3, 633–635 (1978). · Zbl 0414.20011
[847] Koichiro Harada, ”Finite groups having 2-local subgroups E16\(\cdot\)L4(2),” J. Fac. Sci. Univ. Tokyo, Sec. 1A,25, No. 2, 219–236 (1978). · Zbl 0422.20013
[848] Koichiro Harada, ”On finite simple groups possessing 2-local blocks of orthogonal type,” Commun. Algebra,8, No. 5, 441–449 (1980). · Zbl 0439.20010 · doi:10.1080/00927878008822467
[849] Koichiro Harada, ”Finite groups of low 2-rank, revisited,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 149–154.
[850] Koichiro Harada, ”Groups with nonconnected Sylow 2-subgroups revisited,” J. Algebra,70, No. 2, 339–349 (1981). · Zbl 0467.20015 · doi:10.1016/0021-8693(81)90222-2
[851] Koichiro Harada and D. Parrott, ”On finite groups having 2-local subgroups E2 2n\(\cdot\)O\(\pm\)(2n, 2),” J. Algebra,63, No. 2, 331–345 (1980). · Zbl 0439.20009 · doi:10.1016/0021-8693(80)90076-9
[852] Koichiro Harada and Hiroyoshi Yamaki, ”Finite groups having 2-local subgroups E16\(\cdot\)L4(2), II,” J. Fac. Sci. Univ. Tokyo. Sec. 1A,26, No. 1, 97–114 (1979). · Zbl 0435.20009
[853] Koichiro Harada and Hiroyoshi Yamaki, ”The irreducible subgroups of GL(n, 2) with n,” R. Soc. Can. Math. Repts.,1, No. 2, 75–78 (1979). · Zbl 0399.20015
[854] M. E. Harris, ”A note on 2-components of finite groups,” Arch. Math.,28, No. 2, 130–132 (1977). · Zbl 0356.20017 · doi:10.1007/BF01223901
[855] M. E. Harris, ”A note on solvable 2-components of finite groups,” Arch. Math.,29, No. 4, 344–348 (1977). · Zbl 0367.20011 · doi:10.1007/BF01220416
[856] M. E. Harris, ”On normally persistent radicals and direct products of finite groups,” Glas. Mat.,12, No. 2, 159–160 (1977). · Zbl 0369.20011
[857] M. E. Harris, ”Finite groups having an involution centralizer with a 2-component of dihedral type. II,” Ill. J. Math.,21, No. 3, 621–647 (1977). · Zbl 0391.20008
[858] M. E. Harris, ”Finite groups having an involution centralizer with a 2-component of type PSL(3, 3),” Pac. J. Math.,87, No. 1, 69–74 (1980). · Zbl 0447.20012 · doi:10.2140/pjm.1980.87.69
[859] M. E. Harris, ”On p’-automorphisms of Abelian p-groups,” Rocky Mount. J. Math.,7, No. 4, 751–752 (1977). · Zbl 0371.20023 · doi:10.1216/RMJ-1977-7-4-751
[860] M. E. Haris, ”PSL(2, q) type 2-components and the unbalanced group conjecture,” J. Algebra,68, No. 1, 190–235 (1981). · Zbl 0462.20014 · doi:10.1016/0021-8693(81)90294-5
[861] M. E. Harris, ”Finite groups having an involution centralizer with a 2-component of dihedral type,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif, 1979, Providence, R.I., 1980, pp. 71–74.
[862] M. E. Harris, ”On Chevalley groups over fields of odd order, the unbalanced group conjecture and the B(G)-conjecture,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 75–79.
[863] M. E. Harris, ”Finite groups having an involution centralizer with a PSU (3, 3) component,” J. Algebra,72, No. 2, 426–455 (1981). · Zbl 0474.20005 · doi:10.1016/0021-8693(81)90303-3
[864] M. E. Harris, ”Finite groups containing an intrinsic 2-component of Chevalley type over a field of odd order,” Trans. Am. Math. Soc.,272, No. 1, 1–65 (1982). · Zbl 0493.20014
[865] M. E. Harris and D. A. Sibley, ”Generalizations of certain fundamental results on finite groups,” Proc. Am. Math. Soc.,81, No. 4, 654–656 (1981). · Zbl 0461.20007
[866] M. E. Harris and R. Solomon, ”Finite groups having an involution centralizer with a 2-component of dihedral type. I.,” Ill. J. Math.,21, No. 3, 557–620 (1977). · Zbl 0391.20007
[867] B. Hartley, ”Some theorems of Hall-Higman type for small primes,” Proc. London Math. Soc.,41, No. 2, 340–362 (1980). · Zbl 0394.20011 · doi:10.1112/plms/s3-41.2.340
[868] B. Hartley and D. J. S. Robinson, ”On finite complete groups,” Arch. Math.,15, No. 1–2, 67–74 (1980). · Zbl 0415.20013 · doi:10.1007/BF01235320
[869] M. Hausman and H. N. Shapiro, ”On a family of almost cyclic finite groups,” Commun. Pure Appl. Math.,33, No. 5, 635–649 (1980). · doi:10.1002/cpa.3160330505
[870] G. Havas, ”Commutators in groups expressed as products of powers,” Commun. Algebra,9, No. 2, 115–129 (1981). · Zbl 0452.20034 · doi:10.1080/00927878108822567
[871] T. O. Hawkes, ”Two applications of twisted wreath products to finite soluble groups,” Trans. Am. Math. Soc.,214, 325–335 (1975). · Zbl 0345.20022 · doi:10.1090/S0002-9947-1975-0379657-X
[872] T. O. Hawkes, ”Bounding the nilpotent length of a finite group. I,” Proc. London Math. Soc.,33, No. 2, 329–360 (1976). · Zbl 0369.20009 · doi:10.1112/plms/s3-33.2.329
[873] T. O. Hawkes and D. Parker, ”On subgroups like Hall’s,” Bull. London Math. Soc.,13, No. 5, 385–391 (1981). · Zbl 0467.20019 · doi:10.1112/blms/13.5.385
[874] Makoto Hayashi, ”A remark on G. Glauberman’s theorem,” J. Math. Soc. Jpn.,27, No. 2, 256–257 (1975). · Zbl 0301.20012 · doi:10.2969/jmsj/02720256
[875] Mokoto Hayashi, ”On a generalization of F. M. Markel’ theorem,” Hokkaido Math. J.,4, No. 2, 278–280 (1975). · Zbl 0317.20011 · doi:10.14492/hokmj/1381758768
[876] Mokoto Hayashi, ”2-factorization in finite groups,” Pac. J. Math.,84, No. 1, 97–142 (1979). · Zbl 0387.20014 · doi:10.2140/pjm.1979.84.97
[877] J. L. Hayden and D. L. Winter, ”Finite groups admitting an automorphism trivial on a Sylow 2-subgroup,” Can. J. Math.,29, No. 4, 889–896 (1977). · Zbl 0337.20010 · doi:10.4153/CJM-1977-090-5
[878] J. L. Hayden and D. L. Winter, ”Finite simple groups containing a self-centralizing element of order 6,” Proc. Am. Math. Soc.,66, No. 2, 202–204 (1977). · Zbl 0367.20015
[879] H. Heineken, ”Nilpotente Gruppen, deren sämtliche Normalteiler charakteristisch sind,” Arch. Math.,33, No. 6, 497–503 (1980). · Zbl 0413.20017 · doi:10.1007/BF01222792
[880] H. Heineken, ”Gruppen mit kleinen abelschen Untergruppen,” Arch. Math.,29, No. 1, 20–31 (1977). · Zbl 0365.20032 · doi:10.1007/BF01220369
[881] H. Heineken and G. Werner, ”Nilpotente Gruppen T mit forgeschriebener Faktorgruppe T/T3,” Arch. Math.,35, No. 3, 239–251 (1980). · Zbl 0423.20018 · doi:10.1007/BF01235343
[882] E. Heppner, ”Über die Dichte der Ordnungen einfacher Gruppen,” Math. Z.,149, No. 1, 17–18 (1976). · Zbl 0316.20010 · doi:10.1007/BF01301625
[883] E. Heppner, ”Uber die Anzahl der Natürlichen Zahlen n kleiner oder gleich x, für die jede Gruppen der Ordnung n auglösbar ist,” Arch. Math.,32, No. 6, 548–550 (1979). · Zbl 0397.10043 · doi:10.1007/BF01238539
[884] C. Hering, ”Finite collineation groups of projective planes containing nontrivial perspectivities,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif, 1979, Providence, R.I., 1980, pp. 473–477.
[885] C. Hering, W. M. Kantor, and G. M. Seitz, ”Finite groups with a split BN-pair rank 1,” J. Algebra,20, No. 3, 435–475 (1972). · Zbl 0244.20003 · doi:10.1016/0021-8693(72)90068-3
[886] F. J. Hermanns, ”Eine metabelsche Gruppe vom Exponenten 8,” Arch. Math.,29, No. 4, 375–382 (1977). · Zbl 0367.20034 · doi:10.1007/BF01220421
[887] M. Herzog, ”On simple groups with a quaternion maximal 2-Sylow intersection,” Isr. J. Math.,19, No. 3, 225–227 (1974). · Zbl 0308.20014 · doi:10.1007/BF02757717
[888] M. Herzog, ”On linear relations between character values,” J. Algebra,47, No. 1, 154–161 (1977). · Zbl 0358.20006 · doi:10.1016/0021-8693(77)90216-2
[889] M. Herzog, ”Counting group elements of order p modulo p2,” Proc. Am. Math. Soc.,66, No. 2, 247–250 (1977). · Zbl 0378.20013
[890] M. Herzog, ”On the classification of finite simple groups by the number of involutions,” Proc. Am. Math. Soc.,77, No. 3, 313–314 (1979). · Zbl 0421.20009 · doi:10.1090/S0002-9939-1979-0545587-2
[891] M. Herzog, ”Character tables, trivial intersections and number of involutions,” Santa Cruz Conf., Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 425–429.
[892] M. Herzog and C. E. Praeger, ”Direct factors of Sylow groups,” Commun. Algebra,6, No. 13, 1375–1382 (1978). · Zbl 0389.20018 · doi:10.1080/00927877808822296
[893] M. Herzog and C. E. Praeger, ”On characters in the principal 2-block. II,” J. Austral. Math. Soc.,A28, No. 1, 100–106 (1979). · Zbl 0417.20015 · doi:10.1017/S1446788700014968
[894] M. Herzog and D. Wright, ”Characterization of a family of simple groups by their character table. I, II,” J. Austral Math. Soc.,A24, No. 3, 296–304 (1980);A30, No. 2, 168–170 (1980). · Zbl 0374.20014
[895] K. K. Hickin, ”Adjoining conjugating elements to finite groups,” Colloq. Math.,45, No. 2, 203–208 (1981). · Zbl 0521.20012
[896] W. M. Hill, ”Normal subgroups contained in the Frattini subgroup. II,” Proc. Am. Math. Soc.,53, No. 2, 277–279 (1975). · Zbl 0292.20020 · doi:10.1090/S0002-9939-1975-0390051-3
[897] W. M. Hill, ”Frattini subgroups and supernilpotent groups,” Isr. J. Math.,26, No. 1, 68–74 (1977). · Zbl 0351.20013 · doi:10.1007/BF03007656
[898] Chat-Yin Ho, ”On the p-elements of a finite group,” Proc. Am. Math. Soc.,48, No. 1, 61–66 (1975). · Zbl 0266.20018
[899] Chat-Yin Ho, ”Some explicit generators for SL(3, 3n), SU(3, 3n), Sp(4, 3n) and SL(4, 3n),” Can. J. Math.,27, No. 5, 970–979 (1975). · Zbl 0324.20017 · doi:10.4153/CJM-1975-100-3
[900] Chat-Yin Ho, ”Quadratic pairs for 3 whose root group has order greater than 3. I,” Commun. Algebra,3, No. 11, 961–1029 (1975). · Zbl 0323.20009 · doi:10.1080/00927877508822083
[901] Chat-Yin Ho, ”Chevalley groups of odd characteristic as quadratic pairs,” J. Algebra,41, No. 1, 202–211 (1976). · Zbl 0342.20007 · doi:10.1016/0021-8693(76)90177-0
[902] Chat-Yin Ho, ”On the quadratic pairs,” J. Algebra,43, No. 1 338–358 (1976). · Zbl 0385.20006 · doi:10.1016/0021-8693(76)90164-2
[903] Chat-Yin Ho, ”Quadratic pairs for odd primes,” Bull. Am. Math. Soc.,82, No. 6, 941–943 (1976). · Zbl 0408.20030 · doi:10.1090/S0002-9904-1976-14227-9
[904] Chat-Yin Ho, ”A characterization of SL(2, pn), p,” J. Algebra,53, No. 1, 40–57 (1978). · Zbl 0418.20015 · doi:10.1016/0021-8693(78)90203-X
[905] Chat-Yin Ho, ”Finite groups in which two different Sylow p-subgroups have trivial intersection for an odd prime p,” J. Math. Soc. Jpn.,31, No. 4, 669–675 (1979). · Zbl 0428.20008 · doi:10.2969/jmsj/03140669
[906] C. Holmes, ”Groups of order p3q with identical subgroup structures,” Atti Accad. Sci. Ist. Bologna, Cl. Sci. Fis. Rend.,3, Ser. 13, No. 1, 113–123 (1975–1976) (1976).
[907] W. Holsztynski and R. F. E. Strube, ”Paths and circuits in finite groups,” Discrete Math.,22, No. 3, 263–272 (1978). · Zbl 0384.20022 · doi:10.1016/0012-365X(78)90059-6
[908] D. Holt, ”Transitive permutation groups in which an involution central in a Sylow 2-sub-group fixed a unique point,” Proc. London Math. Soc.,37, No. 1, 165–192 (1978). · Zbl 0382.20005 · doi:10.1112/plms/s3-37.1.165
[909] M. R. Hopkins, ”On groups of Ree type,” J. Algebra,58, No. 2, 319–332 (1979). · Zbl 0409.20010 · doi:10.1016/0021-8693(79)90163-7
[910] A. Hughes, ”Characterization of3D4(q), q=2n by its Sylow 2-subgroup,” Proc. Conf. on Finite Groups, Academic Press, New York (1976), pp. 103–105.
[911] A. Hughes, ”Automorphisms of nilpotent groups and supersolvable orders,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence R.I., 1980, pp. 205–207.
[912] J. A. Hulse, ”Generators for subgroups of wreath products,” Proc. Edinburgh Math. Soc.,22, No. 3, 195–199 (1979). · Zbl 0405.20034 · doi:10.1017/S0013091500016333
[913] J. F. Humphreys, ”The modular characters of the Higman-Sims simple group,” Proc. R. Soc. Edinburgh,A92, No. 3–4, 319–335 (1982). · Zbl 0515.20008 · doi:10.1017/S0308210500032558
[914] J. F. Humphreys, ”Protective character tables for the finite simple groups of order less than one million,” Commun. Algebra,11, No. 7, 725–751 (1983). · Zbl 0519.20013 · doi:10.1080/00927878308822875
[915] D. C. Hunt, ”A computer-based atlas of finite simple groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 507–510.
[916] B. Huppert and N. Blackburn, ”Finite groups. II,” Berlin e.a., Springer, 1982, pp. 531; III, Berlin e.a., Springer, 1982, pp. X+454. (Grundl. Math. Wiss., Bd. 242, Bd. 243). · Zbl 0477.20001
[917] J. F. Hurley and A. Rudvalis, ”Finite simple groups,” Am. Math. Mon.,84, No. 9, 693–714 (1977). · Zbl 0382.20001 · doi:10.2307/2321249
[918] S. M. Hushine, ”A characterization of the Chevalley group F4(2),” J. Algebra,44, No. 2, 539–549 (1977). · Zbl 0353.20011 · doi:10.1016/0021-8693(77)90199-5
[919] I. M. Isaacs, ”Commutators and the commutator subgroup,” Am. Math. Mon.,84, No. 9, 720–722 (1977). · Zbl 0378.20029 · doi:10.2307/2321253
[920] I. M. Isaacs, ”Fixed points and \(\pi\)-complements in \(\pi\)-separable groups,” Arch. Math.,39, No. 1, 5–8 (1982). · Zbl 0476.20015 · doi:10.1007/BF01899237
[921] Hiroyuki Ishibashi, ”Generators of an orthogonal group over a finite field,” Czechosl. Math. J.,28, No. 3, 419–433 (1978); Correction. Czechosl. Math. J.,29, No. 2, 324 (1979). · Zbl 0399.20016
[922] Hiroyuki Ishibashi, ”Minimal set of generators of symplectic groups over finite fields,” Czechosl. Math. J.,30, No. 4, 629–632 (1980). · Zbl 0463.20033
[923] A. Ish-Shalom, ”On central 2-Sylow intersections,” Isr. J. Math.,27, No. 3–4, 339–347 (1977). · Zbl 0362.20016 · doi:10.1007/BF02756492
[924] A. Ish-Shalom, ”On Sylow intersections,” Bull. Austral. Math. Soc.,16, No. 2, 237–246 (1977). · Zbl 0363.20017 · doi:10.1017/S000497270002325X
[925] A. Ish-Shalom, ”A note on Sylow intersections,” Proc. Am. Math. Soc.,66, No. 2, 227–230 (1977). · Zbl 0336.20015 · doi:10.1090/S0002-9939-1977-0460460-4
[926] Shiro Iwasaki, ”On finite groups with exactly two real conjugate classes,” Arch. Math.,33, No. 6, 512–517 (1979). · Zbl 0433.20014 · doi:10.1007/BF01222794
[927] Z. Janko, ”A new finite simple group of order 86.775.571.046.077.562.880 which possesses M24 and the full covering group of M22 as subgroups,” J. Algebra,42, No. 2, 564–596 (1976). · Zbl 0344.20010 · doi:10.1016/0021-8693(76)90115-0
[928] Z. Janko, ”On the finite simple groups,” Lect. Notes Math.,677, 183–188 (1978). · doi:10.1007/BFb0070762
[929] D. Jonah and M. Konvisser, ”Some non-Abelian p-groups with Abelian automorphism group,” Arch. Math.,26, No. 2, 131–133 (1975). · Zbl 0315.20016 · doi:10.1007/BF01229715
[930] M. R. Jones, ”A property of finite p-groups with trivial multiplicator,” Trans. Am. Math. Soc.,210, 179–183 (1975). · Zbl 0324.20020
[931] W. Jónsson and J. McKay, ”More about the Mathieu group M22,” Can. J. Math.,28, No. 5, 929–937 (1976). · Zbl 0319.20005 · doi:10.4153/CJM-1976-090-x
[932] A. Juhász, ”On finite groups with a Sylow p-subgroup of type (m, n),” Isr. J. Math.,36, No. 2, 133–168 (1980). · Zbl 0437.20017 · doi:10.1007/BF02937353
[933] A. Juhász, ”On finite groups with a Sylow p-subgroup of maximal class,” J. Algebra,73, No. 1, 199–237 (1981). · Zbl 0488.20020 · doi:10.1016/0021-8693(81)90355-0
[934] A. Juhász, ”The group of automorphisms of a class of finite p-groups,” Trans. Am. Math. Soc.,270, No. 2, 469–481 (1982). · Zbl 0488.20023 · doi:10.2307/1999856
[935] V. G. Kac, ”A remark on the Conway-Norton conjecture about the onstersimple group,” Proc. Nat. Acad. Sci. USA, Phys. Sci.,77, No. 9, 5048–5049 (1980). · Zbl 0447.20013 · doi:10.1073/pnas.77.9.5048
[936] Mikio Kano, ”On the number of conjugate classes of maximal subgroups in finite groups,” Proc. Jpn. Acad.,A55, No. 7, 264–265 (1979). · Zbl 0442.20021 · doi:10.3792/pjaa.55.264
[937] W. M. Kantor, ”Generalized quadrangles having a prime parameter,” Isr. J. Math.,23, No. 1, 8–18 (1976). · Zbl 0358.05015 · doi:10.1007/BF02757230
[938] W. M. Kantor, ”Subgroups of classical groups generated by long root elements,” Trans. Am. Math. Soc.,248, No. 2, 347–379 (1979). · Zbl 0406.20040 · doi:10.1090/S0002-9947-1979-0522265-1
[939] W. M. Kantor, ”Permutation representations of the finite classical groups of small degree or rank,” J. Algebra,60, No. 1, 158–168 (1979). · Zbl 0422.20033 · doi:10.1016/0021-8693(79)90112-1
[940] W. M. Kantor, ”Linear groups containing a Singer cycle,” J. Algebra,62, No. 1, 232–234 (1980). · Zbl 0429.20004 · doi:10.1016/0021-8693(80)90214-8
[941] W. M. Kantor, ”Further problems concerning finite geometries and finite groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 479–483.
