×

zbMATH — the first resource for mathematics

Modules. (English) Zbl 0519.16001

MSC:
16-02 Research exposition (monographs, survey articles) pertaining to associative rings and algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. V. Aganitov, ?Hereditary Noetherian primary rings,? Moscow State Univ. (1980), (Manuscript deposited in VINITI, June 12, 1980, No. 2334?80 Dep.)
[2] K. V. Agapitov, ?Epimorphic images of bounded primary Dedekind rings,? Vestn. Mosk. Gos. Univ., No. 5, 50?53 (1980). · Zbl 0461.16006
[3] S. F. Aleksei and R. K. Kalistru, ?Completeness of free topological modules,? Mat. Issled., No. 44 (Kishinev), 164?173 (1977).
[4] A. V. Andrunakievich, ?Primary modules, primary one-sided ideals, and the Baire radical,? Izv. Akad. Nauk Mold. SSR, No. 2, 12?17 (1976).
[5] A. V. Andrunakievich, ?Primary one-sided ideals and the structure of rings,? Mat. Issled. (Kishinev), No. 49, 3?10 (1979).
[6] A. V. Andrunakievich, ?Special modules and special radicals,? Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 84?85 (1979).
[7] V. A. Andrunakievich, K. K. Krachilov, and Yu. M. Ryabukhin, ?Lattice-complemented torsions in algebras over a Noetherian integral domain,? Dokl. Akad. Nauk SSSR,242, No. 5, 985?988 (1978). · Zbl 0442.16007
[8] V. A. Andrunakievich, K. K. Krachilov, and Yu. M. Ryabukhin, ?Lattice complemented torsions in algebras over a Noetherian integral domain,? Mat. Sb.,109, No. 1, 3?11 (1979). · Zbl 0409.16009
[9] V. A. Andrunakievich and Yu. M. Ryabukhin, ?Complemented and dual torsions,? Dokl. Akad. Nauk SSSR,238, No. 4, 769?772 (1978).
[10] V. A. Andrunakievich and Yu. M. Ryabukhin, ?Complemented and dual torsions,? Tr. Mat. Inst. im. V. A. Steklova,148, 16?26 (1978). · Zbl 0394.16005
[11] V. A. Andrunakievich and Yu. M. Ryabukhin, Radicals of Algebras and Lattice Theory [in Russian], Nauka, Moscow (1979). · Zbl 0507.16009
[12] V. I. Arnautov, ?Extension of the topology of a commutative ring to some of its rings of fractions,? Mat. Issled. (Kishinev), No. 48, 3?13 (1978).
[13] Yu. L. Barannik, ?Invariants of modules over the p-adic integral group ring of a group of type p?,? Dokl. Akad. Nauk Ukr.SSR, A, No. 11, 963?965 (1977). · Zbl 0381.13008
[14] Yu. L. Barannik and P. M. Gudivok, ?Crossed group rings of finite groups and rings of p-adic integers with a finite number of indecomposable integral representations,? Mat. Sb.,108, No. 2, 187?211 (1979). · Zbl 0433.16011
[15] K. I. Beidar, ?Rings of fractions of semiprimary rings,? Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 36?43 (1978).
[16] K. I. Beidar, ?Classical rings of fractions of PI-algebras,? Usp. Mat. Nauk,33, No. 6, 197?198 (1978).
[17] K. I. Beidar, ?Rings with generalized identities. III,? Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 4, 66?73 (1978). · Zbl 0407.16002
[18] A. U. Belesov, ?Injective and equationally compact modules,? Izv. Akad. NaukKaz.SSR, Ser. Fiz.-Mat., No. 1, 85?86 (1976).
[19] G. M. Brodskii and A. G. Grigoryan, ?Rings of endomorphisms of modules,? Dokl. Akad. Nauk Arm. SSR,69, No. 1, 15?18 (1979).
[20] I. D. Bunu, ?Concept of injectivity in the category of modules. Rings and modules,? Mat. Issled., No. 38, (Kishinev), 71?85 (1976). · Zbl 0411.16021
[21] I. D. Bunu, ?(?, ?)-injectivity in modules. Rings and modules,? Mat. Issled., No. 38, Kishinev, 86?96 (1976).
[22] I. D. Bunu, ?Comparison of some concepts of injectivity in modules,? Mat. Issled., No. 48, Kishinev, 14?23 (1978). · Zbl 0462.16021
[23] I. D. Bunu, ?Left QI-rings,? Mat. Issled., No. 49, Kishinev, 23?34 (1979).
[24] I. D. Bunu and E. I. Tebyrtse, ?Lattice of pretorsions and classically semisimple rings,? Mat. Issled., No. 49, Kishinev, 35?39 (1979).
[25] L. N. Vasershtein and A. A. Suslin, ?Serre’s problem on protective modules over polynomial rings and algebraic K-theory,? Izv. Akad. Nauk SSSR,40, No. 5, 993?1054 (1976).
[26] E. M. Vechtomov, ?Projective and injective ideals of rings of continupus fonctions,? in: Abelian Groups and Modules [in Russian], Tomsk (1980), pp. 19?30.
[27] E. M. Vechtomov, ?Pure ideals of rings of continuous functions,? in: Contemporary Algebra [in Russian], Leningrad (1978), pp. 29?37.
[28] N. I. Vishnyakova, ?Modules over a class of local Noetherian rings,? Latv. Mat. Ezhegodn.,18, 3?18 (1976).
[29] M. I. Vodinchar, ?Algebraic radicals and radically semisimple classes of topological modules,? Mat. Issled., No. 53, Kishinev, 43?53 (1979).