[942] W. M. Kantor, ”Generation of linear groups,” Geom. Vein, Coxeter Festschrift, New York (1981), pp. 497–509.
[943] W. M. Kantor and R. A. Liebler, ”The rank 3 permutation representations of the finite classical groups,” Trans. Am. Math. Soc.,271, No. 1, 1–71 (1982). · Zbl 0514.20033
[944] W. M. Kantor and G. M. Seitz, ”Finite groups with a split BN-pair of rank I, II,” J. Algebra,20, No. 3, 476–494 (1972). · Zbl 0244.20004 · doi:10.1016/0021-8693(72)90069-5
[945] Noriaki Kawanaka, ”Unipotent elements and characters of finite Chevalley groups,” Osaka J. Math.,12, No. 2, 523–554 (1975). · Zbl 0314.20031
[946] A. D. Keedwell, ”Sequenceable groups: a survey,” London Math. Lect. Note Ser., No. 49, 205–215 (1980).
[947] A. D. Keedwell, ”On the sequenceability of non-Abelian groups of order pq,” Discrete Math.,37, No. 2–3, 203–216 (1981). · doi:10.1016/0012-365X(81)90220-X
[948] A. D. Keedwell, ”On the existence of super P-groups,” J. Combin. Theory,A35, No. 1, 89–97 (1983). · Zbl 0516.20013 · doi:10.1016/0097-3165(83)90029-8
[949] O. H. Kegel, ”Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten,” Arch. Math.,30, No. 3, 225–228 (1978). · Zbl 0943.20500 · doi:10.1007/BF01226043
[950] A. Kerber and B. Wagner, ”Gleichungen in endlichen Gruppen,” Arch. Math.,35, No. 3, 252–262 (1980). · Zbl 0418.20023 · doi:10.1007/BF01235344
[951] J. D. Key, ”Some maximal subgroups of PSLn(q), n, q=2r,” Geom. Dedic.,4, No. 2–4, 377–386 (1975) (RZhMat, 12A262, 1976); Erratum. Geom. Dedic.,6, No. 3, 389 (1977). · Zbl 0324.20050 · doi:10.1007/BF00148770
[952] J. D. Key, ”Some maximal subgroups of certain protective unimodular groups,” J. London Math. Soc.,19, No. 2, 291–200 (1979). · Zbl 0393.20033 · doi:10.1112/jlms/s2-19.2.291
[953] W. Kimmerle, ”Relation modules and maximal subgroups, II,” Arch. Math.,39, No. 5, 414–416 (1982). · Zbl 0506.20002 · doi:10.1007/BF01899541
[954] O. King, ”On some maximal subgroups of the classical groups,” J. Algebra,68, No. 1, 109–120 (1981). · Zbl 0449.20049 · doi:10.1016/0021-8693(81)90288-X
[955] O. King, ”Maximal subgroups of the classical groups associated with nonisotropic subspaces of a vector space,” J. Algebra,73, No. 2, 350–375 (1981). · Zbl 0467.20037 · doi:10.1016/0021-8693(81)90327-6
[956] O. King, ”Imprimitive maximal subgroups of the general linear, special linear, symplectic and general symplectic groups,” J. London Math. Soc.,25, No. 3, 416–424 (1982). · Zbl 0458.20042 · doi:10.1112/jlms/s2-25.3.416
[957] O. King, ”Maximal subgroups of the orthogonal group over a field of characteristic two,” J. Algebra,76, No. 2, 540–548 (1982). · Zbl 0486.20029 · doi:10.1016/0021-8693(82)90231-9
[958] M. Klemm, ”Charakterisierung der Gruppen PSL(2, pf) and PSU(3, p2f) durch ihre Charaktertafel,” J. Algebra,24, No. 1 127–153 (1973). · Zbl 0249.20023 · doi:10.1016/0021-8693(73)90157-9
[959] K. Klinger, ”Finite groups of order 2a3b13c,” J. Algebra,41, No. 2, 303–326 (1976). · Zbl 0387.20009 · doi:10.1016/0021-8693(76)90185-X
[960] K. Klinger and G. Mason, ”Centralizers of p-groups of characteristic 2, p-type,” J. Algebra,37, No. 2, 362–375 (1975). · Zbl 0325.20011 · doi:10.1016/0021-8693(75)90084-8
[961] W. Knapp, ”Lineare p-auflösbare Gruppen,” Math. Z.,159, No. 2, 181–196 (1978). · Zbl 0362.20013 · doi:10.1007/BF01214490
[962] W. Knapp, ”Ein Faktorisierungssatz für endliche Gruppen und eine Anwendung,” Arch. Math.,35, No. 1–2, 85–91 (1980). · Zbl 0436.20013 · doi:10.1007/BF01235323
[963] W. Knapp and P. Schmid, ”Codes with prescribed permutation group,” J. Algebra,67, No. 2, 415–435 (1980). · Zbl 0452.94019 · doi:10.1016/0021-8693(80)90169-6
[964] L. E. Knop, ”Sufficient conditions for the solvability of factorizable groups,” J. Algebra,38, No. 1, 136–145 (1975). · Zbl 0325.20014 · doi:10.1016/0021-8693(76)90250-7
[965] Takeshi Kondo, ”On Alperin-Goldschmidt’s fusion theorem,” Sci. Pap. Coll. Gen. Educ. Univ. Tokyo,28, No. 2, 159–166 (1978). · Zbl 0408.20015
[966] G. Kowol, ”Fast-n-abelsche Gruppen,” Arch. Math.,29, No. 1, 55–66 (1977). · Zbl 0366.20024 · doi:10.1007/BF01220375
[967] G. Kowol, ”Gruppen mit nilpotenter Kommuntatorgruppe und Polynompermutationsgruppen,” Arch. Math.,33, No. 2, 113–120 (1979). · Zbl 0405.20028 · doi:10.1007/BF01222733
[968] G. Kowol, ”Polynomfunktionen auf 3-Gruppen,” Contrib. Gen. Algebra Proc. Klagenfurt Conf., 1978, Klagenfurt, 1979, pp. 157–161.
[969] G. Kowol, ”Nilpotent and semi-n-abelian groups,” J. Austral. Math. Soc.,A31, No. 3, 262–268 (1981). · Zbl 0472.20009 · doi:10.1017/S1446788700019406
[970] O.-U. Kramer, ”On the theory of soluble factorizable groups,” Bull. Austral. Math. Soc.,15, No. 1, 97–110 (1976). · Zbl 0335.20008 · doi:10.1017/S0004972700036807
[971] O.-U. Kramer, ”Untersuchung der endlichen Gruppen, deren eigentliche Untergruppen alle i-stufig nilpotent sind,” Arch. Math.,35, No. 1–2, 63–66 (1980). · Zbl 0415.20012 · doi:10.1007/BF01235319
[972] Kiran Kumar, ”On structure of groups, I–II,” Proc. Nat. Acad. Sci. India,A47, No. 4, 229–231; 231–234 (1977).
[973] H. Kurzweil, ”Minimal einfache Gruppen als fixpunktfreie Automorphismengruppen,” Commun. Algebra,5, No. 4, 397–442 (1977). · Zbl 0361.20037 · doi:10.1080/00927877708822179
[974] H. Kurzweil, ”Endliche Gruppen, Ein Einfürhrung in die Theorie der endlichen Gruppen,” Springer, Berlin (1977), pp. ix+187 S.
[975] Chung-Mo Kwok, ”A characterization of PSL(2, 2m),” J. Algebra,34, No. 2, 288–291 (1975). · Zbl 0318.20006 · doi:10.1016/0021-8693(75)90183-0
[976] T. J. Laffey, ”On minimal Sylow intersections,” J. London Math. Soc.,12, No. 3, 383–384 (1976). · Zbl 0323.20021 · doi:10.1112/jlms/s2-12.3.383
[977] T. J. Laffey, ”The number of solutions of x3=1 in a 3-group,” Math. Z.,149, No. 1, 43–45 (1976). · Zbl 0314.20020 · doi:10.1007/BF01301629
[978] T. J. Laffey, ”The number of solutions of xP=1 in a finite group,” Math. Proc. Cambridge Philos. Soc.,80, No. 2, 229–231 (1976). · Zbl 0343.20006 · doi:10.1017/S0305004100052865
[979] T. J. Laffey, ”Disjoint conjugates of cyclic subgroups of finite groups,” Proc. Edinburgh Math. Soc.,20, No. 3, 229–232 (1977). · Zbl 0363.20021 · doi:10.1017/S0013091500026328
[980] T. J. Laffey, ”Centralizers of elementary Abelian subgroups in finite p-groups,” J. Algebra,51, No. 1, 88–96 (1978). · Zbl 0374.20024 · doi:10.1016/0021-8693(78)90137-0
[981] T. J. Laffey, ”The number of solutions of x4=1 in finite groups,” Proc. R. Irish Acad.,A79, No. 4, 29–36 (1979).
[982] T. J. Laffey, ”The Hughes problem for exponent nine,” Math. Proc. Cambridge Philos. Soc.,87, No. 3, 393–399 (1980). · Zbl 0438.20015 · doi:10.1017/S0305004100056826
[983] T. J. Laffey, ”Bounding the order of a finite p-group,” Proc. R. Irish Acad.,A80, No. 2, 131–134 (1980). · Zbl 0439.20013
[984] P. J. Lambert, ”Characterizing groups by their character tables. I–III,” Q. J. Math.,23, No. 92, 427–434 (1972);24, No. 94, 223–240 (1973);25, No. 97, 29–40 (1974). · Zbl 0261.20010 · doi:10.1093/qmath/23.4.427
[985] P. J. Lambert, ”Projective special linear groups in characteristic 2,” Commun. Algebra,4, No. 9, 873–879 (1976). · Zbl 0356.20008 · doi:10.1080/00927877608822142
[986] P. J. Lambert, ”A characterization of PSL(4, q), q even, q>4,” Ill. J. Math.,21, No. 2, 255–265 (1977). · Zbl 0365.20027
[987] P. Landrock, ”Finite groups with a quasisimple component of type PSU(3, 2n) on elementary Abelian form,” Ill. J. Math.,19, No. 2, 198–230 (1975). · Zbl 0353.20012
[988] P. Landrock and R. Solomon, ”A characterization of the Sylow 2-subgroups of PSU(3, 22n) and PSL(3, 2n),” Prepr. Ser. Mat. Inst. Aarhus Univ., No. 13, 1975, pp. 7.
[989] G. L. Lange, ”Two-generator Frattini subgroups of finite p-groups,” Isr. J. Math.,29, No. 4, 357–360 (1978). · Zbl 0374.20025 · doi:10.1007/BF02761173
[990] R. G. Larson, ”Efficiency of computation of Cayley tables of 2-groups,” J. Assoc. Comput. Mach.,23, No. 2, 235–241 (1976). · Zbl 0344.20018 · doi:10.1145/321941.321943
[991] R. Laue, ”Zur Charackterisierung der Fittinggruppe der Automorphismengruppe einer endlichen Gruppe,” J. Algebra,40, No. 2, 618–626 (1976). · Zbl 0343.20009 · doi:10.1016/0021-8693(76)90215-5
[992] R. Laue, ”On outer automorphism groups,” Math. Z.,148, No. 2, 177–188 (1976). · Zbl 0312.20015 · doi:10.1007/BF01214707
[993] R. Laue, ”Zerfall von Automorphismengruppen endlicher Gruppen,” Arch. Math.,29, No. 4, 367–374 (1977). · Zbl 0373.20026 · doi:10.1007/BF01220420
[994] R. Laue, ”On normal p-subgroups with large centers which cannot be contained in the Frattini subgroup,” Isr. J. Math.,29, No. 2–3, 155–166 (1978). · Zbl 0374.20026 · doi:10.1007/BF02762005
[995] R. Laue, ”Zur minimalen Erzeugendenzahl auflösbarer Gruppen,” Arch. Math.,35, No. 1–2, 8–14 (1980). · Zbl 0415.20010 · doi:10.1007/BF01235311
[996] R. Laue, ”Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen,” Bayreuth. Math. Schr., No. 9, VI+304 S. (1982). · Zbl 0479.20010
[997] R. Laue, ”Computing double coset representatives for the generation of solvable groups,” Lect. Notes Comput. Sci.,144, 65–70 (1982). · Zbl 0547.20019 · doi:10.1007/3-540-11607-9_8
[998] H. Lausch, ”Term functions on non-Abelian groups of order pq,” Arch. Math.,18, No. 4, 219–220 (1982). · Zbl 0531.08002
[999] R. Lawton, ”A note on a theorem of Heineken and Liebeck,” Arch. Math.,31, No. 5, 520–523 (1979). · Zbl 0405.20023 · doi:10.1007/BF01226483
[1000] C. R. Leedham-Green and S. McKay, ”On p-groups of maximal class, I–III,” Q. J. Math.,27, No. 107, 297–311 (1976);29, No. 114, 175–186 (1978);29, No. 115, 281–299 (1978). · Zbl 0353.20020 · doi:10.1093/qmath/27.3.297
[1001] C. R. Leedham-Green and M. F. Newman, ”Space groups and groups of prime-power order. I,” Arch. Math.,35, No. 3, 193–202 (1980). · Zbl 0437.20016 · doi:10.1007/BF01235338
[1002] G. I. Lehrer, ”Characters, classes, and duality in isogenous groups,” J. Algebra,36, No. 2, 278–286 (1975). · Zbl 0374.20055 · doi:10.1016/0021-8693(75)90102-7
[1003] G. I. Lehrer, ”On incidence structures in finite classical groups,” Math. Z.,147, No. 3, 287–299 (1976). · Zbl 0375.20035 · doi:10.1007/BF01214087
[1004] G. I. Lehrer, ”Some incidence structures of maximal rank,” Lect. Notes Math.,560, 132–135 (1976). · Zbl 0394.20033 · doi:10.1007/BFb0097374
[1005] W. Lempken, ”The Schur multiplier of J4 is trivial,” Arch. Math.,30, No. 3, 267–270 (1978). · Zbl 0382.20019 · doi:10.1007/BF01226051
[1006] W. Lempken, ”A 2-local characterization of Janko’s simple group J4,” J. Algebra,55, No. 2, 403–445 (178). · Zbl 0396.20008
[1007] J. S. Leon, ”Groups of order paqbr2,” J. Algebra,49, No. 1, 46–62 (1977). · Zbl 0379.20013 · doi:10.1016/0021-8693(77)90266-6
[1008] J. S. Leon, ”On an algorithm for finding a base and a strong generating set for a group given by generating permutations,” Math. Comput.,35, No. 151, 941–974 (1980). · Zbl 0444.20001 · doi:10.1090/S0025-5718-1980-0572868-5
[1009] J. S. Leon, ”Finding the order of a permutation group,” Santa Cruz. Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 511–517.
[1010] J. S. Leon and C. C. Sims, ”The existence and uniqueness of a simple group generated by {3, 4}-transpositions,” Bull. Am. Math. Soc.,83, No. 5, 1039–1040 (1977). · Zbl 0401.20009 · doi:10.1090/S0002-9904-1977-14369-3
[1011] H. S. Leonard, Jr., ”On relative normal complements in finite groups,” Arch. Math.,40, No. 2, 97–108 (1983); II, Proc. Am. Math. Soc.,88, No. 2, 212–214 (1983). · Zbl 0511.20015 · doi:10.1007/BF01192757
[1012] A. Leone, ”Costruzione dei gruppi finiti minimali non-LM,” Rend. Accad. Sci. Fis. Mat. Soc. Naz. Sci. Lett. e Arti Napoli,48, 171–189 (1980) (1981). · Zbl 0517.20007
[1013] A. Leone, ”Costruzione dei gruppi finiti minimali non-UM,” Ric. Mat.,30, No. 2, 297–304 (1981). · Zbl 0517.20007
[1014] Y. K. Leong, ”Finite 2-groups of class two with cyclic centre,” J. Austral. Math. Soc.,27, No. 2, 125–140 (1979). · Zbl 0402.20018 · doi:10.1017/S1446788700012052
[1015] J. Lepowsky, ”Euclidean Lie algebras and the modular function,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 567–570.