[30] A. I. Generalov, ?Weak and ?-high purities in the category of modules,? Mat. Sb.,105, No. 3, 389?402 (1978). · Zbl 0388.16019
[31] A. I. Generalov, ?Axiomatic description of weak purities in the category of modules,? Mat. Sb.,109, No. 1, 80?92 (1979). · Zbl 0406.16019
[32] V. N. Gerasimov, ?Generating homomorphisms of rings,? Algebra Logika: (Novosibirsk),18, No. 6, 648?663 (1978).
[33] S. T. Glavatskii, ?Topological quasifrobenius modules,? Moscow State Univ. (1978) (Manuscript deposited in VINITI, July 20, 1978, No. 2448-78 Dep).
[34] S. T. Glavatskii, ?Topological quasifrobenius modules. II,? Moscow State Univ. (1978) (Manuscript deposited in VINITI, October 31, 1978, No. 3411-78 Dep).
[35] S. T. Glavatskii, ?Topological quasiinjective and quasiprojective modules,? Moscow State Univ. (1978), (Manuscript deposited in VINITI, October 31, 1978, No. 3412-78 Dep).
[36] S. T. Glavatskii, ?Topological quasiinjective and quasiprojective modules,? in: Abelian Groups and Modules [in Russian], Tomsk (1980), pp. 31?44.
[37] V. E. Govorov, ?Associativity formulas,? Usp. Mat. Nauk,32, No. 6, 215?216 (1977).
[38] Yu. O. Golovin and A. Ya. Khelemskii, ?Homological dimension of certain modules over a tensor product of Banach algebras,? Vestn. Mosk. Gos. Univ., No. 1, 54?61 (1977).
[39] E. L. Gorbachuk and N. Ya. Komarnitskii, ?Radical filters in principal ideal domains,? Dokl. Akad. Nauk Ukr.SSR, No. 2, 103?104 (1977). · Zbl 0346.16002
[40] E. L. Gorbachuk and N. Ya. Komarnitskii, ?S-torsion in modules,? Vissik L’viv. Un-tu, No. 12, 32?34 (1977).
[41] E. L. Gorbachuk and N. Ya. Komarnitskii, ?I-radicals and their properties,? Ukr. Mat. Zh.,30, No.2, 212?217 (1978). · doi:10.1007/BF01085635
[42] E. L. Gorbachuk and N. Ya. Komarnitskii, ?Decomposability of countably-generated torsions,? Visnik L’viv. Un-tu, No. 13, 35?37 (1978).
[43] I. M. Godn, ?Isolated components of submodules,? Mat. Issled., No, 49, Kishinev, 54?60 (1979).
[44] I. M. Godn and I. D. Kitoroage, ?Infinite intersections of primary submodules,? Mat. Issled., No. 48, Kishinev, 40?47 (1978).
[45] I. M. Godn and I. D. Kitoroage, ?Closures of ideals and primary decompositions,? Mat. Issled., No. 49, Kishinev, 61?67 (1979).
[46] A. G. Grigoryan, ?Flat functors and regular categories,? Aikakan SSR Gigutyunneri Akademia Zekuitsner. Dokl. Akad. Nauk Arm.SSR,62, No. 2, 65?71 (1976).
[47] N. M. Gubareni, ?Semiperfect right hereditary rings of bounded-modulus type,? Inst. Mat. Akad. Nauk Ukr. SSR, Preprint No. 1 (1978). · Zbl 0495.16019
[48] N. M. Gubareni, ?Right hereditary rings of bounded-modulus type,? in: Theoretical and Applied Questions of Differential Equations and Algebra [in Russian], Kiev (1978), pp. 80?84.
[49] N. M. Gubareni, Yu. A. Drozd, and V. V. Kirichenko, ?Right-serial rings,? Inst. Elektrodinamiki Akad. Nauk SSSR. IED Akad. NaukUkr.SSR, Preprint, 110, Kiev (1975).
[50] N. M. Gubareni and V. V. Kirichenko, ?Structure of semiperfect right Noetherian and right hereditary primary rings,? in: Mathematical Papers Kiev [in Russian], Naukova Dumka (1976), pp. 18?22. · Zbl 0392.16012
[51] G. A. Dzhavadov, ?Differential-difference rings and modules of finitely generated type and the Jacobson differential-difference radical,? Dagestan. Gos. Pedagog. Inst. Makhachkala (1979) (Manuscript deposited in VINITI, June 6, 1979, No. 1993-79 Dep).
[52] G. A. Dzhavadov, ?The Hilbert characteristic polynomial for differential-difference modules and its applications,? Dagestan. Gos. Pedagog Inst. Makhachkala (1979) (Manuscript deposited in VINITI, June 6, 1979, No. 1992-79 Dep).
[53] Yu. B. Dobrusin, ?Modules over Dedekind commutative integral domains, similar to algebraically compact ones,? Tomsk. Un-t., Tomsk (1979) (Manuscript deposited in VINITI, December 13, 1979, No. 4237-79 Dep).
[54] O. I. Domanov, ?Perfect semigroup rings,? Sib. Mat. Zh.,18, No. 2, 294?303 (1977). · Zbl 0411.20042 · doi:10.1007/BF00967153
[55] M. M. Drogomizhs’ka, Visnik L’viv. Politekh. Inst., No. 119, 39?41, 185 (1977).
[56] Yu. A. Drozd, ?Tame and wild matrix problems,? in: Representations and Quadratic Forms [in Russian], Kiev (1979), pp. 39?74.
[57] Yu. A. Drozd, ?Structure of hereditary rings,? Mat. Sb.,113, No. 1, 161?172 (1980). · Zbl 0447.16012
[58] N. I. Dubrovin, ?Maximal orders in a simple central finite-dimensional algebra over a valued ring of height 1,? Mat. Sb.,108, No. 4, 517?528 (1979).