[1016] J. Lepowsky and A. Meurman, ”An E8-approach to the Leech lattice and the Conway group,” J. Algebra,77, No. 2, 484–504 (1982). · Zbl 0501.20014 · doi:10.1016/0021-8693(82)90268-X
[1017] A. A. Liggonah, ”A weak embedding property of alternating group on 7 letters,” J. Algebra,48, No. 1, 57–67 (1977). · Zbl 0365.20005 · doi:10.1016/0021-8693(77)90293-9
[1018] R. J. List, ”On the maximal subgroups of the Mathieu groups I24,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,62, No. 4, 432–438 (1977). · Zbl 0376.20010
[1019] R. J. List, ”On subgroups of certain alternating groups,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,68, No. 3, 173–178 (1980). · Zbl 0468.20006
[1020] P. Longobardi and M. Maj, ”Determinazione dei T2-gruppi finiti,” Ann. Mat. Pura Ed. Appl.,128, 85–121 (1981). · Zbl 0473.20020 · doi:10.1007/BF01789468
[1021] G. O. Losey and S. E. Stonehewer, ”Local conjugacy in finite soluble groups,” Q. J. Math.,30, No. 118, 183–190 (1979). · Zbl 0408.20013 · doi:10.1093/qmath/30.2.183
[1022] J. R. Lundgren and S. K. Wong, ”On finite simple groups in which the centralizer M of an involution is solvable and O2(M) is extraspecial,” J. Algebra,41, No. 1, 1–15 (1976). · Zbl 0346.20010 · doi:10.1016/0021-8693(76)90166-6
[1023] R. Lyons, ”Signalizer functors in groups of characteristic 2 type,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 47–55.
[1024] I. D. Macdonald, ”The breadth of finite p-groups. I,” Proc. R. Soc. Edinburgh,A78, No. 1–2, 31–39 (1977). · Zbl 0379.20020 · doi:10.1017/S030821050000977X
[1025] I. D. Macdonald, ”Groups of breadth four have class five,” Glasgow Math. J.,19, No. 2, 141–148 (1978). · Zbl 0378.20012 · doi:10.1017/S0017089500003530
[1026] I. D. Macdonald, ”Some p-groups of Frobenius an extraspecial type,” Isr. J. Math.,40, No. 3–4, 350–364 (1981). · Zbl 0486.20016 · doi:10.1007/BF02761376
[1027] I. D. Macdonald, ”Finite p-groups with unique maximal classes,” Proc. Edinburgh Math. Soc.,26, No. 2, 233–239 (1983). · Zbl 0502.20006 · doi:10.1017/S001309150001693X
[1028] I. G. Macdonald, ”Numbers of conjugacy classes in some finite classical groups,” Bull. Austral. Math. Soc.,23, No. 1, 23–48 (1981). · Zbl 0445.20029 · doi:10.1017/S0004972700006882
[1029] D. MacHale, ”Groups with an automorphism cubing many elements,” J. Austral. Math. Soc.,20, No. 2, 253–256 (1975). · Zbl 0279.20021 · doi:10.1017/S1446788700020577
[1030] D. MacHale, ”Universal power-automorphism in finite groups,” J. London Math. Soc.,11, No. 3, 366–368 (1975). · Zbl 0287.20021 · doi:10.1112/jlms/s2-11.3.366
[1031] D. MacHale, ”C-sets in finite groups,” Proc. R. Irish Acad.,A76, No. 17, 173–180 (1976).
[1032] A. Machi, ”A note on a paper by G. Stroth,” Boll. Unione Mat. Ital.,A15, No. 1, 17–18 91978).
[1033] A. Machi and A. Siconolfi, ”A new characterization of A5,” Arch. Math.,29, No. 4, 385–388 (1977). · Zbl 0369.20002 · doi:10.1007/BF01220423
[1034] A. A. Mahnjov, ”On centralizers of TI-subgroups in finite groups,” Commun. Algebra,9, No. 12, 1307–1322 (1981). · Zbl 0458.20017 · doi:10.1080/00927878108822648
[1035] R. Maier, ”Normality conditions for quasinormal subgroups of finite groups,” Math. Z.,123, No. 4, 310–314 (1971). · Zbl 0221.20026 · doi:10.1007/BF01109985
[1036] R. Maier, ”Bemerkung zu einem Satz von Huppert,” Mitt. Math. Sem. Giessen, No. 119, 1–5 (1975). · Zbl 0337.20012
[1037] R. Maier, ”Über die 2-Nilpotenz faktorisierbarer endlicher Gruppen,” Arch. Math.,27, No. 5, 480–483 (1976). · Zbl 0339.20004 · doi:10.1007/BF01224703
[1038] R. Maier, ”Faktorisierte p-auflösbare Gruppen,” Arch. Math.,27, No. 6, 576–583 (1976). · Zbl 0349.20007 · doi:10.1007/BF01224721
[1039] R. Maier, ”Um problema da teoria dos subgrupos subnormals,” Bol. Soc. Brasil. Mat.,8, No. 2, 127–130 (1977). · Zbl 0425.20021 · doi:10.1007/BF02584727
[1040] A. R. Makan, ”On an embedding of certain p-groups,” Isr. J. Math.,21, No. 1, 31–37 (1975). · Zbl 0329.20013 · doi:10.1007/BF02757131
[1041] J. J. Malone, ”More on groups in which each element commutes with its endomorphic images,” Proc. Am. Math. Soc.,65, No. 2, 209–214 (1977). · Zbl 0371.20022 · doi:10.1090/S0002-9939-1977-0447351-X
[1042] A. Mann, ”The intersection of Sylow subgroups,” Proc. Am. Math. Soc.,53, No. 2, 262–264 (1975). · Zbl 0355.20026 · doi:10.1090/S0002-9939-1975-0384924-5
[1043] A. Mann, ”The power structure of p-groups,” J. Algebra,42, No. 1, 121–135 (1976). · Zbl 0368.20012 · doi:10.1016/0021-8693(76)90030-2
[1044] A. Mann, ”Regular p-groups and groups of maximal class,” J. Algebra,42, No. 1, 136–141 (1976). · Zbl 0377.20016 · doi:10.1016/0021-8693(76)90031-4
[1045] A. Mann, ”Conjugacy classes in finite groups,” Isr. J. Math.,31, No. 1, 78–84 (1978). · Zbl 0771.20011 · doi:10.1007/BF02761381
[1046] A. Mann, ”Regular p-groups. III,” J. Algebra,70, No. 1, 89–101 (1981). · Zbl 0469.20013 · doi:10.1016/0021-8693(81)90245-3
[1047] A. Mann, ”On the orders of groups of exponent four,” J. London Math. Soc.,26, No. 1, 64–76 (1982). · Zbl 0465.20036 · doi:10.1112/jlms/s2-26.1.64
[1048] T. C. Marchionna, ”Sulla distanza di un gruppo,” Rend. Ist. Lombardo. Accad. Sci. Lett.,A112, No. 1, 181–191 (1978).
[1049] T. C. Marchionna, ”Sui gruppi a distanza d,” Boll. Unione Mat. Ital.,B17, No. 1, 14–32 (1980). · Zbl 0432.20019
[1050] L. Márki and L. Rédei, ”Verallgemeinerter Summenbergriff in der p-adischen Analysis mit Anwendung auf endlichen p-gruppen,” Publ. Math.,24, No. 1–2, 101–106 (1977). · Zbl 0372.12019
[1051] R. Markot, ”A 2-local characterization of the simple group E,” J. Algebra,40, No. 2, 585–595 (1976). · Zbl 0345.20017 · doi:10.1016/0021-8693(76)90212-X
[1052] R. P. Martineau, ”Fitting lengths of groups with automorphisms,” J. Pure Appl. Algebra,11, No. 1–3, 103–104, (1977). · Zbl 0373.20018 · doi:10.1016/0022-4049(77)90044-5
[1053] V. J. R. Martinez and D. A. Alvarez, ”\(\pi\)-sistemas de Sylow de grupos finitos \(\pi\)-resolubles,” Publs Semin. Mat. Garcia Galdeano, No. 22, 5–8 (1976).
[1054] L. Di Martino and M. Chiara Tamburini Bellani, ”Do finite simple groups always contain subgroups which are not intersection of maximal subgroups?,” Rend. Ist. Lombardo. Accad. Sci. e Lett.,A, No. 114, 65–722 (1980). · Zbl 0506.20010
[1055] L. Di Martino and A. Wagner, ”The irreducible subgroups of PSL(V5, q), where q is odd,” Result. Math.,2, No. 1, 54–61 (1979). · Zbl 0408.20034 · doi:10.1007/BF03322944
[1056] D. R. Mason, ”Finite simple groups with Sylow 2-subgroups of type PSL(5, q), q odd,” Math. Proc. Cambridge Philos. Soc.,79, No. 2, 251–269 (1976). · Zbl 0339.20003 · doi:10.1017/S0305004100052257
[1057] D. R. Mason, ”On finite simple groups G in which every element of (G) is of Bender type,” J. Algebra,40, No. 1, 125–202 (1976). · Zbl 0328.20017 · doi:10.1016/0021-8693(76)90092-2
[1058] D. R. Mason, ”Finite groups with Sylow 2-subgroup the direct product of a dihedral and a wreathed group, and related problems,” Proc. London Math. Soc.,33, No. 3, 401–422 (1976). · Zbl 0344.20012 · doi:10.1112/plms/s3-33.3.401
[1059] G. Mason, ”Two theorems on groups of characteristic 2-type,” Pac. J. Math.,57, No. 1, 233–253 (1975). · Zbl 0342.20006 · doi:10.2140/pjm.1975.57.233
[1060] G. Mason, ”A characterization SL(3, 3). I, II,” J. Algebra,38, No. 1, 45–74 (1976). · Zbl 0335.20007 · doi:10.1016/0021-8693(76)90243-X
[1061] G. Mason, ”Finite groups of order 2a3b17c. I–III,” J. Algebra,40, No. 2, 309–339;41, No. 2, 327–346;41, No. 2, 347–364 (1976). · Zbl 0366.20008
[1062] G. Mason, ”Some remarks on groups of type J4,” Arch. Math.,29, No. 6, 574–582 (1977). · Zbl 0377.20013 · doi:10.1007/BF01220456
[1063] G. Mason, ”Quasithin groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 155–157.
[1064] G. Mason, ”Quasithin groups, ”Finite Simple Groups. II, Proc. London Math. Sco. Res. Symp., Durham, July–Aug., 1978, London e.a., 1980, pp. 181–197.
[1065] G. Mason and S. Smith, ”Minimal 2-local geometries for the Held and Rudvalis sporadic groups,” J. Algebra,79, No. 2, Pt. 1, 286–306 (1982). · Zbl 0501.20015 · doi:10.1016/0021-8693(82)90304-0
[1066] Hiroshi Matsuyama, ”A special type of finite groups with an automorphism of prime order,” Hokkaido Math. J.,12, No. 1, 17–23 (1983). · Zbl 0517.20008 · doi:10.14492/hokmj/1381757786
[1067] F. Maurin, ”Sur les groupes hyperrésolubles,” C. R. Acad. Sci.,282, No. 18, A1081–A1082 (1976). · Zbl 0343.20013
[1068] M. E. Mays, ”Counting Abelian, nilpotent, solvable, and supersolvable group orders,” Arch. Math.,31, No. 6, 536–538 (1978). · doi:10.1007/BF01226487
[1069] M. E. Mays, ”Groups of square-free order are scarce,” Pac. J. Math.,91, No. 2, 373–375 (1980). · Zbl 0424.20019 · doi:10.2140/pjm.1980.91.373
[1070] P. Mazet, ”Sur le multiplicateur de Schur du groupe de Mathieu M22,” C. R. Acad. Sci. Paris,AB289, No. 14, 659–661 (1979).
[1071] P. Mazet, ”Sur les multiplicateurs de Schur des groupes de Mathieu,” J. Algebra,77, No. 2, 552–576 (1982). · Zbl 0489.20009 · doi:10.1016/0021-8693(82)90271-X
[1072] P. P. McBride, ”A classification of groups of type An(q) for n and q=2k,” J. Algebra,46, No. 1, 220–267 (1977). · Zbl 0389.20036 · doi:10.1016/0021-8693(77)90403-3
[1073] P. P. McBride, ”Near solvable signalizer functors on finite groups,” J. Algebra,78, No. 1, 181–214 (1982). · Zbl 0491.20011 · doi:10.1016/0021-8693(82)90107-7
[1074] P. P. McBride, ”Nonsolvable signalizer functors on finite groups,” J. Algebra,78, No. 1, 215–238 (1982). · Zbl 0491.20012 · doi:10.1016/0021-8693(82)90108-9
[1075] P. P. McBride, ”Automorphisms of 2-groups,” Commun. Algebra,11, No. 8, 843–862 (1983). · Zbl 0514.20028 · doi:10.1080/00927878308822883
[1076] D. J. McCaughan and S. E. Stonehewer, ”Finite soluble groups whose subnormal subgroups have defect at most two,” Arch. Math.,35, No. 1–2, 56–60 (1980). · Zbl 0418.20018 · doi:10.1007/BF01235317
[1077] J. McKay, ”The non-Abelian simple groups G, |G|<106-character tables,” Commun. Algebra,7, No. 13, 1407–1445 (1979). · Zbl 0418.20009 · doi:10.1080/00927877908822410
[1078] J. McKay, ”Graphs, singularities and finite groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 183–186.
[1079] J. McKay and Kiang-Chuen Young, ”The non-Abelian simple groups G, |G|<106-minimal generating pairs,” Math. Comput.,33, No. 146, 812–814 (1979). · Zbl 0412.20013
[1080] J. Mehdi, ”On some commutator identities in finite groups,” Indian J. Pure Appl. Math.,9, No. 9, 918–922 (1978).
[1081] D. Meier and J. Wiegold, ”Growth sequences of finite groups, V,” J. Austral. Math. Soc.,A31, No. 3, 374–375 (1981). · Zbl 0474.20012 · doi:10.1017/S1446788700019509
[1082] T. Meixner, ”Eine Bemerkung zu p-Gruppen vom Exponenten p,” Arch. Math.,29, No. 6, 561–565 (1977). · Zbl 0378.20020 · doi:10.1007/BF01220453
[1083] T. Meixner, ”Über endliche Gruppen mit Automorphismen deren Fixpunktgruppen beschränkt sind,” Diss. Doktorgrad. Naturwiss. Fachbereiche Friedrich-Alexander-Univ. Erlangen-Nürnberg, 1979, pp. viii+97 S. · Zbl 0436.20015
[1084] T. Meixner, ”Verallgemeinerte Hughes-Untergruppen endlicher Gruppen,” Arch. Math.,36, No. 2, 104–112 (1981). · Zbl 0486.20019 · doi:10.1007/BF01223676
[1085] T. Meixner, ”Power automorphisms of finite p-groups,” Isr. J. Math.,38, No. 4, 345–360 (1981). · Zbl 0461.20005 · doi:10.1007/BF02762779
[1086] J. D. P. Meldrum, ”Centralizers in wreath products,” Proc. Edinburgh Math. Soc.,22, No. 2, 161–168 (1979). · Zbl 0429.20031 · doi:10.1017/S0013091500016278
[1087] F. Menegazzo, ”Gruppi nei quali ogni sottogruppo é intersezione di sottogruppi massimali,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,48, No. 6, 559–562 (1970). · Zbl 0216.08802
[1088] F. Menegazzo, ”I gruppi finite il sui reticolo dei sottogruppi é un prodotto subdiretto,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,59, No. 3–4, 213–218 (1975) (1976). · Zbl 0357.20011
[1089] G. de Meur, ”Fischer subspaces of Hermitian manifolds,” Bull. Soc. Math. Belg.,27, No. 3, 237–252 (1975). · Zbl 0393.51007
[1090] G. de Meur, ”Fischer subspaces of Hermitian manifolds,” J. Geom.,15, No. 1, 8–20 (1981). · Zbl 0446.51009
[1091] R. J. Miech, ”The metabelian p-groups of maximal class. I, II,” Trans. Am. Math. Soc.,236, 93–119 (1978);272, No. 2, 465–474 (1982). · Zbl 0378.20011
[1092] R. J. Miech, ”On p-groups with a cyclic commutator subgroup,” J. Austral. Math. Soc.,20, No. 2, 178–198 (1975). · Zbl 0319.20024 · doi:10.1017/S1446788700020486
[1093] F. Migliorini, ”Gruppi finiti nei quali i sottogruppi primitivi sono massimali,” Matematiche,29, No. 2, 231–248 (1974) (1975). · Zbl 0336.20018
[1094] F. Migliorini, ”Nuove proprietá degli Al-gruppi,” Boll Unione Mat. Ital.,B13, No. 1, 123–137 (1976). · Zbl 0351.20016
[1095] M. D. Miller, ”On the nonexistence of groups with extraspecial commutator subgroup,” Proc. Am. Math. Soc.,56, 16–18 (1976). · Zbl 0338.20048 · doi:10.1090/S0002-9939-1976-0401908-X
[1096] Izumi Miyamoto, ”Finite groups with a standard subgroup isomorphic to U4(2n),” Jpn. J. Math.,5, 209–244 (1979). · Zbl 0417.20018
[1097] Izumi Miyamoto, ”Finite groups with a standard subgroup of type U5(2n), n>1,” J. Algebra,64, No. 2, 430–459 (1980). · Zbl 0429.20019 · doi:10.1016/0021-8693(80)90155-6
[1098] Izumi Miyamoto, ”Standard subgroups of Chevalley type of rank 2 and characteristic 2,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 91–93.
[1099] Izumi Miyamoto, ”Standard subgroups isomorphic to2F4(2n),” J. Algebra,77, No. 1, 261–273 (1982). · Zbl 0492.20009 · doi:10.1016/0021-8693(82)90290-3
[1100] Masahiko Miyamoto, ”On conjugation families,” Hokkaido Math. J.,6, No. 1, 46–51 (1977). · Zbl 0385.20013 · doi:10.14492/hokmj/1381758562
[1101] Masahiko Miyamoto, ”Fusion and groups admitting an automorphism of prime order fixing a solvable subgroup,” Hokkaido Math. J.,6, No. 2, 296–301 (1977). · doi:10.14492/hokmj/1381758534
[1102] Masahiko Miyamoto, ”Solvability of some groups,” Hokkaido Math. J.,11, No. 1, 106–110 (1982). · Zbl 0488.20024 · doi:10.14492/hokmj/1381757951
[1103] Masahiko Miyamoto, ”Dihedral or quasidihedral direct factors of Sylow 2-subgroups,” J. Algebra,79, No. 2, 258–271 (1982). · Zbl 0503.20002 · doi:10.1016/0021-8693(82)90302-7
[1104] Masahiko Miyamoto, ”An affirmative answer to Glauberman’s conjecture,” Pac. J. Math.,102, No. 1, 89–105 (1982). · Zbl 0514.20038 · doi:10.2140/pjm.1982.102.89
[1105] Kenzo Mizuno, ”The conjugate classes of Chevalley groups of type E6,” J. Fac. Sci. Univ. Tokyo, Sec. 1A,24, No. 3, 525–563 (1977). · Zbl 0399.20044
[1106] Kenzo Mizuno, ”The conjugate classes of unipotent elements of the Chevalley group E7 and E8,” Tokyo J. Math.,3, No. 2, 391–459 (1980). · Zbl 0454.20046 · doi:10.3836/tjm/1270473003
[1107] A. Mohamed, ”On the supersolvability of finite groups. I–II,” Ann. Univ. Sci. Budapest Sec. Math.,18., 3–7; (1975); 9–14 (1976). · Zbl 0345.20021
[1108] A. Mohamed, ”Generalization of a theorem of Deskins,” Ann. Univ. Sci. Budapest Sec. Math.,18., 177–179 (1975) (1976). · Zbl 0345.20020
[1109] J. Moori, ”On certain groups associated with the smallest Fischer group,” J. London Math. Soc.,23, No. 1, 61–67 (1981). · Zbl 0443.20016 · doi:10.1112/jlms/s2-23.1.61
[1110] J. Moori, ”On the automorphism group of the group D4(2),” J. Algebra,80, No. 1, 216–225 (1983). · Zbl 0467.20017 · doi:10.1016/0021-8693(83)90028-5
[1111] C. Morini, ”Alcune osservazioni su una classe di gruppi finiti contenenti un sottogruppo di ordine 3 con prescritto centralizzante, I,” Ann. Univ. Ferrara,23, Sez. 7, 189–194 (1977).