[59] V. P. Elizarov, ?Rings of fractions,? in: Rings and Modules. Mathematical Investigations [in Russian], Vol. 38, Kishinev (1976), pp. 132?149. · Zbl 0413.16003
[60] K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Rings, Close to Associative [in Russian], Nauka, Moscow (1978).
[61] Z. P. Zhilinskaya, ?Isomorphism of pairs of finitely generated modules,? in: Materials of the Twenty-Ninth Scientific Conference of the Professorial-Instructorial Staff of Uzhgorod University, Section of Mathematical Sciences [in Russian], Uzhgorod Univ. (1975), pp. 130?138 (Manuscript deposited in VINITI, March 10, 1976, No. 705?76 Dep),
[62] A. V. Zhozhikashvili, ?Equivalences of categories of affine modules,? Mat. Zametki,24, No.4, 475?486 (1978).
[63] A. G. Zavadskii and V. V. Kirichenko, ?Torsion-free modules over primary rings,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,57, 100?116 (1976).
[64] A. G. Zavadskii and V. V. Kirichenko, ?Semimaximal rings of finite type,? Mat. Sb.,103, No. 3, 323?345 (1977). · Zbl 0396.16002
[65] V. K. Zakharov, ?Regular completion of modules,? Mat. Zametki,19, No. 6, 843?851 (1976).
[66] V. K. Zakharov, ?Orthocomplementation of modules, rings, and Boolean algebras,? in: Ordered Sets and Lattices [in Russian], Vol. 4, Saratov Univ. (1977), pp. 48?61.
[67] V. K. Zakharov, ?Divisible hull and Orthocomplementation of lattice-ordered modules,? Mat. Sb.,103, No. 3, 346?357 (1977). · Zbl 0396.06007
[68] V. K. Zakharov, ?Functional representation of the orthocomplement and divisible hull of torsion-free Utumi modules,? Mat. Zametki,27, No. 3, 333?344 (1980).
[69] A. V. Ivanov, ??-divisible and ?-flat modules,? Mat. Zametki,24, No. 6, 741?747 (1978).
[70] V. P. Ivanov, ?Isomorphism of simple modules with equal annihilators for certain classes of rings,? Inst. Teor. Eksp. Fiz., Moscow, Preprint.
[71] R. K. Kalistru, ?Completeness of a free topological module, generated by a discrete space,? Mat. Issled. (Kishinev),53, 98?102 (1979). · Zbl 0428.16039
[72] A. I. Kashu, ?Bicommutators of completely divisible modules,? Mat. Sb.,100, No. 4, 483?494 (1976).
[73] A. I. Kashu, ?Preradicals in the situation of conjugacy,? Mat. Issled. (Kishinev), No. 48, 48?64 (1978).
[74] V. V. Kirichenko, ?Generalized-uniserial rings,? Preprint IM-75-1, Izd. Inst. Mat. Akad. Nauk Ukr. SSR, Kiev (1975).
[75] V. V. Kirichenko, ?Generalized-uniserial rings,? Vestn. Mosk. Gos. Univ., No. 3, 126 (1977).
[76] V. V. Kirichenko, ?Quasifrobenius rings and Gorenstein orders,? Tr. Mat. Inst. im. V. A. Steklova,148, 168?174 (1978).
[77] V. V. Kirichenko, ?Classification of pairs of mutually annihilating operators in a graded space and representations of dyads of generalized uniserial algebras,? Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Akad. Nauk SSSR,75, 91?109 (1978). · Zbl 0463.16022
[78] A. V. Klyushin, ?Topological Jacobson radicals and topological semiperfect rings,? Moscow State Univ. (1978) (Manuscript deposited in VINITI, June 20, 1978, No. 2447-78 Dep).
[79] A. V. Klyushin, ?Open Noetherian rings,? Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 5, 48?57 (1979). · Zbl 0421.16019
[80] B. B. Kovalenko, ?Generalized modules over inverse semirings,? in: Ordered Sets and Lattices [in Russian], No. 5, Saratov (1978), pp. 55?62. · Zbl 0401.16014
[81] B. B. Kovalenko, ?Generalized modules,? in: Studies in Algebra [in Russian], Vol. 5, Saratov (1977), pp. 30?42.
[82] I. B. Kozhukhov, ?Self-injective semigroup rings,? Mosk. Inst. Elektron. Tekh., Moscow (1978) (Manuscript deposited in VINITI, July 26, 1979, No. 2843-79 Dep).
[83] L. A. Koifman, ?Decomposability of torsions over commutative rings,? Usp. Mat. Nauk,31, No. 2, 215?216 (1976).
[84] L. A. Koifman, ?Decomposability of torsion over commutative rings,? Tr. Mosk. Mat. O-va,37, 143?171 (1978).
[85] N. Ya. Komarnitskii, ?Duo-rings, over which all torsions are S-torsions,? Mat. Issled. (Kishinev), No. 48, 65?68 (1978).
[86] N. Ya. Komarnitskii, Kiev (1978), pp. 19?21.
[87] P. Cohn, Free Rings and Their Relations [Russian translation], Mir, Moscow (1975).
[88] K. K. Krachilov, ?Coatoms of the lattice of special radicals,? Mat. Issled. (Kishinev), No. 49, 80?86 (1979). · Zbl 0442.16006
[89] K. K. Krachilov, ?Complementation in the lattice of hypernilpotent radicals,? Mat. Issled. (Kishinev), No. 49, 87?104 (1979). · Zbl 0448.16005
[90] S. S. Kutateladze, ?Modules admitting convex analysis,? Dokl. Akad. Nauk SSSR,252, No. 4, 789?791 (1980). · Zbl 0519.47024
[91] A. B. Levin, ?Characteristic polynomials of difference modules and some properties of the difference dimension,? Moscow State Univ. (1980) (Manuscript deposited in VINITI, May 30, 1980, No. 2175-80 Dep).
[92] A. B. Levin, ?Characteristic polynomials of filtered difference modules and extensions of difference fields,? Usp. Mat. Nauk,33, No. 3, 177?178 (1978). · Zbl 0465.12011
[93] Z. A. Lykova, ?Conditions for projectivity of Banach algebras of completely continuous operators,? Vestn. Mosk. Gos. Univ., No. 4, 8?13 (1979).
[94] A. Sh. Maibalaev, ?Definition of an injective module,? in: Algebra and Number Theory [in Russian], Alma-Ata (1978), pp. 25?29.
[95] A. A. Manovtsev, ?Additive purities in the category of A-modules and the functor?,? in: Proceedings of the Twenty-Seventh Scientific?Technical Conference of the Moscow Institute of Radio Engineering, Electronics, and Automation [in Russian], Moscow (1978), pp. 89?95 (Manuscript deposited in VINITI, March 22, 1979, No. 1014-79 Dep).
[96] A. P. Mishina, ?Abelian groups,? in: Algebra. Topology. Geometry [in Russian], Vol. 17, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1979), pp. 3?63.
[97] A. V. Mikhalev, ?Rings of endomorphisms of modules and lattices of submodules,? in: Algebra. Topology. Geometry [in Russian], Vol. 12, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1974), pp. 51?76.
[98] A. V. Mikhalev and E. V. Pankrat’ev, ?Differential polynomial dimension of a system of differential equations,? in: Algebra [in Russian], Moscow State Univ. (1980), pp. 57?67.
[99] A. V. Mikhalev and L. A. Skirnyakov, ?Modules,? in: Algebra. Topology. Geometry (1968) [in Russian], Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1970), pp. 57?100.
[100] A. V. Mikhalev and L. A. Skirnyakov (ed.), ?Modules,? Akad. Nauk SSSR Sib. ad. Inst. Mat. Preprint, Novosibirsk (1973).
[101] ?Research seminar on algebra,? Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 6, 96?101 (1979).
[102] ?Research seminar on algebra,? Mosk. Gos. Univ., Mat., Mekh., No. 3, 101?105 (1980).
[103] ?Research seminar on algebra,? Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 4, 90?97 (1980).
[104] ?Research seminar on algebra,? Vestn. Mosk. Gos. Univ., Mat. Mekh., No. 1, 97?100 (1981).
[105] N. Nachev, Nauchn. Tr. Plovdiv. Un-t. Mat.,13, No. 1, 65?79 (1975 (1977)).
[106] A. M. Pachkoriya, ?Extensions of submodules,? Sakartvelos SSR Metsnierebata Akademiis Moambe, Soobshch. Akad. Nauk Gruz.SSR,84, No. 3, 545?548 (1976).
[107] A. I. Ponomarev, ??-classical semisimplicity of a ring R,? Mosk. Gos. Pedagog. Inst., Moscow (1976) (Manuscript deposited in VINITI, April 30, 1976, No. 1481-76 Dep).
[108] A. I. Ponomarev, ?Category of n-modules,? in: Modern Algebra [in Russian], Vol. 5, Leningrad (1976), pp. 102?106.
[109] A. I. Ponomarev, ?Rings, regular with respect to torsions,? in: Algebraic Systems [in Russian], Ivanovo (1978), pp. 61?80.
[110] A. I. Ponomarev, ?Regular pretorsions,? Mat. Zametki,25, No. 1, 27?35 (1979).
[111] V. A. Ratinov, ?Semiperfect rings with commutative Jacobson radical,? Mosk. Gos. Pedagog. Inst. im. V. I. Lenina, Moscow (1978) (Manuscript deposited in VINITI October 12, 1978, No. 3215-78 Dep),
[112] V. A. Ratinov, ?Structure of semiperfect rings with commutative Jacobson radical,? Mat. Sb.,110, No. 3, 459?470 (1979). · Zbl 0419.16012
[113] V. B. Repnitskii, ?Arithmetic modules,? Mat. Sb.,110, No. 1, 150?157 (1979).
[114] Yu. V. Roganov, ?Hereditariness of the tensor algebra and semihereditariness of the completion of the tensor algebra,? Dokl. Akad. Nauk Ukr.SSR, A, No. 5, 410?413 (1977).
[115] I. Z. Rozenknop, ?Isomorphisms of modules with monomial filtration,? Mosk. O-va Pedagog. Inst. (1977) (Manuscript deposited in VINITI, November 17, 1977, No. 645-77 Dep).
[116] S. K. Rososhek, ?Torsion-free modules over semihereditary primary Goldie rings,? in: Groups and Modules [in Russian], Tomsk (1976), pp. 57?69.
[117] S. K. Rososhek, ?Periodic modules over noncommutative Dedekind primary rings,? Sib. Mat. Zh., Novosibirsk (1977) (Manuscript deposited in VINITI, January 4, 1977, No. 52?77 Dep).
[118] S. K. Rososhek, ?Purely correct modules,? Usp. Mat. Nauk,33, No. 3, 176 (1978).
[119] S. K. Rososhek, ?Correctness of modules,? I/v. Vyssh. Uchebn. Zaved. Mat., No. 10, 77?82 (1978).
[120] S. K. Rososhek, ?Correct and purely correct modules,? in: Abelian Groups and Modules [in Russian] (1979), pp. 127?142.
[121] Yu. M. Ryabukhin and K. K. Krachilov, ?Lattice complemented torsions in algebras,? Mat. Issled. (Kishinev), No. 48, 94?111 (1978). · Zbl 0409.16008
[122] Yu. M. Ryabukhin and R. S. Florya, ?Atomicity of the ?lattice? of hereditary annihilators of torsions,? Mat. Issled. (Kishinev), No. 49, 115?121 (1979). · Zbl 0436.16023
[123] N. A. Ryatova, ?Conditions for the elementary equivalence of modules over a discrete valued ring,? Mosk. Gos. Pedagog. Inst., Moscow (1977) (Manuscript deposited in VINITI, July 21, 1977, No. 2991-77 Dep).