[1112] C. Morini, ”Gruppi finite in cui due Sylow p-sottogruppi distinti hanno intersezione banale, per un primo dispari p,” Ann. Univ. Ferrara,28, Sez. 7, 143–151 (1982).
[1113] L. J. Morley and M. Ferkel, ”The nilpotency class of extensions of certain p-groups,” Commun. Algebra,8, No. 11, 1053–1069 (1980). · Zbl 0433.20028 · doi:10.1080/00927878008822507
[1114] Kaoru Motose, ”On a theorem of S. Koshitani,” Math. J. Okayama Univ.,20, No. 1, 59–65 (1978).
[1115] N. P. Mukherjee, ”A note on normal index and maximal subgroups in finite groups,” Ill. J. Math.,19, No. 2, 173–178 (1975). · Zbl 0303.20014
[1116] O. Müller, ”On p-automorphisms of finite p-groups,” Arch. Math.,32, No. 6, 533–538 (1979). · Zbl 0417.20025 · doi:10.1007/BF01238537
[1117] G. Mullineux, ”A characterization of An by centralizers of short involutions,” Q. J. Math.,29, No. 114, 213–220 (1978). · Zbl 0381.20011 · doi:10.1093/qmath/29.2.213
[1118] G. Mullineux, ”Centralizers of 3-cycles in alternating groups,” Q. J. Math.,29, No. 115, 249–261 (1978). · Zbl 0425.20001 · doi:10.1093/qmath/29.3.249
[1119] G. Mullineux, ”A characterization of An by centralizers of 3-cycles,” Q. J. Math.,29, No. 115, 263–279 (1978). · Zbl 0408.20008 · doi:10.1093/qmath/29.3.263
[1120] N. J. Mutio, ”Complete metacyclic groups,” Comment. Math. Univ. Carol.,16, No. 3, 541–547 (1975). · Zbl 0311.20008
[1121] N. J. Mutio, ”Some generalized conjugacy classes of split metacyclic groups,” Simon Stevin,50, No. 1, 53–60 (1976–1977). · Zbl 0344.20043
[1122] N. J. Mutio, ”Complete metacyclic groups,” Istanbul Univ. Fen. Fak. Mecm. Rev. Fac. Sci. Univ. Istanbul,A40, 29–32 (1978). · Zbl 0476.20018
[1123] N. J. Mutio, ”Central automorphisms of a split metacyclic group,” Simon Stevin (Beig.),52, No. 4, 145–155 (1978). · Zbl 0396.20017
[1124] B. Mwene, ”On the subgroups of the group PSL4(2m),” J. Algebra,41, No. 1, 79–107 (1976). · Zbl 0346.20029 · doi:10.1016/0021-8693(76)90170-8
[1125] B. Mwene, ”On some subgroups of PSL(4, q), q odd,” Geom. Dedic.,12, No. 2, 189–199 (1982). · Zbl 0485.20040 · doi:10.1007/BF00147637
[1126] Hiroshi Nagao and Kazumasa Nomura, ”A note on a fixed-point-free automorphism and a normal p-complement,” Osaka J. Math.,12, No. 3, 635–638 (1975). · Zbl 0324.20028
[1127] Kirio Nakamura, ”Charakteristische Untergruppen von Quasinormalteilern,” Arch. Math.,32, No. 6, 513–515 (1979). · Zbl 0416.20016 · doi:10.1007/BF01238533
[1128] Yoshio Nakamura, ”On completely noncommutative groups,” Math. Repts. ToyamaUniv.,5, 127–136 (1982).
[1129] F. Napolitani, ”Sui p-gruppi finiti in cui i sottogruppi minimali sono quasinormali,” Rend. Circ. Mat. Palermo,28, No. 1, 44–46 (1979). · doi:10.1007/BF02849583
[1130] M. B. Nathanson, ”Partial products in finite groups,” Discrete Math.,15, No. 2, 201–203 (1976). · Zbl 0344.20024 · doi:10.1016/0012-365X(76)90086-8
[1131] J. Nuebüser, ”Computing with groups and their character tables,” Computing, Suppl. No. 4, 45–56 (1982).
[1132] J. Nuebüser, ”An elementary introduction to coset table methods in computational group theory,” London Math. Soc. Lect. Note Ser., No. 71, 1–45 (1982).
[1133] M. F. Newman, ”Determination of groups of prime-power order,” Lect. Notes Math.,573, 73–84 (1977). · doi:10.1007/BFb0087814
[1134] M. F. Newman and D. Shanks and H. C. Williams, ”Simple groups of square order and an interesting sequence of primes,” Acta Arithm.,38, No. 2, 129–140 (1980). · Zbl 0365.20025
[1135] R. Niles, ”Pushing-up in finite groups,” J. Algebra,57, No. 1, 26–63 (1979). · Zbl 0409.20007 · doi:10.1016/0021-8693(79)90207-2
[1136] R. Niles, ”BN-pairs and finite groups with parabolic-type subgroups,” J. Algebra,75, No. 2, 484–494 (1982). · Zbl 0491.20020 · doi:10.1016/0021-8693(82)90052-7
[1137] Kazumasa Nomura, ”Inner subgroups of finite groups,” Kodai Math. J.,1, No. 3, 354–361 (1978). · Zbl 0431.20019 · doi:10.2996/kmj/1138035645
[1138] S. Norton, ”The construction of J4,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 271–277.
[1139] Tetsuro Okuyama, ”On finite groups whose Sylow p-subgroup is a T.I. set.” Hokkaido Math. J.,4, No. 2, 303–305 (1975). · Zbl 0326.20019 · doi:10.14492/hokmj/1381758772
[1140] Tetsuro Okuyama and Tomoyuki Yoshida, ”A characterization of the Rudvalis group,” J. Math. Soc. Jpn.,30, No. 3, 463–474 (1978). · Zbl 0388.20008 · doi:10.2969/jmsj/03030463
[1141] J. M. De Olazábal, ”Series characteristicas de un grupo finito \(\pi\)-separable” Chunikhin). Publ. Sem. Mat. Carcia Galdeano, No. 23, 27–36 (1976).
[1142] M. E. O’Nan, ”Some evidence for the existence of a new simple group,” Proc. London Math. Soc.,32, No. 3, 421–479 (1976). · Zbl 0356.20020 · doi:10.1112/plms/s3-32.3.421
[1143] M. E. O’Nan, ”Finite simple groups of 2-rank 3 with all 2-local subgroups 2-constrained,” Ill. J. Math.,20, No. 1, 155–170 (1976). · Zbl 0345.20014
[1144] M. E. O’Nan, ”Some characterizations by centralizers of elements of order 3,” J. Algebra,48, No. 1, 113–141 (1977). · Zbl 0374.20019 · doi:10.1016/0021-8693(77)90297-6
[1145] M. E. O’Nan, ”A characterization of the Rudvalis group,” Commun. Algebra,6, No. 2, 104–147 (1978).
[1146] M. E. O’Nan and R. Solomon, ”Simple groups transitive on internal flags,” J. Algebra,39, No. 2, 375–409 (1976). · Zbl 0344.20009 · doi:10.1016/0021-8693(76)90045-4
[1147] T. G. Ostrom, ”Finite translation planes and group representation,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 469–471.
[1148] U. Ott and M. A. Ronan, ”On buildings and locally finite Tits geometries,” London Math. Lect. Note Ser., No. 49, 272–274 (1980). · Zbl 0465.51009
[1149] R. A. M. Pagliuca and S. S. Tucci, ”Sui gruppi Z-sequenziabili,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,66, No. 2, 97–102 (1979).
[1150] H. Pahlings, ”Über die Charakterentafel der Weyl-Gruppe vom Typ F4,” Mitt. Math. Sem. Giessen, No. 91, 115–119 (1971). · Zbl 0218.20012
[1151] H. Pahlings, ”On the character tables of finite groups generated by 3-transpositions,” Commun. Algebra,2, No. 2, 117–131 (1974). · Zbl 0288.20008 · doi:10.1080/00927877408822007
[1152] J. Panagopoulos, ”Groups of automorphisms of standard wreath products,” Arch. Math.,37, No. 6, 449–511 (1981). · Zbl 0458.20027 · doi:10.1007/BF01234387
[1153] P. Paredes and F. Tomás, ”Sobre las intersecciones de las envolventes normales de uniones de subgrupos de Sylow,” An. Inst. Mat. Univ. Nac. Autón. Méx.,17, No. 1, 87–93 (1977).
[1154] S. A. Park, ”A characterization of the unitary groups U4(q), q=2n,” J. Algebra,42, No. 1, 298–246 (1976). · Zbl 0345.20048 · doi:10.1016/0021-8693(76)90038-7
[1155] J. Parobek, ”On the number of normal subgroups of a given prime index,” Čas Pěstov. Mat.,101, No. 1, 91–94 (1976). · Zbl 0344.20022
[1156] D. Parrott, ”A characterization of the Rudvalis simple group,” Proc. London Math. Soc.,32., No. 1, 25–51 (1976). · Zbl 0317.20008 · doi:10.1112/plms/s3-32.1.25
[1157] D. Parrott, ”On Thompson’s simple group,” J. Algebra,46, No. 2, 389–404 (1977). · Zbl 0361.20022 · doi:10.1016/0021-8693(77)90377-5
[1158] D. Parrott, ”A note on quadratic fours groups,” Commun. Algebra,6, No. 2, 149–151 (1978). · Zbl 0367.20017 · doi:10.1080/00927877808822237
[1159] D. Parrott, ”Characterizations of the Fischer groups, I, II, III,” Trans. Am. Math. Soc.,265, No. 2, 303–347 (1981). · Zbl 0463.20013 · doi:10.1090/S0002-9947-1981-0610952-5
[1160] A. Pasini, ”On the finite groups which give rise to Dirichlet algebras,” J. Combinatorics, Inform. Syst. Sci.,6, No. 3, 206–214 (1981).
[1161] M. M. Patris-Moreau, ”Détermination des groupes non résolubles d’ordre inférieur ou égal á 959,” Bull. Cl. Sci. Acad. Roy. Belg.,61, No. 7, 658–665 (1975). · Zbl 0321.20016
[1162] N. J. Patterson and S. K. Wong, ”A characterization of the Suzuki sporadic simple group of order 448, 1345, 497, 600,” J. Algebra,39, No. 1, 277–286 (1976). · Zbl 0364.20019 · doi:10.1016/0021-8693(76)90077-6
[1163] N. J. Patterson and S. K. Wong, ”The nonexistence of a certain simple group,” J. Algebra,39, No. 1, 138–149 (1976). · Zbl 0348.20010 · doi:10.1016/0021-8693(76)90066-1
[1164] G. Pazderski, ”Zur Existenz Hallscher Normalteiler in endlichen Gruppen,” Wiss. Z. Univ. Rostock. Math.-Naturwiss. R.,23, No. 8, 605–607 (1974).
[1165] G. Pazderski, ”The orders to which only belong metabelian groups,” Math. Nachr.,95, 7–16 (1980). · Zbl 0468.20018 · doi:10.1002/mana.19800950102
[1166] G. Pazderski, ”Prime power which are cyclic extensions of elementary Abelian groups,” Math. Nachr.,97, 57–67 (1980). · Zbl 0456.20009 · doi:10.1002/mana.19800970107
[1167] T. A. Peng, ”A note on subnormality,” Bull. Austral. Math. Soc.,15, No. 1, 59–64 (1976). · Zbl 0332.20008 · doi:10.1017/S0004972700036753
[1168] T. A. Peng, ”The hypercenter of a finite group,” J. Algebra,48, No. 1, 46–56 (1977). · Zbl 0363.20020 · doi:10.1016/0021-8693(77)90292-7
[1169] T. A. Peng, ”A note on the conjugacy of Hall subgroups,” Arch. Math.,30, No. 3, 240–241 (1978). · Zbl 0381.20019 · doi:10.1007/BF01226046
[1170] T. A. Peng, ”Hypercentral subgroups of finite groups,” J. Algebra,78, No. 2, 431–436 (1982). · Zbl 0505.20012 · doi:10.1016/0021-8693(82)90090-4
[1171] T. A. Peng, ”Finite groups with automorphisms acting trivially on subgroups,” Arch. Math.,39, No. 6, 481–484 (1982). · Zbl 0487.20013 · doi:10.1007/BF01899650
[1172] M. Perkel, ”A characterization of PSL(2, 31) and its geometry,” Can. J. Math.,32, No. 1, 155–164 (1980). · Zbl 0394.05028 · doi:10.4153/CJM-1980-012-5
[1173] M. Perkel, ”A characterization of J1 in terms of its geometry,” Geom. Dedic.,9, No. 3, 291–298 (1980). · Zbl 0429.05045 · doi:10.1007/BF00181174
[1174] N. T. Petrov and K. B. Tshakerian, ”The maximal subgroups of G2(4),” J. Algebra,76, No. 1, 171–185 (1982). · Zbl 0486.20015 · doi:10.1016/0021-8693(82)90243-5
[1175] N. T. Petrov and K. B. Tshakerian, ”Simple subgroups of G2(pn), p=2 or 3,” Dokl. Bolg. AN,35, No. 9, 1193–1196 (1982).
[1176] M. R. Pettet, ”A note on finite groups having a fixed-point-free automorphism,” Proc. Am. Math. Soc.,52, 79–80 (1975). · Zbl 0313.20008 · doi:10.1090/S0002-9939-1975-0404442-5
[1177] M. R. Pettet, ”On a theorem of Goldschmidt applied to groups with a coprime automorphism,” Can. J. Math.,28, No. 1, 201–206 (1976). · Zbl 0308.20021 · doi:10.4153/CJM-1976-025-1
[1178] M. R. Pettet, ”Fixed-point-free automorphism groups of square-free exponent,” Proc. London Math. Soc.,33, No. 2, 361–384 (1976). · Zbl 0338.20023 · doi:10.1112/plms/s3-33.2.361
[1179] M. R. Pettet, ”A remark on groups with a coprime automorphism fixing a (2, 3)’-subgroup,” J. London Math. Soc.,15, No. 1, 88–90 (1977). · Zbl 0352.20017 · doi:10.1112/jlms/s2-15.1.88
[1180] M. R. Pettet, ”A sufficient condition for solvability in groups admitting elementary Abelian operator groups,” Can. J. Math.,29, No. 4, 848–855 (1977). · Zbl 0364.20027 · doi:10.4153/CJM-1977-087-x
[1181] M. R. Pettet, ”Nilpotent partition-inducing automorphism groups,” Can. J. Math.,33, No. 2, 412–420 (1981). · Zbl 0411.20002 · doi:10.4153/CJM-1981-036-2
[1182] M. R. Pettet, ”Automorphisms and Fitting factor of finite groups,” J. Algebra,72, No. 2, 404–412 (1981). · Zbl 0473.20018 · doi:10.1016/0021-8693(81)90301-X
[1183] K.-W. Phan, ”A characterization of the finite groups PSU(n, q),” J. Algebra,37, No. 2, 313–399 (1975). · Zbl 0328.20021 · doi:10.1016/0021-8693(75)90082-4
[1184] K.-W. Phan, ”On groups generated by three-dimensional special unitary groups. I,” J. Austral. Math. Soc.,A23, No. 1, 67–77 (1977). · Zbl 0369.20026 · doi:10.1017/S1446788700017353
[1185] K.-W. Phan, ”On groups generated by three-dimensional special unitary groups. II,” J. Austral. Math. Soc.,23, No. 2, 129–146 (1977). · Zbl 0381.20034 · doi:10.1017/S1446788700018140
[1186] J. Poland, ”Finite potent groups,” Bull. Austral. Math. Soc.,23, No. 1, 111–120 (1981). · Zbl 0448.20025 · doi:10.1017/S0004972700006936
[1187] H. Pollatsek, ”Irreducible groups generated by transvections over finite fields of characteristic two,” J. Algebra,39, No. 1, 328–333 (1976). · Zbl 0336.20035 · doi:10.1016/0021-8693(76)90080-6
[1188] M. B. Powell and G. N. Thwaites, ”On the nonexistence of certain types of subgroups in simple groups,” Q. J. Math.,26, No. 102, 243–256 (1975). · Zbl 0328.20018 · doi:10.1093/qmath/26.1.243
[1189] G. Prasad, ”Tame component of Schur multipliers of finite groups of Lie type,” J. Algebra,79, No. 1, 235–240 (1982). · Zbl 0518.20031 · doi:10.1016/0021-8693(82)90327-1
[1190] U. Preiser, ”Eine Charakterisierung einiger endlicher einfacher Gruppen durch \(\mathfrak{F}\) -Mengen,” Arch. Math.,28, No. 4, 369–373 (1977). · Zbl 0356.20022
[1191] U. Preiser, ”On finite groups with \(\mathfrak{F}\) -sets,” J. Algebra,52, No. 2, 540–546 (1978). · Zbl 0383.20013
[1192] U. Preiser, ”Produkte von endlichen einfachen Gruppen,” J. Algebra,56, No. 1, 50–70 (1979). · Zbl 0401.20021 · doi:10.1016/0021-8693(79)90323-5
[1193] U. Preiser, ”Produkte endlicher einfacher Gruppen,” Math. Z.,167, No. 1, 91–98 (1979). · Zbl 0388.20020 · doi:10.1007/BF01215246
[1194] U. Preiser, ”Finite groups with a strongly closed 2-subgroup, whose commutator subgroup is cyclic,” Arch. Math.,33, No. 1, 10–17 (1979). · Zbl 0423.20012 · doi:10.1007/BF01222718
[1195] U. Preiser, ”Über den grossten p-Normalteiler einer endlichen Gruppe,” Manuscr. Math.,37, No. 1, 65–66 (1982). · Zbl 0481.20014 · doi:10.1007/BF01239946
[1196] U. Preiser, ”On factorizable groups,” Arch. Math.,39, No. 2, 97–100 (1982). · Zbl 0504.20015 · doi:10.1007/BF01899187
[1197] U. Preiser, ”A characterization of PGL(2, q), q odd,” Isr. J. Math.,43, No. 2, 177–184 (1982). · Zbl 0522.20017 · doi:10.1007/BF02761730
[1198] E. Previato, ”Una caratterizzazione dei sottogruppi di Dedeking di un gruppo finito,” Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. e Natur.,59, No. 6, 643–650 (1975). · Zbl 0387.20020
[1199] E. Previato, ”Some families of simple groups whose lattices are complemented,” Boll. Unione Mat. Ital.,B1, No. 3, 1003–1014 (1982).