[124] I. I. Sakhaev, ?Finite generation of projective modules,? Izv. Vyssh. Uchebn. Zaved., No. 9, 69?79 (1977).
[125] Yu. V. Selivanov, ?Projectivity of certain Banach modules and the structure of Banach algebras,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 85 (1976); No. 1, 110?116 (1978).
[126] Yu. V. Selivanov, ?Biprojective Banach algebras, their structure, and the connection with kernel operators,? Funkts. Anal. Prilozhen.,10, No. 1, 80?90 (1976). · Zbl 0364.46024 · doi:10.1007/BF01075783
[127] Yu. V. Selivanov, ?Biprojective Banach algebras,? Izv. Akad. Nauk SSSR, Ser. Mat.,43, No. 5, 1159?1174 (1979).
[128] E. G. Sklyarenko, ?Pure and finitely represented duality homomorphisms and the property of correctness of a ring,? Mat. Sb.,105, No. 2, 192?206 (1978). · Zbl 0402.16022
[129] E. G. Sklyarenko, ?Relative homological algebra in the category of modules,? Usp. Mat. Nauk,33, No. 3, 85?120 (1978). · Zbl 0449.16028
[130] L. A. Skornyakov, ?Modules,? in: Algebra. Topology. 1962 [in Russian], Itogi Nauki. VINITI Akad. Nauk SSSR, Moscow (1963), pp. 80?89.
[131] L. A. Skornyakov, ?Modules,? in: Algebra. Topology. Geometry. 1965 [in Russian], Itogi Nauki. VINITI Akad. Nauk SSSR, Moscow (1967), pp. 181?216.
[132] L. A. Skornyakov, ?Decomposability of modules into a direct sum of ideals,? Mat. Zametki,20, No. 2, 187?193 (1976).
[133] L. A. Skornyakov, ?Commutative rings and subidempotent ideals,? Mat. Sb.,102, No. 2, 280?288 (1977).
[134] L. A. Skornyakov, ?Axiomatizability of the class of injective polygons,? Tr. Sem. im. I. G. Petrovskogo, Mosk. Gos. Univ., No. 4, 233?239 (1978).
[135] L. A. Skornyakov, ?Finite axiomatizability of the class of faithful modules,? Coll. Math.,42, 365?366 (1979).
[136] L. A. Skornyakov, ?A condition of Andrunakievich-Ryabukhin,? Mat. Issled., Kishinev ?Shtiintsa,? Vol. 44, 174?176 (1977).
[137] L. A. Skornyakov and A. V. Mikhalev, ?Modules,? in: Algebra. Topology. Geometry [in Russian], Vol. 14, Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR, Moscow (1976), pp. 57?190. · Zbl 0238.16003
[138] A. A. Suslin, ?Stably free modules,? Mat. Sb.,102, No. 4, 537?550 (1977).
[139] A. A. Suslin, ?Cancellation theorem for projective modules over algebras,? Dokl. Akad. Nauk SSSR,236, No. 4, 808?811 (1977).
[140] A. A. Suslin, ?Structure of projective modules over polynomial rings in the case of noncommutative ring of coefficients,? Tr. Mat. Inst. im. V. A. Steklova,148, 233?252 (1978). · Zbl 0444.16013
[141] N. P. Titov, ?Coherence of natural isomorphisms in categories of algebras and modules,? Editorial Board of Sib. Mat. Zh., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979) (Manuscript deposited in VINITI, October 4, 1979, No. 3470-79 Dep).
[142] I. D. Trendafilov, ?Integrally closed modules,? Godishn. Vissh. Uchebn. Zaved.,13, No. 2, 29?34 (1978). · Zbl 0435.13004
[143] A. A. Tuganbaev, ?Slightly projective modules,? Sib. Mat. Zh.,21, No. 5, 109?113 (1980).
[144] A. A. Tuganbaev, ?Modules close to injective,? Usp. Mat. Nauk,32, No. 2, 233?234 (1977).
[145] A. A. Tuganbaev, ?Modules over hereditary Noetherian primary rings,? Usp. Mat. Nauk,32, No. 4, 267?268 (1977).
[146] A. A. Tuganbaev, ?Quasiprojective modules,? Sib. Mat. Zh.,21, No. 3, 177?183 (1980). · Zbl 0446.16021
[147] A. A. Tuganbaev, ?Structure of modules close to injective,? Sib. Mat. Zh.,18, No. 4, 890?898 (1977).
[148] A. A. Tuganbaev, ?Quasiinjective and slightly injective modules,? Vestn. Mosk. Gos. Univ., Mat., Mekh., No. 2, 61?64 (1977).
[149] A. A. Tuganbaev, ?Structure of modules close to protective,? Mat. Sb.,106, No. 4, 554?565 (1978).
[150] A. A. Tuganbaev, ?Pseudoinjective modules and extension of automorphisms,? Tr. Sem. im. I. G. Petrovskogo, Mosk. Gos. Univ., No. 4, 241?248 (1978).
[151] A. A. Tuganbaev, ?Characterizations of rings, using slightly injective and slightly projective modules,? Vestn. Mosk. Gos. Univ., No. 3, 48?51 (1979).
[152] A. A. Tuganbaev, ?Slightly projective modules,? Vestn. Mosk. Gos. Univ., No. 5, 43?47 (1979).
[153] A. A. Tuganbaev, ?Self-injective rings,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 12, 71?74 (1980).
[154] A. A. Tuganbaev, ?Rings, all of whose quotient rings are slightly injective,? Usp. Mat. Nauk,35, No.2, 223?224 (1980). · Zbl 0459.16018
[155] A. A. Tuganbaev, ?Rings, over which each module is a direct sum of distributive modules,? Vestn. Mosk. Gos. Univ., No. 1, 61?64 (1980). · Zbl 0428.16032
[156] A. A. Tuganbaev, ?Distributive Noetherian rings,? Vestn. Mosk. Gos. Univ., No. 2, 287?290 (1980).
[157] A. A. Tuganbaev, ?Distributive modules,? Usp. Mat. Nauk,35, No. 5, 245?246 (1980).
[158] E. I. Tebyrtse, ?Simple torsions of the category of modules,? Mat. Issled. (Kishinev),44, 104?108 (1977).
[159] L. V. Tyukavkin, ?Commutative subrings with flat modules,? Vestn. Mosk. Gos. Univ., No. 5, 60?62 (1978).
[160] L. V. Tyukavkin, ?Axiomatizability of the class of irreducible modules,? Moscow State Univ. (1980) (Manuscript deposited in VINITI, May 30, 1980, No. 2174?80 Dep).
[161] C. Faith, Algebra: Rings, Modules, and Categories [Russian translation], Vol. 1, 2, Mir, Moscow (1977).
[162] G. L. Fel’dman, ?Global dimensions of general rings of differential operators,? Usp. Mat. Nauk,29, No. 5, 245?246 (1974).
[163] L. Fuchs, Infinite Abelian Groups, Vol. 2, Academic Press (1973). · Zbl 0257.20035
[164] V. K. Kharehenko, ?Actions of groups and Lie algebras on noncommutative rings,? Usp. Mat. Nauk,35, No. 2, 67?90 (1980).
[165] A. Ya. Khelemskii, ?Lowest values assumed by the global homological dimension of functional Banach algebras,? Tr. Seminara im. I. G. Petrovskogo Mosk. Gos. Univ., No. 3, 223?242 (1978).
[166] I. P. Shestakov, ?Irreducible representations of alternative algebras,? Mat. Zametki,26, No. 5, 673?686 (1979). · Zbl 0417.17008
[167] Third All-Union Symposium on Theory of Rings, Algebras and Modules. Abstracts of Discussions [in Russian], Tartus. Un-t, Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Mosk. Univ., Tartu (1976).
[168] Fourth All-Union Symposium on Theory of Rings, Algebras, and Modules [in Russian], Inst. Mat. Vychisl. Tsentrom Akad. Nauk Mold. SSR, Kishinev (1980).
[169] Fourteenth All-Union Algebraic Conference. Abstracts of Reports. Part I. Groups. Algebraic Systems. Part II. Rings. Algebraic Systems [in Russian], Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Novosibirskii. Gos. Univ., Novosibirsk (1977).
[170] Fifteenth All-Union Algebraic Conference, July 3?6, 1979. Abstracts of Reports [in Russian], Minvyz RSFSR, Krasnoyarsk. Gos. Univ., Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Vych. Tsentr. Sib. Otd. Akad. Nauk SSSR, Part I, Groups, Part II, Rings. Algebraic Systems, Krasnoyarsk (1979).
[171] L. Abellanas and L. M. Alonsi, ?On the Gelfand?Kirillov conjecture,? Commun. Math. Phys.,43, No. 1, 69?71 (1975). · Zbl 0304.17002 · doi:10.1007/BF01609142
[172] V. K. Agrawala and Chong-Yun Chao, ?Equalities and inequalities for ranks of modules,? Linear Multilinear Algebra,6, No. 4, 307?315 (1978). · Zbl 0393.16024 · doi:10.1080/03081087808817250
[173] J. Ahsan, ?A note on direct sums of quasiinjective modules,? Punjab Univ. J. Math. (Lahore),7, 39?43 (1974).
[174] J. Ahsan, ?Modules over qc-rings,? Stud. Sci. Math. Hungar.,9, Nos. 3?4, 321?325 (1974).
[175] J. Ahsan, ?Rings, all of whose ideals are finitely embedded,? Stud. Sci. Math. Hungar.,9, Nos. 3?4, 327?330 (1974).
[176] J. Ahsan, ?A note on rings all of whose semisimple cyclic modules are quasiinjective,? Atti Accad. Naz.-Lincei Rend. Cl. Sci. Fis., Mat. Natur.,59, No. 6, 682?684 (1975).
[177] J. Ahsan, ?Homomorphic images of certain quasiinjective modules,? Boll. Unione Mat. Ital.,13A, No. 1, 101?109 (1976). · Zbl 0351.16019
[178] J. Ahsan, ?Completely hereditary rings,? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. Natur.,63, Nos. 3?4, 159?163 (1977(1978)). · Zbl 0395.16019
[179] J. Ahsan, ?Semilocal rings and?-cyclic modules,? Math. Jpn.,25, No. 1, 117?124 (1980). · Zbl 0451.16016
[180] J. Ahsan, ?Semilocal rings and quasiprojective modules,? Recz. Pil. Tow. Mat.,21, No. 1, 5?7 (1980).
[181] S. Alamelu, ?On quasiinjective modules over Noetherian rings,? J. Indian Math. Soc.,39, Nos. 1?4, 121?130 (1975). · Zbl 0424.13004
[182] V. Albis-Gonzalez and R. K. Markanda, ?Ordres Euclidiens d’algèbres arithmétiques,? C. R. Acad. Sci.,284, No. 23, A1485-A1486 (1977). · Zbl 0357.12014
[183] V. Albis-Gonzalez and R. K. Markanda, ?Rings of fractions of Euclidean rings,? Commun. Algebra,6, No. 4, 353?360 (1978). · Zbl 0391.16002 · doi:10.1080/00927877808822250
[184] T. Albu, ?Sur la dimension de Gabriel des modules,? in: Algebra-Berichte. Bericht Nr. 21, Verlag Uni-Druck, München (1974), pp. 1?27.