[1200] A. R. Prince, ”A characterization of the simple groups PSp(4, 3) and PSp(6, 2),” J. Algebra,45, No. 2, 306–320 (1977). · Zbl 0358.20025 · doi:10.1016/0021-8693(77)90330-1
[1201] A. R. Prince, ”On 2-groups admitting A5 or A6 with an element of order 5 acting fixed point freely,” J. Algebra,49, No. 2, 374–386 (1977). · Zbl 0374.20036 · doi:10.1016/0021-8693(77)90247-2
[1202] A. R. Prince, ”Finite groups with a certain centralizer of an element of order 3,” Proc. R. Soc. Edinburgh,187, No. 3–4, 249–254 (1981). · Zbl 0454.20017 · doi:10.1017/S0308210500015183
[1203] A. R. Prince, ”A characterization of the simple group2D4(2),” J. Algebra,69, No. 2, 467–482 (1981). · Zbl 0454.20021 · doi:10.1016/0021-8693(81)90216-7
[1204] W. R. Scott and F. Gross (eds.), Proceedings of the Conference of Finite Groups. Park City, Utah, 1975, Academic Press, New York (1976), XIV+566.
[1205] L. Prohaska, ”Ein Satz über Supplements in endlichen Gruppen,” Wiss. Z. Univ. Rostock. Math.-Naturwiss. R.,23, No. 8, 613–616 (1974).
[1206] L. Puig, ”Structure locale dans les groupes finis,” Bull. Soc. Math. France, Mém. No. 47, 5–132 (1976). · Zbl 0355.20024 · doi:10.24033/msmf.195
[1207] L. Puig, ”Sous-groupes de contrôle et cretéres de non-simplicité,” J. Algebra,52, No. 2, 504–525 (1978). · Zbl 0382.20021 · doi:10.1016/0021-8693(78)90252-1
[1208] L. Puig, ”La classification des groupes finish simples: bref apercu et quelques consequences internes,” Astérisque, No. 92–93, 101–128 (1982).
[1209] L. Queen, ”Modular functions and finite simple groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 561–566.
[1210] L. Queen, ”Modular functions arising from some finite groups,” Math. Comput.,37, No. 156, 547–580 (1981). · Zbl 0514.20009 · doi:10.1090/S0025-5718-1981-0628715-7
[1211] A. Rae, ”Groups of type (p, p) acting on p-soluble groups,” Proc. London Math. Soc.,31, No. 3, 331–363 (1975). · Zbl 0336.20019 · doi:10.1112/plms/s3-31.3.331
[1212] M. M. Ram, ”Problems in enumeration of finite groups,” Lect. Notes Math.,938, 172–176 (1982).
[1213] R. Rasala, ”Split codes and the Mathieu groups,” J. Algebra,42, No. 2, 422–471, (1976). · Zbl 0352.20002 · doi:10.1016/0021-8693(76)90107-1
[1214] L. Rédei, ”Eine Vektorrechnung mit Anwendung in der Theorie der endlichen p-Gruppen,” Rings, Modules and Radicals, Amsterdan-London, 1973, pp. 423–445.
[1215] A. Reifart, ”A characterization of Thompson’s sporadic simple groups,” J. Algebra,38, No. 1, 192–200 (1975). · Zbl 0345.20016 · doi:10.1016/0021-8693(76)90254-4
[1216] A. Reifart, ”Some simple groups related to M24,” J. Algebra,45, No. 1, 199–209 (1977). · Zbl 0361.20024 · doi:10.1016/0021-8693(77)90368-4
[1217] A. Reifart, ”A remark on Conway’s group,” Arch. Math.,29, No. 4, 389–391 (1977). · Zbl 0377.20011 · doi:10.1007/BF01220424
[1218] A. Reifart, ”Another characterization of Janko’s simple group J4,” J. Algebra,49, No. 2, 621–627 (1977). · Zbl 0403.20010 · doi:10.1016/0021-8693(77)90262-9
[1219] A. Reifart, ”A general characterization of the Steinberg simple group D4 2(23),” J. Algebra,50, No. 1, 63–68. · Zbl 0379.20016
[1220] A. Reifart, ”A 2-local characterization of the simple groups M(24)’, 1, and J4,” J. Algebra,50, No. 1, 213–227 (1978). · Zbl 0379.20014 · doi:10.1016/0021-8693(78)90183-7
[1221] A. Reifart, ”On finite simple groups with large extraspecial subgroups. I–II,” J. Algebra,53, No. 2, 452–470 (1978);54, No. 1, 273–289 (1978). · Zbl 0382.20014 · doi:10.1016/0021-8693(78)90291-0
[1222] A. Reifart and G. Stroth, ”Some simple groups with 2-local 3-rank at most 3,” J. Algebra,64, No. 1, 102–139 (1980). · Zbl 0432.20010 · doi:10.1016/0021-8693(80)90137-4
[1223] A. Reifart and G. Stroth, ”On finite simple groups containing perspectives,” Geom. Dedic.,13, No. 1, 7–46 (1982). · Zbl 0496.51007 · doi:10.1007/BF00149424
[1224] R. Reimers and J. Tappe, ”Autoclinisms and automorphisms of finite groups,” Bull. Austral. Math. Soc.,13, No. 3, 439–449 (1975). · Zbl 0314.20018 · doi:10.1017/S0004972700024680
[1225] M. Reuther, ”Endliche Gruppen, in denen alle das Zentrum enthaltenden Untergruppen Zentralisatoren sind,” Arch. Math.,29, No. 1, 45–54 (1977). · Zbl 0373.20025 · doi:10.1007/BF01220374
[1226] R. W. Richardson, ”Conjugacy classes of involutions in Coxeter groups,” Bull. Austral. Math. Soc.,26, No. 1, 1–15 (1982). · Zbl 0531.20017 · doi:10.1017/S0004972700005554
[1227] B. Rickman, ”Groups admitting an automorphism of prime order fixing a cyclic subgroup of prime power order,” Q. J. Math.,26, No. 101, 46–59 (1975). · Zbl 0301.20015 · doi:10.1093/qmath/26.1.47
[1228] B. Rickman, ”Groups which admit a fixed-point-free automorphism of order p2,” J. Algebra,59, No. 1, 77–171 (1979). · Zbl 0408.20017 · doi:10.1016/0021-8693(79)90154-6
[1229] B. Rickman, ”Finite groups admitting automorphisms whose fixed point set is an elementary Abelian 2-group,” Proc. London Math. Soc.,40, No. 2, 320–345 (1980). · Zbl 0394.20018 · doi:10.1112/plms/s3-40.2.320
[1230] B. Rickman, ”Finite groups which admit a coprime automorphism of prime order whose fixed point set is a cyclic 3-group,” Q. J. Math.,31, No. 122, 233–246 (1980). · Zbl 0405.20027 · doi:10.1093/qmath/31.2.233
[1231] D. J. S. Robinson, ”Recent results on finite complete groups,” Lect. Notes Math.,848, 178–185 (1981). · doi:10.1007/BFb0090565
[1232] D. J. S. Robinson, ”Groups with prescribed automorphism group,” Proc. Edinburgh Math. Soc.,25, No. 3, 217–227 (1982). · Zbl 0477.20018 · doi:10.1017/S0013091500016709
[1233] D. J. S. Robinson, A course in the Theory of Groups, Springer, New York (1982), pp. XVII+481. · Zbl 0483.20001
[1234] G. R. Robinson and A. Turill, ”On finite groups with a certain Sylow normalizer,” J. Algebra,68, No. 1, 144–154 (1981). · Zbl 0449.20038 · doi:10.1016/0021-8693(81)90290-8
[1235] N. R. Rocca, ”On weak commutativity between finite p-groups, p odd,” J. Algebra,76, No. 2, 471–488 (1982). · Zbl 0489.20018 · doi:10.1016/0021-8693(82)90225-3
[1236] E. Rodemich, ”The groups of order 128,” J. Algebra,67, No. 1, 129–142 (1980). · Zbl 0449.20037 · doi:10.1016/0021-8693(80)90312-9
[1237] D. M. Rodney, ”Commutators and Abelian groups,” J. Austral. Math. Soc.,A24, No. 1, 79–91 (1977). · Zbl 0372.20028 · doi:10.1017/S1446788700020073
[1238] J. Rodney, ”2-groups of almost maximal class,” J. Austral. Math. Soc.,19, No. 3, 343–357 (1976). · Zbl 0364.90100 · doi:10.1017/S033427000000120X
[1239] J. Rodney, ”The groups of order p6 (p an odd prime),” Math. Comput.,34, No. 150, 613–637 (1980). · Zbl 0428.20013
[1240] M. Roitman, ”A complete set of invariants for finite groups and other results,” Adv. Math.,41, No. 3, 301–311 (1981). · Zbl 0473.20004 · doi:10.1016/0001-8708(81)90023-2
[1241] M. A. Ronan, ”A geometric characterization of Moufang hexagons,” Invent. Math.,57, No. 3, 227–262 (1980). · Zbl 0429.51002 · doi:10.1007/BF01418928
[1242] M. A. Ronan, ”Locally truncated buildings and M24,” Math. Z.,180, No. 4, 489–501 (1982). · Zbl 0478.05020 · doi:10.1007/BF01214721
[1243] M. A. Ronan and S. D. Smith, ”2-local geometries for some sporadic groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 283–289.
[1244] C. Ronse, ”On centralizers of involutions in 2-groups,” Math. Proc. Cambridge Philos. Soc.,86, No. 2, 199–204 (1979). · Zbl 0409.20020 · doi:10.1017/S0305004100056000
[1245] J. S. Rose, ”Automorphism groups of groups with trivial centre,” Proc. London Math. Soc.,31, No. 2, 167–193 (1975). · Zbl 0315.20021 · doi:10.1112/plms/s3-31.2.167
[1246] J. S. Rose, ”On finite insoluble groups with nilpotent maximal subgroups,” J. Algebra,48, No. 1, 182–196 (1977). · Zbl 0364.20034 · doi:10.1016/0021-8693(77)90301-5
[1247] J. S. Rose, ”Conjugacy of complements in relative holomorphs of finite Abelian groups,” J. London Math. Soc.,16, No. 3, 437–448 (1977). · Zbl 0373.20021 · doi:10.1112/jlms/s2-16.3.437
[1248] J. S. Rose, ”Finite metacyclic groups all extensions of which split,” Proc. R. Soc. Edinburgh,A79, No. 3–4, 285–291 (1978). · Zbl 0417.20021 · doi:10.1017/S030821050001979X
[1249] J. A. Rose, ”Frattini normal subgroups of finite groups,” J. Reine Angew. Math.,316, 83–98 (1980). · Zbl 0422.20019
[1250] C. A. Rowley, ”Automorphisms of prime order fixing a cyclic group of prime power order,” J. London Math. Soc.,15, No. 1, 91–98 (1977). · Zbl 0357.20014 · doi:10.1112/jlms/s2-15.1.91
[1251] P. J. Rowley, ”The \(\pi\)-separability of certain factorizable groups,” Math. Z.,153, No. 3, 219–228 (1977). · Zbl 0333.20018 · doi:10.1007/BF01214475
[1252] P. J. Rowley, ”On factorizable groups,” Arch. Math.,31, No. 2, 113–116 (1978). · Zbl 0406.20022 · doi:10.1007/BF01226422
[1253] P. J. Rowley, ”Solubility of finite groups admitting a fixed-point-free Abelian automorphism group of square-free exponent rs,” Proc. London Math. Soc.,37, No. 3, 385–421 (1978). · Zbl 0413.20022 · doi:10.1112/plms/s3-37.3.385
[1254] P. J. Rowley, ”A note on strongly closed 2-subgroups of finite groups,” Commun. Algebra,7, No. 10, 1029–1042 (1979). · Zbl 0406.20018 · doi:10.1080/00927877908822389
[1255] P. J. Rowley, ”Finite groups admitting an automorphism of prime order whose fixed point set is a 3 group,” Q. J. Math.,31, No. 121, 81–96 (1980). · Zbl 0471.20014 · doi:10.1093/qmath/31.1.81
[1256] P. J. Rowley, ”On the orders of finite groups and centralizers of real elements,” Arch. Math.,36, No. 5, 394–397 (1981). · Zbl 0465.20021 · doi:10.1007/BF01223715
[1257] P. J. Rowley, ”Characteristic 2-type groups with a strongly closed 2-subgroup of class at most two,” J. Algebra,71, No. 2, 550–568 (1981). · Zbl 0464.20015 · doi:10.1016/0021-8693(81)90195-2
[1258] P. J. Rowley, ”Solubility of finite groups admitting a fixed-point-free automorphism of order rst, I,” Pac. J. Math.,93, No. 1, 201–235 (1981); II, J. Algebra,83, No. 2, 293–348 (1983); III, Isr. J. Math.,51, No. 1–2, 125–150 (1985); IV, Math. Z.,186, No. 4, 435–464 (1984). · Zbl 0465.20020 · doi:10.2140/pjm.1981.93.201
[1259] P. J. Rowley, ”3-locally central elements in finite groups,” Proc. London Math. Soc.,43, No. 2, 357–384 (1981). · Zbl 0467.20023 · doi:10.1112/plms/s3-43.2.357
[1260] P. J. Rowley, ”Finite groups which possess a strongly closed 2-subgroup of class at most two, I–II,” J. Algebra,73, No. 2, 434–470; 471–517 (1981). · Zbl 0486.20013
[1261] P. J. Rowley, ”Automorphisms of certain trees,” Math. Z.,181, No. 3, 293–312 (1982). · Zbl 0492.20014 · doi:10.1007/BF01161978
[1262] A. Rudvalis, ”A rank 3 simple group of order 213\(\cdot\)33\(\cdot\)53\(\cdot\)7\(\cdot\)13\(\cdot\)29,I,” J. Algebra,86, No. 1, 219–258 (1984). · Zbl 0527.20013 · doi:10.1016/0021-8693(84)90064-4
[1263] D. J. Rusin, ”Groups admitting nilpotent fixed-point-free automorphism groups,” J. Algebra,64, No. 1, 89–92 (1980). · Zbl 0429.20028 · doi:10.1016/0021-8693(80)90135-0
[1264] Chih-Han Sah, ”Automorphisms of finite groups. Addendum,” J. Algebra,44, No. 2, 573–575 (1977). · Zbl 0353.20025 · doi:10.1016/0021-8693(77)90202-2
[1265] G. Sandlöbes, ”Perfect groups of order less than 104,” Commun. Algebra,9, No. 5, 477–490 (1981). · Zbl 0453.20012 · doi:10.1080/00927878108822594
[1266] H. Sandlöbes and U. Schoenwaelder, ”The core-free groups of Sylow 2-type M24,” Math. Z.,167, No. 1, 15–23 (1979). · Zbl 0403.20007 · doi:10.1007/BF01215240
[1267] B. Cooperstein and G. Mason (eds.), The Santa Cruz Conference on Finite Groups, Santa Cruz, Calif., June 25–July 20, 1979, Providence, R.I., Am. Math. Soc., 1980, pp. XVIII+643 (Proc. Symp. Pure Math., Vol. 37).
[1268] N. S. N. Sastry, ”On minimal non PN-groups,” J. Algebra,65, No. 1, 104–109 (1980). · Zbl 0434.20010 · doi:10.1016/0021-8693(80)90241-0
[1269] N. S. N. Sastry, ”Finite groups admitting the extensions of the automorphisms of a maximal elementary Abelian 2-subgroup,” J. Algebra,73, No. 1, 37–43 (1981). · Zbl 0485.20016 · doi:10.1016/0021-8693(81)90346-X
[1270] N. S. N. Sastry and W. E. Deskins, ”Influence of normality conditions on almost minimal subgroups of a finite group,” J. Algebra,52, No. 2, 364–377 (1978). · Zbl 0544.20018 · doi:10.1016/0021-8693(78)90246-6
[1271] A. Scarselli, ”SA-gruppi e SN-gruppi,” Boll. Unione Mat. Ital.,A14, No. 1, 174–182 (1977). · Zbl 0385.20015
[1272] A. Scarselli, ”Sui gruppi a sottogruppi supersolubili abeliani,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,60, No. 5, 564–569 (1976). · Zbl 0376.20017
[1273] A. Scarselli, ”Sulle S-partizioni regolari di un gruppo finite,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,62, No. 3, 300–304 (1977). · Zbl 0378.20018
[1274] A. Scarselli, ”On a class of inseparable finite groups,” J. Algebra,58, No. 1, 94–99 (1979). · Zbl 0408.20011 · doi:10.1016/0021-8693(79)90191-1
[1275] A. Scarselli, ”Su una classe di gruppi dotati di una serie di spezzamento principale,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,70, No. 1, 198–202 (1981) (1982). · Zbl 0511.20010
[1276] K.-U. Schaller, ”Über metazyklische p-Untergruppen p-auflösbar Gruppen,” Arch. Math.,26, No. 5, 463–469 (1975). · Zbl 0314.20016 · doi:10.1007/BF01229768
[1277] K.-U. Schaller, ”Über starke Erzeugendensysteme in endlichen auflösbaren Gruppen,” Arch. Math.,15, No. 1–2, 42–48 (1980). · Zbl 0433.20013 · doi:10.1007/BF01235315
[1278] K.-U. Schaller, ”Über den Verband der Subnormalteiler einer endlichen, p-auflösbaren Gruppe,” Arch. Math.,38, No. 6, 496–500 (1982). · doi:10.1007/BF01304822
[1279] L. Schiefelbusch, ”On the transfer homomorphism,” Commun. Algebra,3, No. 4, 295–317 (1975). · Zbl 0329.20016 · doi:10.1080/00927877508822048
[1280] L. Schiefelbusch, ”Transfer and weakly closed subgroups,” Commun. Algebra,7, No. 4, 333–340 (1979). · Zbl 0403.20016 · doi:10.1080/00927877908822353
[1281] P. Schmid, ”Normal p-subgroups in the group of outer automorphisms of a finite p-group,” Math. Z.,147, No. 3, 271–277 (1976). · Zbl 0307.20016 · doi:10.1007/BF01214085
[1282] R. Schmidt, ”Verbandsisomorphismen endlicher auflösbarer Gruppen,” Arch. Math.,23, No. 5, 449–458 (1972). · Zbl 0253.20028 · doi:10.1007/BF01304915
[1283] R. Schmidt, ”Normal subgroups and lattice isomorphisms of finite groups,” Proc. London Math. Soc.,30, No. 3, 287–300 (1975). · Zbl 0299.20015 · doi:10.1112/plms/s3-30.3.287
[1284] R. Schmidt, ”Verbandsautomorphismen der alternierenden Gruppen,” Math. Z.,154, No. 1, 71–78 (1977). · Zbl 0334.20009 · doi:10.1007/BF01215114
[1285] R. Schmidt, ”Untergruppenverbände endlicher einfacher Gruppen,” Geom. Dedic.,6, No. 3, 275–290 (1977). · doi:10.1007/BF02429900
[1286] R. Schmidt, ”Projektivitäten direkter Produkte endlicher Gruppen,” Arch. Math.,35, No. 1–2, 79–84 (1980). · Zbl 0418.20020 · doi:10.1007/BF01235322
[1287] R. Schmidt, ”Der Untergruppenverband des direkten Produktes zweier isomorpher Gruppen,” J. Algebra,73, No. 1, 264–272 (1981). · doi:10.1016/0021-8693(81)90358-6
[1288] U. Schoenwaelder, ”Finite groups with Sylow 2-subgroups isomorphic to T/Z(T), where T is of type M24,” J. Algebra,36, No. 3, 395–407 (1975). · Zbl 0314.20015 · doi:10.1016/0021-8693(75)90140-4
[1289] D. Schweigert, ”Polynomautomorphismen auf endlichen Gruppen,” Arch. Math.,29, No. 1, 34–38 (1977). · Zbl 0368.20016 · doi:10.1007/BF01220371
[1290] C. M. Scoppola, ”Su una classe di gruppi finiti,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,62, No. 5, 579–583 (1977). · Zbl 0375.20019
[1291] W. R. Scott, ”Products of A5 and a finite simple group,” J. Algebra,37, No. 1, 165–171 (1975). · Zbl 0317.20012 · doi:10.1016/0021-8693(75)90094-0
[1292] S. K. Sehgal, ”On the existence of Cartan subgroups of finite groups,” J. Number Theory,8, No. 1, 73–83 (1976). · Zbl 0347.20017 · doi:10.1016/0022-314X(76)90023-8
[1293] G. M. Seitz, ”Standard subgroups of type Ln(2a),” J. Algebra,48, No. 2, 417–438 (1977). · Zbl 0409.20008 · doi:10.1016/0021-8693(77)90319-2
[1294] G. M. Seitz, ”Chevalley groups as standard subgroups, I–III,” J. Math.,23, No. 1, 36–57 (1979); No. 4, 516–553; 554–578. · Zbl 0395.20006
[1295] G. M. Seitz, ”Subgroups of finite groups of Lie type,” J. Algebra,61, No. 1, 16–27 (1979). · Zbl 0426.20036 · doi:10.1016/0021-8693(79)90302-8
[1296] G. M. Seitz, ”Properties of the known simple groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 231–237.