[185] T. Albu and C. Nastasescu, ?Modules sur les anneaux de Krull,? Rev. Roum. Math. Pures Appl.,21, No. 2, 133?142 (1976). · Zbl 0358.13003
[186] J. L. Alperin, ?Diagrams for modules,? J. Pure Appl. Algebra,16, No. 2, 111?119 (1980). · Zbl 0425.16027 · doi:10.1016/0022-4049(80)90010-9
[187] J. L. Alvarez, ?Operadores de derivacion diferenciacion en modulos,? Gac. Mat.,27, Nos. 5?6, 130?135 (1975).
[188] I. Amin, ?Note on generalized semigroups and rings,? Proc. Math. Soc. Egypt, No. 45, 9?17 (1978).
[189] S. A. Amitsur and L. W. Small, ?Polynomial over division rings,? Isr. J. Math.,31, Nos. 3?4, 353?358 (1978). · Zbl 0395.16013 · doi:10.1007/BF02761500
[190] D. D. Anderson, ?Artinian modules are countably generated,?38, No. 1, 5?6 (1977). · Zbl 0377.13003
[191] D. D. Anderson, ?The existence of dual modules,? Proc. Am. Math. Soc.,55, No. 2, 258?260 (1976). · Zbl 0368.13004 · doi:10.1090/S0002-9939-1976-0399067-5
[192] D. F. Anderson, ?Projective modules over subrings of k[X, Y],? Trans. Am. Math. Soc.,240, 317?328 (1978). · Zbl 0368.13008
[193] D. F. Anderson, ?The Chinese remainder theorem and the invariant basis property,? Can. Math. Bull.,21, No. 3, 361?362 (1978). · Zbl 0419.13002 · doi:10.4153/CMB-1978-062-8
[194] D. F. Anderson, ?Projective modules over subrings of k[x, y] generated by monomials,? Pac. J. Math.,79, No. 1, 5?17 (1978). · Zbl 0372.13006 · doi:10.2140/pjm.1978.79.5
[195] F. W. Anderson, ?Simple injective modules,? Math. Scand.,43, No. 2, 204?240 (1978). · Zbl 0381.16013 · doi:10.7146/math.scand.a-11776
[196] V. A. Andrunakievic, Ju. M. Rjabuhin, K. K. Kracilov, and E. I. Tebyrce, ?Erbliche Radikale von Algebren. (Torsionen von Algebren),? Stud. Alg. Anwend.,1, 1?8 (1976).
[197] Pham Ngoc Anh, ?On the theory of linearly compact rings. I,? Beitr. Algebra und Geom. Wiss. Beitr. M.-Luther-Univ. Halle Wittenberg, 1980 M, No. 15, 13?27. · Zbl 0474.16031
[198] Pham Ngoc Anh and R. Wiegandt, ?Linearly compact semisimple rings and regular modules,? Math. Jpn.,23, No. 4, 335?338 (1978). · Zbl 0404.16025
[199] Kanroku Aoyama, ?On the commutativity of torsion and injective hull,? Hiroshima Math. J.,6, No. 3, 527?537 (1976). · Zbl 0357.13005
[200] E. Armendariz, ?Rings with an almost Noetherian ring of fractions,? Math. Scand.,41, No. 1, 15?18 (1977). · Zbl 0376.13009 · doi:10.7146/math.scand.a-11699
[201] E. Armendariz, ?Rings with DDC on essential left ideals,? Commun. Algebra,8, No. 3, 299?308 (1980). · Zbl 0444.16015 · doi:10.1080/00927878008822460
[202] E. Armendariz and J. W. Fischer, ?Idealizers in rings,? J. Algebra,39, No. 2, 551?562 (1976). · Zbl 0326.16006 · doi:10.1016/0021-8693(76)90052-1
[203] D. M. Arnold, ?General and direct sum decompositions of torsion free modules,? Lect. Notes Math.,616, 197?218 (1977). · Zbl 0371.16014 · doi:10.1007/BFb0068197
[204] J. Arnold, R. Gilmer, and W. Heinzer, ?Some countability conditions on commutative rings,? Ill. J. Math.,21, No. 3, 648?665 (1977). · Zbl 0392.13009
[205] Sh. Asano and K. Motose, ?On QF-2 algebras with commutative radicals,? Math. J. Okyama Univ.,22, No. 1, 17?20 (1980). · Zbl 0436.16012
[206] K. E. Aubert and I. Fleischer, ?Tensor products of ideal systems and their modules,? Pac. J. Math.,74, No. 2, 285?296 (1978). · Zbl 0385.46043 · doi:10.2140/pjm.1978.74.285
[207] M. Auslander, ?Almost split sequences,? Lect. Notes Math.,438, 1?8 (1975). · Zbl 0325.16014 · doi:10.1007/BFb0066102
[208] M. Auslander, ?Functors and morphisms determined by objects,? in: Representation Theory of Algebras. Proc. Philadelphia Conference, New York-Basel (1978), pp. 1?244.
[209] M. Auslander, ?Applications of morphisms determined by modules,? in: Representation Theory of Algebras. Proc. Philadephia Conference, New York-Basel (1978), pp. 245?327.
[210] M. Auslander, ?Preprojective modules over Artin algebras,? in: Ring Theory (Proc. Antwerp Confer., 1978) (1979), pp. 361?384.