[1297] G. M. Seitz, ”The root groups of a maximal torus,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 239–241.
[1298] G. M. Seitz, ”Some standard groups,” J. Algebra,70, No. 1, 299–302 (1981). · Zbl 0457.20019 · doi:10.1016/0021-8693(81)90261-1
[1299] G. M. Seitz, ”Standard subgroups in finite groups,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London e.a., 1980, pp. 41–62.
[1300] G. M. Seitz, ”On the subgroup structure of classical groups,” Commun. Algebra,10, No. 8, 875–885 (1982). · Zbl 0483.20026 · doi:10.1080/00927878208822754
[1301] G. M. Seitz, ”Generation of finite groups of Lie type,” Trans. Am. Math. Soc.,271, No. 2, 351–407 (1982). · Zbl 0514.20013 · doi:10.1090/S0002-9947-1982-0654839-1
[1302] G. M. Seitz, ”The root subgroups for maximal tori in finite groups of Lie type,” Pac. J. Math.,106, No. 1, 153–244 (1983). · Zbl 0522.20031 · doi:10.2140/pjm.1983.106.153
[1303] G. M. Seitz, ”Parabolic subgroups containing the centralizer of a unipotent element,” J. Algebra,84, No. 1, 240–252 (1983). · Zbl 0536.20027 · doi:10.1016/0021-8693(83)90077-7
[1304] G. M. Seitz, ”Unipotent subgroups of groups of Lie type,” J. Algebra,84, No. 1, 253–278 (1983). · Zbl 0527.20031 · doi:10.1016/0021-8693(83)90078-9
[1305] Keiko Sentoh, ”On simple groups of order 2a3bpc with a cyclic Sylow subgroup,” Natur. Sci. Rept. Ochanomizu Univ.,27, No. 1, 11–18 (1976). · Zbl 0356.20014
[1306] E. P. Shaughnessy, ”Codes with simple automorphism groups,” Arch. Math.,22, No. 5, 459–466 (1971); II,31, No. 1, 15–20 (1978). · Zbl 0241.20028 · doi:10.1007/BF01222605
[1307] G. Sherman, ”A lower bound for the number of conjugacy classes in a finite nilpotent group,” Pac. J. Math.,80, No. 1, 253–254 (1979). · Zbl 0377.20017 · doi:10.2140/pjm.1979.80.253
[1308] Ken-ichi Shinoda, ”A characterization of odd order extensions of the Ree groups2F4(q),” J. Fac. Sci. Univ. Tokyo, Sec. 1A,22, No. 1, 79–102 (1975). · Zbl 0306.20015
[1309] E. Shult, ”On a class of doubly transitive groups,” Ill. J. Math.,16, No. 3, 434–445 (1972). · Zbl 0241.20004
[1310] E. Shult, ”Disjoint triangular sets,” Ann. Math.,111, No. 1, 67–94 (1980). · Zbl 0441.20011 · doi:10.2307/1971217
[1311] E. Shult, ”Group-related geometries,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 457–460.
[1312] D. A. Sibley, ”Finite linear groups with a strongly self-centralizing Sylow subgroup, I–II,” J. Algebra,36, No. 1, 158–166 (1975); No. 2, 319–332. · Zbl 0328.20019 · doi:10.1016/0021-8693(75)90162-3
[1313] D. A. Sibley, ”Coherence in finite groups containing a Frobenius section,” Ill. J. Math.,20, No. 3, 434–442 (1976). · Zbl 0371.20010
[1314] A. Siconolfi, ”Sottogruppi di Sylow fissati da potenze non banali di un automorfismo senza punti fissi,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,60, No. 5, 570–572 (1976). · Zbl 0374.20032
[1315] S. Sidki, ”Some computation patterns between involutions of a finite group, I, II,” J. Algebra, 39, No. 1, 52–65; 66–74 (1976). · Zbl 0379.20028
[1316] C. C. Sims, ”A method for constructing a group from a subgroup,” Lect. Notes Math.,697, 125–130 (1978). · doi:10.1007/BFb0103127
[1317] C. C. Sims, ”Some group-theoretic algorithms,” Lect. Notes Math.,697, 108–124 (1978). · Zbl 0405.20001 · doi:10.1007/BFb0103126
[1318] C. C. Sims, ”How to construct a baby monster,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug. 1978, London, 1980, pp. 339–345.
[1319] S. Singh and D. Prasad, ”Strongly solvable groups,” Math. Sem. Notes Kobe Univ.,5, No. 2, 233–238 (1977). · Zbl 0389.20027
[1320] J. Skalba, ”On the maximality of Sn in S( k n ),” J. Algebra,75, No. 1, 158–174 (1982). · Zbl 0486.20005 · doi:10.1016/0021-8693(82)90067-9
[1321] F. Smith, ”On the centralizers on involution in finite fusion-simple groups,” J. Algebra,38, No. 2, 268–273 (1976). · Zbl 0371.20024 · doi:10.1016/0021-8693(76)90218-0
[1322] F. Smith, ”On finite groups with large extraspecial 2-subgroups,” J. Algebra,44, No. 2, 477–487 (1977). · Zbl 0425.20014 · doi:10.1016/0021-8693(77)90195-8
[1323] F. Smith, ”On groups with an involution z such that the generalized Fitting subgroup E of C(z) is extraspecial and \({{C\left( z \right)} \mathord{\left/ {\vphantom {{C\left( z \right)} E}} \right. \kern-\nulldelimiterspace} E} \supseteq \left[ {Out\left( E \right)} \right]\) [Out(E)]’,” Commun. Algebra,5, No. 3, 267–277 (1977).
[1324] F. Smith, ”On a result of M. Aschbacher,” Commun. Algebra,5, No. 3, 279–288 (1977). · Zbl 0382.20013 · doi:10.1080/00927877708822170
[1325] F. Smith, ”On transitive permutation groups in which a 2-central involution fixes a unique point,” Commun. Algebra,7, No. 2, 203–218 (1979). · Zbl 0407.20001 · doi:10.1080/00927877908822342
[1326] F. Smith, ”A note on an Aschbacher theorem,” Commun. Algebra,7, No. 2, 218–224 (1979). · Zbl 0401.20019
[1327] M. S. Smith, ”On the isomorphism of two simple groups of order 44,352,000,” J. Algebra,41, No. 1, 172–174 (1976). · Zbl 0364.20018 · doi:10.1016/0021-8693(76)90174-5
[1328] M. S. Smith, ”A combinatorial configuration associated with the Higman-Sims simple group,” J. Algebra,41, No. 1, 175–195 (1976). · Zbl 0367.05023 · doi:10.1016/0021-8693(76)90175-7
[1329] P. E. Shith, ”A simple subgroup of M? and E8(3),” Bull. London Math. Soc.,8, No. 2, 161–165 (1976). · Zbl 0348.20015 · doi:10.1112/blms/8.2.161
[1330] S. D. Smith, ”On finite groups with a certain Sylow normalizer, III,” J. Algebra,29, No. 3, 489–503 (1974). · Zbl 0283.20005 · doi:10.1016/0021-8693(74)90084-2
[1331] S. D. Smith, ”Some methods in the theory of blocks of characters,” J. Algebra,39, No. 2, 260–374 (1976). · Zbl 0328.20007
[1332] S. D. Smith, ”On p-singular control of p-regular character values,” J. Algebra,39, No. 1, 255–276 (1976). · Zbl 0328.20006 · doi:10.1016/0021-8693(76)90076-4
[1333] S. D. Smith, ”Sylow automizers of odd order or an application of coherence,” Proc. Conf. on Finite Groups, Academic Press, New York (1976), pp. 445–450. · Zbl 0347.20004
[1334] S. D. Smith, ”Sylow automizers of odd order,” J. Algebra,46, No. 2, 523–543 (1977). · Zbl 0361.20008 · doi:10.1016/0021-8693(77)90387-8
[1335] S. D. Smith, ”Even automizers and conjugacy of involutions,” J. Algebra,54, No. 2, 504–515 (1978). · Zbl 0399.20008 · doi:10.1016/0021-8693(78)90013-3
[1336] S. D. Smith, ”Nonassociative commutative algebras for triple covers of 3-transposition groups,” Mich. Math. J.,24, No. 3, 273–287 (1977). · Zbl 0391.20011 · doi:10.1307/mmj/1029001944
[1337] S. D. Smith, ”On maximal-class 3-groups and strong 3-embedding, ” J. Algebra,56, No. 2, 396–400 (1979). · Zbl 0402.20021 · doi:10.1016/0021-8693(79)90345-4
[1338] S. D. Smith, ”Large extraspecial subgroups of widths 4 and 6,” J. Algebra,58, No. 2, 251–281 (1979). · Zbl 0411.20009 · doi:10.1016/0021-8693(79)90160-1
[1339] S. D. Smith, ”A characterization of finite Chevalley and twisted groups of type E over GF(2),” J. Algebra,62, No. 1, 101–117 (1980). · Zbl 0426.20014 · doi:10.1016/0021-8693(80)90207-0
[1340] S. D. Smith, ”A characterization of orthogonal groups over GF(2),” J. Algebra,62, No. 1, 39–60 (1980). · Zbl 0426.20013 · doi:10.1016/0021-8693(80)90204-5
[1341] S. D. Smith, ”A characterization of some Chevalley groups in characteristic two,” J. Algebra,68, No. 2, 390–425 (1981). · Zbl 0454.20023 · doi:10.1016/0021-8693(81)90271-4
[1342] S. D. Smith, ”The classification of finite groups with large extraspecial 2-subgroups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 111–120.
[1343] S. D. Smith, ”A characterization of symplectic groups over GF(2),” J. Algebra,12, No. 2, 456–477 (1981). · Zbl 0471.20009 · doi:10.1016/0021-8693(81)90304-5
[1344] R. Solomon, ”Finite groups with intrinsic 2-components of type An,” J. Algebra,33, No. 3, 498–522 (1975). · Zbl 0313.20007 · doi:10.1016/0021-8693(75)90115-5
[1345] R. Solomon, ”Maximal 2-components in finite groups,” Commun. Algebra,4, No. 6, 561–594 (1976). · Zbl 0355.20015 · doi:10.1080/00927877608822121
[1346] R. Solomon, ”Standard components of alternating type. I–II,” J. Algebra,41, No. 2, 496–514 (1976); 47, No. 1, 162–179 (1977). · Zbl 0412.20011 · doi:10.1016/0021-8693(76)90195-2
[1347] R. Solomon, ”2-signalizers in finite groups of alternating type,” Commun. Algebra,6, No. 6, 529–549 (1978). · Zbl 0403.20008 · doi:10.1080/00927877808822257
[1348] R. Solomon, ”Some standard components of sporadic type,” J. Algebra,53, No. 1, 93–123 (1978). · Zbl 0382.20016 · doi:10.1016/0021-8693(78)90208-9
[1349] R. Solomon, ”Finite simple groups with exceptional standard subgroups,” Abstr. Am. Math. Soc.,2, No. 1, 783-20–6 (1981).
[1350] R. Solomon, ”Some results on standard blocks,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 43–46.
[1351] R. Solomon, ”The maximal 2-component approach to the B(G) conjecture,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 67–80.
[1352] R. Solomon, ”On certain 2-local blocks,” Proc. London Math. Soc.,43, No. 3, 478–498 (1981). · Zbl 0471.20010 · doi:10.1112/plms/s3-43.3.478
[1353] R. Solomon, ”The B(G)-conjecture and unbalanced groups,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 63–87.
[1354] R. Solomon and F. G. Timmesfeld, ”A note on tightly embedded subgroups,” Arch. Math.,31, No. 3, 217–223 (1978). · Zbl 0403.20006 · doi:10.1007/BF01226440
[1355] R. Solomon and S. K. Wong, ”On L2(2n)-blocks,” Proc. London Math. Soc.,42, No. 3, 499–519 (1981). · Zbl 0471.20011 · doi:10.1112/plms/s3-43.3.499
[1356] T. A. Springer, ”The order of a finite group of Lie type,” Contemp. Math.,13, 81–89 (1982). · Zbl 0506.20020 · doi:10.1090/conm/013/685938
[1357] R. M. Stafford, ”A characterization of Janko’s simple group J4, by centralizers of elements of order 3,” J. Algebra,57, No. 2, 555–566 (1979). · Zbl 0401.20010 · doi:10.1016/0021-8693(79)90239-4
[1358] B. S. Stark, ”Rank 3 subgroups of orthogonal groups,” Ill. J. Math.,19, No. 1, 116–121 (1975). · Zbl 0296.20023
[1359] B. S. Stark, ”Another look at Thompson’s quadratic pairs,” J. Algebra,45, No. 2, 334–342 (1977). · Zbl 0357.20003 · doi:10.1016/0021-8693(77)90332-5
[1360] R. Steinberg, ”Representations of algebraic groups,” Nagoya Math. J.,22, June, 1963, pp. 33–56. · Zbl 0271.20019 · doi:10.1017/S0027763000011016
[1361] R. Steinberg, ”Generators, relations and coverings of algebraic groups, II,” J. Algebra,71, No. 2, 527–543 (1981). · Zbl 0468.20038 · doi:10.1016/0021-8693(81)90193-9
[1362] B. Stellmacher, ”Über endliche Gruppen mit einer 2-lokalen Untergruppe die kein Element der Ordnung 6 enthält,” J. Algebra,50, No. 1, 175–189 (1978). · Zbl 0385.20007 · doi:10.1016/0021-8693(78)90181-3
[1363] B. Stellmacher, ”Über den schwachen Abschluss von TI-Untergruppen in ihrem Normalisator,” Arch. Math.,32, No. 6, 516–525 (1979). · Zbl 0421.20007 · doi:10.1007/BF01238534
[1364] B. Stellmacher, ”On finite groups whose Sylow 2-subgroups are contained in unique maximal subgroups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 123–125.
[1365] B. Stellmacher, ”Über endliche Gruppen mit 2-lokalen maximalen Untergruppen,” J. Algebra,70, No. 1, 48–77 (1981). · Zbl 0461.20003 · doi:10.1016/0021-8693(81)90243-X
[1366] E. Stensholt, ”An application of Steinberg’s construction of twisted groups,” Pac. J. Math.,55, No. 2, 595–618 (1974). · Zbl 0306.20051 · doi:10.2140/pjm.1974.55.595
[1367] E. Stensholt, ”Certain embeddings among finite groups of Lie type,” J. Algebra,53, No. 1, 136–187 (1978). · Zbl 0386.20006 · doi:10.1016/0021-8693(78)90211-9
[1368] V. Stingl, ”Eine Kennzeichnung der endlichen einfachen Gruppe der Ordnung 604,800,” Acta Sci. Math.,37, No. 1–2, 125–141 (1975). · Zbl 0277.20016
[1369] R. Stölting, ”Die Kleinsche Vierergruppe als fixpunktfreie Automorphismengruppen,” J. Algebra,55, No. 2, 500–508 (1978). · Zbl 0403.20019 · doi:10.1016/0021-8693(78)90233-8
[1370] E. Strickland, ”Classificazione dei gruppi finiti semplici in cui due arbitrari sottogruppi dello stesso ordine risultano conjugati,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,54, No. 6, 832–837 (1973) (1974). · Zbl 0288.20015
[1371] E. Strickland, ”Sui funtori coniugio nei gruppi PSL(2, pf),” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,56, No. 4, 464–469 (1974). · Zbl 0315.20010
[1372] E. Strickland, ”Sulle serie di composizione di una classe di gruppi finiti,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,61, No. 1–2, 20–22 (1976) (1977). · Zbl 0368.20015
[1373] E. Strickland, ”On a longstanding conjecture of G. A. Miller,” Rend. Accad. Sci. Fis. Mat. Soc. Naz. Sci. Lett. Arti. Napoli, 1978 (1979), pp. 163–170.
[1374] J. K. Striko, ”A characterization of the finite simple groups M24, He and L5(2),” J. Algebra,43, No. 2, 375–397 (1976). · Zbl 0348.20014 · doi:10.1016/0021-8693(76)90120-4
[1375] A. Strojnowski, ”A note on U. P. groups,” Commun. Algebra,8, No. 3, 231–234 (1980). · Zbl 0423.20005 · doi:10.1080/00927878008822456
[1376] G. Stroth, ”Über Gruppen, die in ähnliche Beziehung zu M24 oder L5(2) stehen, wie Sz zu He, und eine Kennzeichnung von M24 und L5(2), I, II,” J. Algebra, 33, No. 2, 206–223;34, No. 2, 331–364 (1975). · Zbl 0299.20011
[1377] G. Stroth, ”On 2-groups with no Abelian subgroups of rank four,” Math. Z.,144, No. 1, 13–17 (1975). · Zbl 0295.20023 · doi:10.1007/BF01214403
[1378] G. Stroth, ”Eine Kennzeichnung der 2I-Gruppen,” J. Algebra,37, No. 1, 111–120 (1975). · Zbl 0319.20020 · doi:10.1016/0021-8693(75)90091-5
[1379] G. Stroth, ”Eine Kennzeichnung der PSL(2, 7) durch ihre Untergruppenstruktur,” Arch. Math.,27, No. 4, 360–361 (1976). · Zbl 0338.20021 · doi:10.1007/BF01224685
[1380] G. Stroth, ”Über endliche Gruppen mit einer 2-lokalen Untergruppe E16\(\backslash\)\(\Sigma\)6,” Arch. Math.,27, No. 3, 232–240 (1976). · Zbl 0333.20015 · doi:10.1007/BF01224665
[1381] G. Stroth, ”A characterization of Fischer’s sporadic simple group of the order 241\(\cdot\)313\(\cdot\) 56\(\cdot\)72\(\cdot\)ll\(\cdot\)13\(\cdot\)17\(\cdot\)19\(\cdot\)23\(\cdot\)31\(\cdot\)47,” J. Algebra,40, No. 2, 499–531 (1976). · Zbl 0338.20019 · doi:10.1016/0021-8693(76)90208-8
[1382] G. Stroth, ”Über Gruppen mit 2-Sylow-Durchschnitten vom Rang , I–II,” J. Algebra,43, No. 3, 398–456 (1976). · Zbl 0348.20012 · doi:10.1016/0021-8693(76)90121-6
[1383] G. Stroth, ”Gruppen mit einem 2-Sylow-Druchschnitt vom Rang zwei,” J. Algebra,44, No. 2, 488–491 (1977). · Zbl 0356.20015 · doi:10.1016/0021-8693(77)90196-X
[1384] G. Stroth, ”Gruppen mit kleinen 2-lokalen Untergruppen,” J. Algebra,47, No. 2, 441–454 (1977). · Zbl 0365.20021 · doi:10.1016/0021-8693(77)90235-6
[1385] G. Stroth, ”Endliche einfache Gruppen mit einer 2-lokalen Untergruppe E16\(\cdot\)\(\Sigma\)6,” J. Algebra,47, No. 2, 455–479 (1977). · Zbl 0365.20020 · doi:10.1016/0021-8693(77)90236-8
[1386] G. Stroth, ”Endliche einfache Gruppen mit einer zentralisatorgleichen elementar abelschen Untergruppe von der Ordnung 16,” J. Algebra,47, No. 2, 480–523 (1977). · Zbl 0365.20022 · doi:10.1016/0021-8693(77)90237-X
[1387] G. Stroth, ”Einige einfache Gruppen, die keine elementar abelsche Untergruppe von der Ordnung 32 enthalten,” J. Algebra,48, No. 1, 197–213 (1977). · Zbl 0364.20022 · doi:10.1016/0021-8693(77)90302-7
[1388] G. Stroth, ”Einige Gruppen vom Charakteristik 2-typ,” J. Algebra,51, No. 1, 107–143 (1978). · Zbl 0376.20011 · doi:10.1016/0021-8693(78)90139-4
[1389] G. Stroth, ”A fusion lemma for a certain class of groups of characteristic 2-type,” J. Algebra,55, No. 2, 293–301 (1978). · Zbl 0396.20006 · doi:10.1016/0021-8693(78)90222-3
[1390] G. Stroth, ”An odd characterization of J4,” Isr. J. Math.,31, No. 2, 189–192 (1978). · Zbl 0393.20012 · doi:10.1007/BF02760550
[1391] G. Stroth, ”A characterization of 3,” Acta Sci. Math.,41, No. 1–2, 215–219 (1979). · Zbl 0414.20010
[1392] G. Stroth, ”Quadratic forms and special 2-groups,” Arch. Math.,33, No. 5 415–422 (1980). · Zbl 0412.20016 · doi:10.1007/BF01222778
[1393] G. Stroth, ”A general characterization of the Tits simple group,” J. Algebra,64, No. 1, 140–147 (1980). · Zbl 0429.20017 · doi:10.1016/0021-8693(80)90138-6
[1394] G. Stroth, ”Endliche Gruppen, die eine maximale 2-lokale Untergruppe besitzen, so dass Z[F*(M)] eine TI-Menge in G ist,” J. Algebra,64, No. 2, 460–528 (1980). · Zbl 0437.20009 · doi:10.1016/0021-8693(80)90156-8
[1395] G. Stroth, ”Groups having a selfcentralizing elementary Abelian subgroup of order 16,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 127–129.
[1396] G. Stroth, ”On standard subgroups of type2E6(2),” Proc. Am. Math. Soc.,81, No. 3, 365–368 (1981). · Zbl 0418.20014
[1397] G. Stroth, ”Graphs with subconstituents containing Sz(q) and L2(r),” J. Algebra,80, No. 1, 186–215 (1983). · Zbl 0514.20011 · doi:10.1016/0021-8693(83)90027-3
[1398] G. Stroth, ”On Chevalley-groups acting on projective planes,” J. Algebra,77, No. 2, 360–381 (1982). · Zbl 0496.20002 · doi:10.1016/0021-8693(82)90259-9
[1399] R. R. Struik, ”Partial converses to Lagrange’s theorem,” Commun. Algebra,6, No. 5, 421–485 (1978); II,9, No. 1, 1–22 (1981). · Zbl 0376.20018 · doi:10.1080/00927877808822254
[1400] R. R. Struik, ”Some non-Abelian 2-groups with Abelian automorphism groups,” Arch. Math.,39, No. 4, 299–302 (1982). · Zbl 0487.20014 · doi:10.1007/BF01899435
[1401] E. Sump and J. Wisliceny, ”Zum Satz von Golod-Schafarewitsch,” Wiss. Z. Pad. Hochsch. iselotte-HermannGüstrow. Math.-Naturwiss. Fak., No. 2, 61–66 (1977).
[1402] Michio Suzuki, ”A transfer theorem,” J. Algebra,51, No. 2, 608–618 (1978). · Zbl 0374.20027 · doi:10.1016/0021-8693(78)90126-6
[1403] Michio Suzuki, ”Finite groups with a split BN-pair of rank one,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 139–147.
[1404] Michio Suzuki, ”Group theory, I,” Springer, Berlin (1982), pp. XIV+434. · Zbl 0472.20001
[1405] S. A. Syskin, ”Some characterization theorems,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 121–122.
[1406] K. B. Tchakerian, ”Finite groups having a maximal subgroup isomorphic to A5,” Dokl. Bolg. AN,32, No. 9, 1161–1163 (1979). · Zbl 0428.20014
[1407] K. B. Tchakerian, ”Simple groups of order 2a\(\cdot\)3\(\cdot\)5\(\cdot\)gh,” Serdika. Bulg. Mat. Spisanie,5, No. 4, 351–361 (1979). · Zbl 0445.20010
[1408] K. B. Tchakerian, ”A note on simple groups of order 2a\(\cdot\)3b\(\cdot\)5\(\cdot\)pc,” Dokl. Bolg. AN,33, No. 8, 1037–1038 (1980). · Zbl 0455.20012
[1409] K. B. Tchakerian, ”Groups containing a three-prime simple group,” Dokl. Bolg. AN,33, No. 9, 1165–1167 (1980). · Zbl 0458.20019
[1410] K. B. Tchakerian, ”Generators for the simple subgroups of G2(4),” Dokl. Bolg. AN,34, No. 2, 159–162 (1981). · Zbl 0463.20016
[1411] K. B. Tchakerian, ”The maximal subgroups of the Tits simple group,” Dokl. Bolg. AN,34, No. 12, 1637 (1981). · Zbl 0484.20008
[1412] K. B. Tchakerian, ”Finite nonsolvable groups having a maximal subgroup of order 2p,” Pliska. Bulg. Mat. Stud.,2, 157–161 (1981). · Zbl 0486.20014
[1413] R. Brauer and C. H. Sah (eds.), ”Theory of Finite Groups,” Benjamin, New York (1969), pp. XIII+263.
[1414] R. M. Thomas, ”On the centralizers of elements of order 3 in finite groups, I–III,” J. Algebra,67, No. 1, 163–172; 173–184 (1980),76, No. 1, 205–210 (1982). · Zbl 0451.20015
[1415] J. G. Thompson, ”A simple subgroup of E8(3),” Finite Groups, Sapporo and Kyoto, 1974, Japan Soc. Promotion Sci., 1976, pp. 113–116.
[1416] J. G. Thompson, ”Finite groups and even lattices,” J. Algebra,38, No. 2, 523–524 (1976). · Zbl 0344.20001 · doi:10.1016/0021-8693(76)90234-9
[1417] J. G. Thompson, ”Toward a characterization of E2*(q). III,” J. Algebra,49, No. 1, 162–166 (1977). · Zbl 0372.20007 · doi:10.1016/0021-8693(77)90276-9
[1418] J. G. Thompson, ”Uniqueness of the Fischer-Griess monster,” Bull. London Math. Soc.,11, No. 3, 340–346 (1979). · Zbl 0424.20012 · doi:10.1112/blms/11.3.340
[1419] J. G. Thompson, ”Some numerology between the Fischer-Griess monster and the elliptic modular function,” Bull. London Math. Soc.,11, No. 3, 352–353 (1979). · Zbl 0425.20016 · doi:10.1112/blms/11.3.352
[1420] J. G. Thompson, ”Finite groups and modular functions,” Bull. London Math. Soc.,11, No. 3, 347–351 (1979). · Zbl 0424.20011 · doi:10.1112/blms/11.3.347
[1421] J. G. Thompson, ”Rational functions associated to presentations of finite groups,” J. Algebra,71, No. 2, 481–489 (1981). · Zbl 0464.20026 · doi:10.1016/0021-8693(81)90187-3
[1422] J. G. Thompson, ”Fixed point free involutions and finite projective planes,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 321–337.
[1423] U. Tiberio, ”Sui sottogruppi massimali di un gruppo finito resolubile,” Matematiche,32, No. 3, 258–270 (1977).
[1424] F. G. Timmesfeld, ”Groups with weakly closed TI-subgroups,” Math. Z.,143, No. 3, 243–278 (1975). · Zbl 0295.20024 · doi:10.1007/BF01214379
[1425] F. G. Timmesfeld, ”On elementary Abelian TI-subgroups,” J. Algebra,44, No. 2, 457–476 (1977). · Zbl 0351.20009 · doi:10.1016/0021-8693(77)90194-6
[1426] F. G. Timmesfeld, ”Finite simple groups in which the generalized Fitting group of the centralizer of some involution is extraspecial,” Ann. Math.,107, No. 2, 297–369 (1978); Correction. Ann. Math.,109, No. 2, 413–414 (1979). · Zbl 0405.20016 · doi:10.2307/1971146
[1427] F. G. Timmesfeld, ”On the structure of 2-local subgroups in finite groups,” Math. Z.,161, No. 2, 119–136 (1978). · Zbl 0363.20016 · doi:10.1007/BF01214924
[1428] F. G. Timmesfeld, ”A note on 2-groups of GF(2n)-type,” Arch. Math.,32, No. 2, 101–108 (1979). · Zbl 0414.20014 · doi:10.1007/BF01238475
[1429] F. G. Timmesfeld, ”A condition for the existence of a weakly closed TI-set,” J. Algebra,60, No. 2, 472–484 (1979). · Zbl 0417.20016 · doi:10.1016/0021-8693(79)90094-2
[1430] F. G. Timmesfeld, ”Groups generated by a conjugacy class of involutions,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 103–109.
[1431] F. G. Timmesfeld, ”A note on elementary Abelian 2-subgroups of finite groups,” Mitt. Math. Sem. Giessen, No. 149, 17–25 (1981). · Zbl 0466.20004
[1432] F. G. Timmesfeld, ”On finite groups in which a maximal Abelian normal subgroup of some maximal 2-local subgroup is a TI-set,” Proc. London Math. Soc.,43, No. 1, 1–45 (1981). · Zbl 0466.20005 · doi:10.1112/plms/s3-43.1.1
[1433] F. G. Timmesfeld, ”Groups of GF(2)-type and related problems,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 151–180.
[1434] F. G. Timmesfeld, ”A remark on Thompson’s replacement theorem and a consequence,” Arch. Math.,38, No. 6, 491–495 (1982). · Zbl 0495.20003 · doi:10.1007/BF01304821
[1435] N. B. Tinberg, ”The Levi decomposition of a split (B, N)-pair,” Pac. J. Math.,91, No. 1, 233–238 (1980). · Zbl 0411.20025 · doi:10.2140/pjm.1980.91.233
[1436] T. Tisch, ”2-Gruppen mit kleinen selbstzentralisierenden Untergruppen,” Commun. Algebra,7, No. 8, 833–844 (1979). · Zbl 0402.20022 · doi:10.1080/00927877908822378
[1437] J. Tits, ”Buildings of spherical type and finite BN-pairs,” Lect. Notes Math.,386, 1974, pp. X+299. · Zbl 0295.20047
[1438] J. Tits, ”Nonexistence de certains polygones généralisés. I, II,” Invent. Math.,36, 275–284 (1976);51, No. 3, 267–269 (1979). · Zbl 0369.20004 · doi:10.1007/BF01390013
[1439] J. Tits, ”Endliche Spiegelungsgruppen, die als Weylgruppen Auftreten,” Invent. Math.,43, No. 3, 283–295 (1977). · Zbl 0399.20037 · doi:10.1007/BF01390082
[1440] J. Tits, ”Sur certains groupes dont l’ordre est divisible par 23,” Bull. Soc. Math. Belg.,27, No. 4, 325–332 (1975). · Zbl 0395.20007
[1441] J. Tits, ”Quaternions over Q (), Leech’s lattice and the sporadic group of Hall-Janko,” J. Algebra,63, No. 1, 56–75 (1980). · Zbl 0436.20004 · doi:10.1016/0021-8693(80)90025-3
[1442] J. Tits, ”Definition par générateurs et relations de groupes avec BN-paires,” C. R. Acad. Sci., Ser. 1,293, No. 6, 317–322 (1981). · Zbl 0548.20019
[1443] J. Tits, ”Buildings and Buekenhout geometries,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 309–320.
[1444] J. Tits, ”Four presentations of Leech’s lattice,” Finite Simple Groups. II, Proc. London Math. Soc. Res. Symp., Durham, July–Aug., 1978, London, 1980, pp. 303–307.
[1445] J. Tits, ”A local approach to buildings,” Geom. Vein.: Coxeter Festschrift, New York, 1981, pp. 519–547.
[1446] F. Tomás, ”Reconstruccion de los gruppos finitos a partir de las cerraduras normales de sus subgrupos de Sylow y sus acciones mutuas,” An. Inst. Mat. Univ. Nac. Autón. Mex.,18, No. 1, 29–49 (1978).
[1447] Tran van Trung, ”Finite simple groups in which the centralizer M of some involution is solvable and the generalized Fitting group of M in extraspecial,” Arch. Math.,31, No. 6, 545–553 (1978). · Zbl 0443.20015 · doi:10.1007/BF01226489
[1448] Tran van Trung, ”A characterization of the groups D4(2n),” J. Algebra,60, No. 2, 520–537 (1979). · Zbl 0418.20012 · doi:10.1016/0021-8693(79)90096-6
[1449] Tran van Trung, ”A general characterization of the simple group D4(2),” J. Algebra,60, No. 2, 538–545 (1979). · Zbl 0416.20009 · doi:10.1016/0021-8693(79)90097-8
[1450] Tran van Trung, ”The nonexistence of certain type of finite simple group,” J. Algebra,60, No. 2, 546–551 (1979). · Zbl 0419.20014 · doi:10.1016/0021-8693(79)90098-X
[1451] Tran van Trung, ”A characterization of the finite simple group2D4(2),” J. Algebra,60, No. 2, 552–558 (1979). · Zbl 0416.20010 · doi:10.1016/0021-8693(79)90099-1
[1452] Tran van Trung, ”On the onstersimple group,” J. Algebra,60, No. 2, 559–562 (1979). · Zbl 0419.20015 · doi:10.1016/0021-8693(79)90100-5
[1453] Tran van Trung. ”A note on groups with arge extraspecialsubgroups of width 4,” J. Algebra,60, No. 2, 563–566 (1979). · Zbl 0423.20011 · doi:10.1016/0021-8693(79)90101-7
[1454] Tran van Trung, ”Eine Kennzeichnung der endlichen einfachen Gruppe J4 von Janko durch eine 2-lokale Untergruppe,” Rend. Sem. Mat. Univ. Padova, 1980,62, pp. 35–45. · Zbl 0434.20006
[1455] Hsio-Fu Tuan, ”Works on finite group theory by some Chinese mathematicians,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 187–194.
[1456] A. P. Tyrer, ”On finite groups containing no element of order six,” Math. Proc. Cambridge Philos. Soc.,81, No. 2, 209–224 (1977). · Zbl 0405.20018 · doi:10.1017/S0305004100053287
[1457] Yoko Usami, ”A characterization of the Suzuki groups,” Natur. Sci. Rept. Ochanomizu Univ.,26, No. 1, 13–29 (1975). · Zbl 0326.20014
[1458] Yoko Usami, ”A characterization of some type of PSL(2, q),” Natur. Sci. Rept. Ochanomizu Univ.,19, No. 1, 19–36 (1978). · Zbl 0403.20009
[1459] P. Venzke, ”Finite groups with many maximal sensitive subgroups,” J. Algebra,22, No. 2, 297–308 (1972). · Zbl 0238.20027 · doi:10.1016/0021-8693(72)90147-0
[1460] P. Venzke, ”Finite groups whose maximal subgroups are modular,” Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis., Mat. Natur.,58, No. 6, 828–832 (1975). · Zbl 0344.20021
[1461] P. Venzke, ”System quasinormalizers in finite solvable groups,” J. Algebra,44, No. 1, 160–168 (1977). · Zbl 0344.20016 · doi:10.1016/0021-8693(77)90170-3
[1462] P. Venzke, ”Maximal subgroups of prime index in a finite solvable group,” Proc. Am. Math. Soc.,68, No. 2, 140–142 (1978). · Zbl 0376.20016 · doi:10.1090/S0002-9939-1978-0476851-2
[1463] P. Venzke, ”A contribution to the theory of finite supersolvable groups,” J. Algebra,57, No. 2, 567–579 (1979). · Zbl 0399.20026 · doi:10.1016/0021-8693(79)90240-0
[1464] L. Verardi, ”Una generalizzazione del sottogruppo di Frattini,” Atti Sem. Mat. Fis. Univ. Modena,25, No. 1, 15–26 (1976) (1977). · Zbl 0358.20049
[1465] L. Verardi, ”Gruppi prodotto di due sottogruppi risolubili,” Atti Sem. Mat. Fis. Univ. Modena,26, No. 2, 215–221 (1977).
[1466] C. deVivo, ”Sugli S2-gruppi finiti,” Ann Mat. Pura Ed. Appl.,104, 313–325 (1975). · Zbl 0323.20017 · doi:10.1007/BF02417022
[1467] C. deVivo, ”Gruppi semplici finiti minimali non-torre di Sylow,” Mathematiche,31, No. 1, 176–192 (1976). · Zbl 0379.20018
[1468] C. deVivo, ”Su un problema di minimalitá reguardante le torri di Sylow nei gruppi finiti,” Rend. Accad. Sci. Fis. Mat. Soc. Naz. Sci. Lett. Arti Napoli,46, 43–61 (1979) (1980). · Zbl 0446.20014
[1469] R. W. van der Waall, ”Finite groups with m maximal subgroups, m,” Simon Stevin,50, No. 1, 23–40 (1976–1977). · Zbl 0348.20020
[1470] R. W. van der Waall, ”On minimal subgroups which are normal,” J. Reine Angew. Math.,285, 77–78 (1976). · Zbl 0326.20020
[1471] R. W. van der Waall, ”On the structure of the non-monomial groups of order 144 and 192,” J. Reine Angew. Math.,296, 14–32 (1977). · Zbl 0367.20009
[1472] R. W. van der Waall, ”On the structure of the groups related to the 3-local subgroups of the finite simple groups of Ree type,” J. Reine Angew. Math.,309, 156–175 (1979). · Zbl 0409.20011
[1473] A. Wagner, ”The subgroups of PSL(5, 2a),” Result. Math.,1, No. 2, 207–226 (1978). · Zbl 0407.20039 · doi:10.1007/BF03322937
[1474] B. Wagner, ”A permutation representation theoretical version of a theorem of Frobenius,” Bayreuth. Math. Schr., No. 6, 23–32 (1980). · Zbl 0452.20001
[1475] D. B. Wales, ”Connections between finite linear groups and linear algebra,” Linear Multilinear Algebra,7, No. 4, 267–297 (1979). · Zbl 0481.20009 · doi:10.1080/03081087908817287
[1476] G. E. Wall, ”On the conjugacy classes in the unitary, symplectic and orthogonal groups,” J. Austral. Math. Soc.,3, No. 1, 1–62 (1963). · Zbl 0122.28102 · doi:10.1017/S1446788700027622
[1477] G. E. Wall, ”Secretive prime-power groups of large rank,” Bull. Austral. Math. Soc.,12, No. 3, 363–369 (1975). · Zbl 0302.20023 · doi:10.1017/S000497270002400X
[1478] G. E. Wall, ”Lie methods in group theory,” Lect. Notes Math.,697, 137–173 (1978). · doi:10.1007/BFb0103128
[1479] G. E. Wall, ”Conjugacy classes in projective and special linear groups,” Bull. Austral. Math. Soc.,22, No. 3, 339–364 (1980). · Zbl 0438.20031 · doi:10.1017/S0004972700006675
[1480] G. L. Walls, ”Products of finite simple groups,” J. Algebra,48, No. 1, 68–88 (1977). · Zbl 0363.20019 · doi:10.1016/0021-8693(77)90294-0
[1481] G. L. Walls, ”A note on the solvability of certain factorized groups,” Arch. Math.,29, No. 4, 349–352 (1977). · Zbl 0366.20015 · doi:10.1007/BF01220417
[1482] G. L. Walls, ”Trivial intersection groups,” Arch. Math.,32, No. 1, 1–4 (1979). · Zbl 0388.20011 · doi:10.1007/BF01238459
[1483] G. L. Walls, ”Groups with maximal subgroups of Sylow subgroups normal,” Isr. J. Math.,43, No. 2, 166–168 (1982). · Zbl 0511.20014 · doi:10.1007/BF02761728
[1484] J. H. Walter, ”Characterization of Chevalley groups. I,” Finite Groups, Saporo and Kyoto, 1974, Japan Soc. Promotion Sci., 1976, pp. 117–139.
[1485] J. H. Walter, ”The B-conjecture; 2 components in finite simple groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 57–66.
[1486] H. N. Ward, ”On the triviallity of primary parts of the Schur multiplier,” J. Algebra,10, No. 3, 377–382 (1968). · Zbl 0167.02305 · doi:10.1016/0021-8693(68)90087-2
[1487] H. N. Ward, ”A form for M11,” J. Algebra,37, No. 2, 340–361 (1975). · Zbl 0319.20004 · doi:10.1016/0021-8693(75)90083-6
[1488] N. P. Warner, ”The symmetry groups of the regular tessellations of S2 and S3,” Proc. R. Soc. London,A383, No. 1785, 379–398 (1982). · Zbl 0491.20006 · doi:10.1098/rspa.1982.0136
[1489] U. H. M. Webb, ”An elementary proof of Gaschütz’ theorem,” Arch. Math.,35, No. 1–2, 23–26 (1980). · Zbl 0423.20022 · doi:10.1007/BF01235313
[1490] U. H. M. Webb, ”The occurrence of groups as automorphisms of nilpotent p-groups,” Arch. Math.,37, No. 6, 481–498 (1981). · Zbl 0475.20027 · doi:10.1007/BF01234386
[1491] K. H. Wehrhahn, ”A theorem on nilpotent groups with restricted embeddings,” Proc. Am. Math. Soc.,54, 55–56 (1976). · Zbl 0325.20017 · doi:10.1090/S0002-9939-1976-0387405-9
[1492] R. Weiss, ”The automorphism group of2F4(2)’,” Proc. Am. Math. Soc.,66, No. 2, 208–210 (1977). · Zbl 0372.20008
[1493] R. Weiss, ”Symmetrische Graphen mit auflösbaren Stabilisatoren,” J. Algebra,53, No. 2, 412–415 (1978). · Zbl 0388.05024 · doi:10.1016/0021-8693(78)90287-9
[1494] R. Weiss, ”Groups with a (B, N)-pair and locally transitive graphs,” Nagoya Math. J.,74, 1–21 (1979). · Zbl 0381.20004 · doi:10.1017/S0027763000018420
[1495] R. Weiss, ”s-transitive graphs,” Alg. Methods in Graph Theory, Vol. 2, Amsterdam, Budapest, 1981, pp. 827–847.
[1496] R. Weiss, ”A geometric construction of Janko’s group J3,” Math. Z.,179, No. 1, 91–95, (1982). · Zbl 0481.05034 · doi:10.1007/BF01173917
[1497] R. Weiss, ”On the geometry of Janko’s group J3,” Arch. Math.,38, No. 5, 410–419 (1982). · Zbl 0489.05027 · doi:10.1007/BF01304808
[1498] M. Wester, ”Endliche Gruppen, die eine Involution z besitzen, so dass F*[C(z)] das direkte Produkt einer extraspeziellen 2-Gruppe von kleiner Weite mit einer elementarabelschen 2-Gruppe ist. I–III,” J. Algebra,60, No. 2, 321–336 (1979);66, No. 1, 12–43, 44–60 (1980). · Zbl 0419.20013 · doi:10.1016/0021-8693(79)90086-3
[1499] G. M. Whitson, ”A lattice theoretic generalization of normal subgroups,” J. Algebra,49, No. 2, 387–410 (1977). · Zbl 0384.20020 · doi:10.1016/0021-8693(77)90248-4
[1500] G. M. Whitson, ”Finite groups whose subgroups, composition subgroup, or normal subgroup lattice is an ortholattice,” Algebra Univ.,8, No. 1, 123–127 (1978). · Zbl 0383.20017 · doi:10.1007/BF02485377
[1501] J. Wiegold and A. G. Williamson, ”The factorization of the alternating and symmetric groups,” Math. Z.,175, No. 2, 171–179 (1980). · Zbl 0424.20004 · doi:10.1007/BF01674447
[1502] H. Wielandt, ”Frieterien für Subnormalität in endlichen Gruppen,” Math. Z.,138, No. 3, 199–203 (1974). · Zbl 0275.20041 · doi:10.1007/BF01237117
[1503] H. Wielandt, ”When is a subgroup subnormal?” Atti Soc. Brasil. Mat.,9, 171–181 (1977).
[1504] H. Wielendt, ”Über das Erzeugnis paarwise kosubnormaler Untergruppen,” Arch. Math.,35, No. 1–2, 1–7 (1980). · Zbl 0413.20020 · doi:10.1007/BF01235310
[1505] H. Wielandt, ”Zusammengesetze Gruppen; Hölders Programm heute,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 161–173.
[1506] H. Wielandt, ”Subnormalität in faktoriserten endlichen Gruppen,” J. Algebra,69, No. 2, 305–311 (1981). · Zbl 0454.20027 · doi:10.1016/0021-8693(81)90207-6
[1507] J. S. Williams, ”A sufficient condition on centralizers for a finite group to contain a proper CCT subgroup,” J. Algebra,41, No. 2, 549–556 (1976). · Zbl 0349.20009 · doi:10.1016/0021-8693(76)90113-7
[1508] J. S. Williams, ”The prime graph components of finite groups,” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 195–196.
[1509] J. S. Williams, ”Prime graph components of finite groups,” J. Algebra,69, No. 2, 487–513 (1981). · Zbl 0471.20013 · doi:10.1016/0021-8693(81)90218-0
[1510] J. S. Wilson, ”On perfect subnormal subgroups of finite groups,” J. Algebra,36, No. 2, 242–251 (1975). · Zbl 0312.20013 · doi:10.1016/0021-8693(75)90100-3
[1511] R. A. Wilson, ”The quaternionic lattice for 2G2(4) and its maximal subgroups,” J. Algebra,77, No. 2, 449–466 (1982). · Zbl 0501.20013 · doi:10.1016/0021-8693(82)90266-6
[1512] R. A. Wilson, ”The maximal subgroups of Conway’s group \(\cdot\)2,” J. Algebra,84, No. 1, 107–114 (1983). · Zbl 0524.20007 · doi:10.1016/0021-8693(83)90069-8
[1513] R. A. Wilson, ”The complex Leech lattice and maximal subgroups of the Suzuki group,” J. Algebra,84, No. 1, 151–188 (1983). · Zbl 0527.20011 · doi:10.1016/0021-8693(83)90074-1
[1514] R. A. Wilson, ”The maximal subgroups of Conway’s group Go1,” J. Algebra,85, No. 1, 144–165 (1983). · Zbl 0525.20009 · doi:10.1016/0021-8693(83)90122-9
[1515] M. J. Wonenburger, ”A generalization of Z-groups,” J. Algebra,38, No. 2, 274–279 (1976). · Zbl 0295.20029 · doi:10.1016/0021-8693(76)90219-2
[1516] S. K. Wong, ”A characterization of the Fischer group M(23) by a 2-local subgroup,” J. Algebra,44, No. 1, 143–151 (1977). · Zbl 0358.20029 · doi:10.1016/0021-8693(77)90168-5
[1517] W. J. Wong, ”A theorem on generation of finite orthogonal groups,” J. Austral. Math. Soc.,16, No. 4, 495–506 (1973). · Zbl 0274.20061 · doi:10.1017/S1446788700015470
[1518] W. J. Wong, ”Generators and relations for classical groups,” J. Algebra,32, No. 3, 529–553 (1974). · Zbl 0298.20034 · doi:10.1016/0021-8693(74)90157-4
[1519] W. J. Wong, ”Abelian unipotent subgroups of finite orthogonal groups,” J. Austral. Math. Soc.,A32, No. 2, 223–245 (1982). · Zbl 0487.20033 · doi:10.1017/S1446788700024575
[1520] W. J. Wong, ”Abelian unipotent subgroups of finite unitary and symplectic groups,” J. Austral. Math. Soc.,A33, No. 3, 331–344 (1982). · Zbl 0501.20028 · doi:10.1017/S1446788700018759
[1521] M. F. Worboys, ”Generators for the sporadic group Go3 as a (2, 3, 7)-group,” Proc. Edinburgh Math. Soc.,25, No. 1, 65–68 (1982). · Zbl 0478.20016 · doi:10.1017/S0013091500004144
[1522] C. R. B. Wright, ”On splitting in finite groups,” Proc. Am. Math. Soc.,72, No. 3, 436–438 (1978). · Zbl 0367.20038 · doi:10.1090/S0002-9939-1978-0509229-3
[1523] C. R. B. Wright, ”Frattini embeddings of normal subgroups,” Proc. Am. Math. Soc.,78, No. 3, 319–320 (1980). · Zbl 0398.20037 · doi:10.1090/S0002-9939-1980-0553366-3
[1524] D. Wright, ”A note on centralizers of involutions involving simple groups,” Bull. Austral. Math. Soc.,14, No. 3, 425–426 (1976). · Zbl 0324.20016 · doi:10.1017/S000497270002534X
[1525] Hiromichi Yamada, ”Finite groups with a standard subgroup isomorphic to G2(2n),” J. Fac. Sci. Univ. Tokyo, Sec 1A,26, No. 1, 1–52 (1979). · Zbl 0413.20013
[1526] Hiromichi Yamada, ”Standard subgroups isomorphic to PSU(5, 22),” J. Algebra,58, No. 2, 527–562 (1979). · Zbl 0413.20014 · doi:10.1016/0021-8693(79)90179-0
[1527] Hiromichi Yamada, ”Finite groups with a standard subgroup isomorphic to3D4(23n),” J. Fac. Sci. Univ. Tokyo, Sec. 1A,26, No. 2, 255–278 (1979). · Zbl 0418.20013
[1528] Hiromichi Yamada, ”Standard subgroups isomorphic to PSU(6, 2) or SU(6, 2),” J. Algebra,61, No. 1, 82–111 (1979). · Zbl 0449.20031 · doi:10.1016/0021-8693(79)90307-7
[1529] Hiromichi Yamada, ”Standard subgroups of type G2(3),” Santa Cruz Conf. Finite Groups, Santa Cruz, Calif., 1979, Providence, R.I., 1980, pp. 95–97.
[1530] Hiromichi Yamada, ”Standard subgroups of type G2(3),” Tokyo J. Math.,5, No. 1, 49–84 (1982). · Zbl 0496.20011 · doi:10.3836/tjm/1270215034
[1531] Hiromichi Yamada and Hiroyoshi Yamaki, ”A characterization of the Suzuki simple group of order 448, 345, 497, 600,” J. Algebra,40, No. 1, 229–244 (1976). · Zbl 0328.20016 · doi:10.1016/0021-8693(76)90094-6
[1532] Hiromichi Yamada, ”Characterizing the sporadic simple group of Suzuki by a 2-local subgroup,” Math. Z.,151, No. 3, 239–242 (1976). · Zbl 0324.20014 · doi:10.1007/BF01214935
[1533] A. Yanushka, ”Generalized hexagons of order (t, t),” Isr. J. Math.,23, No. 3–4, 309–324 (1976). · Zbl 0334.05031 · doi:10.1007/BF02761808
[1534] J. H. Ying, ”On finite groups whose automorphism groups are nilpotent,” Arch. Math.,29, No. 1, 41–44 (1977). · Zbl 0375.20015 · doi:10.1007/BF01220373
[1535] Masanobu Yonaha, ”Abnormal subgroups, p-normality and solvability of finite groups,” Bull. Sci. Eng. Div. Univ. Ryukyus. Math. Nat. Sci., No. 15, 1–3 (1972). · Zbl 0374.20022
[1536] Masanobu Yonaha, ”Finite solvable groups with nilpotent maximal A-invariant subgroups,” Bull. Sci. Eng. Div. Univ. Ryukyus. Math. Nat. Sci., No. 14, 1–7 (1971). · Zbl 0356.20023
[1537] Tomoyuki Yoshida, ”An alternate proof of a transfer theorem without using transfer,” Proc. Jpn. Acad.,52, No. 4, 171–173 (1976). · Zbl 0341.20013 · doi:10.3792/pja/1195518344
[1538] Tomoyuki Yoshida, ”An odd characterization of some simple groups,” J. Math. Soc. Jpn.,28, No. 3, 415–420 (1976). · Zbl 0326.20009 · doi:10.2969/jmsj/02830415
[1539] Tomoyuki Yoshida, ”A characterization of the 2 Conway simple group,” J. Algebra,46, No. 2, 405–414 (1977). · Zbl 0361.20021 · doi:10.1016/0021-8693(77)90378-7
[1540] Tomoyuki Yoshida, ”Character-theoretic transfer,” J. Algebra,52, No. 1, 1–38 (1978). · Zbl 0399.20006 · doi:10.1016/0021-8693(78)90259-4
[1541] V. Zambelli, ”Caratterizzations deigruppi finiti modulari come Sq-gruppi risolubili,” Rend. 1st. Lombardo. Accad. Sci. Lett.,A110, No. 1, 157–169 (1976). · Zbl 0379.20019
[1542] V. Zambelli, ”Gruppi finiti quasi-normali-sensitive e S-quasi-normali-sensitivi,” Rend. Ist. Lombardo. Accad. Sci. Lett.,A112, No. 2, 349–361 (1978). · Zbl 0443.20018
[1543] G. Zappa, ”Topics on finite solvable groups,” Roma, Ist. Naz. Alta Mat. Francesco Severi, 1982, pp. 82. · Zbl 0497.20008
[1544] G. Zappa and J. Szep, ”A generalization of Gaschütz’s theorem of sylowizers,” Acta Sci. Math.,37, No. 1–2, 161–164 (1975). · Zbl 0336.20014
[1545] A. Zokayi, ”A characterization of the groups2D4(q), q=2n,” Bull. Iran Math. Soc.,7, No. 1, 29–55 (1979).
[1546] G. Zurek, ”Eine Bemerkung zu einer Arbeit von Heineken und Liebeck,” Arch. Math.,38, No. 3, 206–207 (1982). · Zbl 0482.20015 · doi:10.1007/BF01304778
[1547] G. Zurek, ”Über A5-invariante 2-Gruppen,” Mitt. Math. Sem. Giessen, No. 155, 92 S. (1982). · Zbl 0491.20019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.