[211] M. Auslander, M. I. Bautista, I. Platzeck, L. Reiten, and S. O. Smalo, ?Almost split sequences whose middle term has at most two indecomposable summands,? Can. J. Math.,31, No. 5, 942?960 (1979). · Zbl 0429.16016 · doi:10.4153/CJM-1979-089-5
[212] M. Auslander, M. I. Platzeck, and I. Reiten, ?Periodic modules over weakly symmetric algebras,? J. Pure Appl. Algebra,11, Nos. 1?3, 279?291 (1977?1978). · Zbl 0366.16010 · doi:10.1016/0022-4049(77)90057-3
[213] M. Auslander and I. Reiten, ?Stable equivalence of dualizing R-varieties. II. Hereditary dualizing Rvarieties,? Adv. Math.,17, No. 2, 93?121 (1975). · Zbl 0312.16015 · doi:10.1016/0001-8708(75)90088-2
[214] M. Auslander and I. Reiten, ?Stable equivalence of dualizing R-varieties, III. Dualizing R-varieties stably equivalent to hereditary dualizing R-varieties,? Adv. Math.,17, No. 2, 122?142 (1975). · Zbl 0312.16016 · doi:10.1016/0001-8708(75)90089-4
[215] M. Auslander and I. Reiten, ?Stable equivalence of dualizing R-varieties. IV. Higher global dimension,? Adv. Math.,17, No. 2, 143?166 (1975). · Zbl 0312.16017 · doi:10.1016/0001-8708(75)90090-0
[216] M. Auslander and I. Reiten, ?Representation theory of artin algebras. III. Almost split sequences,? Commun. Algebra,3, No. 3, 239?294 (1975). · Zbl 0331.16027 · doi:10.1080/00927877508822046
[217] M. Auslander and I. Reiten, ?Almost split sequences,? Lect. Notes Math.,438, 9?19 (1975). · Zbl 0325.16015 · doi:10.1007/BFb0081213
[218] M. Auslander and I. Reiten, ?On the representation type of triangular matrix rings,? J. London Math. Soc.,12, No. 3, 371?382 (1976). · Zbl 0316.16034 · doi:10.1112/jlms/s2-12.3.371
[219] Ch. Ayoub, ?Anneaux locaux et unisériels,? Semin. P. Dubreil. Algebre. Univ. Paris, 1971?1972,25, No. 1, 14/1?14/4 (1973).
[220] Ch. Ayoub, ?Conditions for a ring to be fissile,? Acta Math. Acad. Sci. Hungar.,30, Nos. 3/4, 233?237 (1977). · Zbl 0426.16025 · doi:10.1007/BF01896188
[221] G. Azumaya, ?Some aspects of Fuller’s theorem,? Lect. Notes Math.,700, 34?45 (1979). · Zbl 0405.16022 · doi:10.1007/BFb0063458
[222] G. Baccella, ?Sulla functorialita dell’ inviluppo \(\mathfrak{F}\) -iniettivo,? Ann. Univ. Ferrara,22, 107?113 (1976).
[223] J. W. Ballard, ?Injective modules for restricted enveloping algebras,? Math. Z.,163, No. 1, 57?64 (1978). · Zbl 0369.17006 · doi:10.1007/BF01214444
[224] B. Ballet, ?Topologies linéaires et modules artiniens,? Thèse Doct. Sci. Math., Univ. Paris-Sud (1971).
[225] B. Ballet, ?Topologies linéaires et modules artiniens,? J. Algebra,41, No. 2, 365?397 (1976). · Zbl 0365.13005 · doi:10.1016/0021-8693(76)90188-5
[226] D. Ballew, ?Cyclic ideals in order,? Riv. Mat. Univ. Parma,3, 1?16 (1977(1978)). · Zbl 0382.16004
[227] B. Banaschewski and E. Nelson, ?On the nonexistence of injective near ring modules,? Can. Math. Bull.,20, No. 1, 17?23 (1977). · Zbl 0373.16009 · doi:10.4153/CMB-1977-003-9
[228] H. Bass, ?Ranks of projective ZG-modules,? Queen Pap. Pure Appl. Math., No. 42, 63?69 (1975).
[229] W. Baur, ??0-categorical modules,? J. Symbol. Log.,40, No. 2, 213?230 (1975). · Zbl 0309.02059 · doi:10.2307/2271901
[230] S. Bazzoni, ?On the algebraic compactness of some complete modules,? Rend. Semin. Mat. Univ. Padova,56, 161?167 (1976(1978)).
[231] S. Bazzoni, ?Dualitá sul completamento naturale di un anello noetheriano,? Rend. Semin. Mat. Univ. Padova,55, 63?80 (1976(1977)).
[232] S. Bazzoni, ?Pontryagin type dualities over commutative rings,? Ann. Mat. Pura Appl., No. 121, 373?385 (1979). · Zbl 0438.13008 · doi:10.1007/BF02412013
[233] J. A. Beachy, ?Perfect quotient functors,? Commun. Algebra,2, 403?427 (1974). · Zbl 0296.16002 · doi:10.1080/00927877408822019
[234] J. A. Beachy, ?On Morita’s localization,? J. Algebra,38, No. 1, 225?243 (1975). · Zbl 0328.16005 · doi:10.1016/0021-8693(76)90257-X
[235] J. A. Beachy, ?Some aspects of noncommutative localization,? Lect. Notes Math.,545, 2?31 (1976). · Zbl 0336.16006 · doi:10.1007/BFb0080304
[236] J. A. Beachy, ?On the torsion theoretic support of a module,? Hokkaido Math. J.,6, No. 1, 16?27 (1977). · Zbl 0356.16001 · doi:10.14492/hokmj/1381758557
[237] J. A. Beachy, ?Sur les anneaux FBN à gauche,? Ann. Sci. Math. Quebec,1, No. 1, 59?62 (1977). · Zbl 0418.16016
[238] J. A. Beachy, ?Injective modules with both ascending and descending chain conditions on annihilators,? Commun. Algebra,6, No. 17, 1777?1788 (1978). · Zbl 0393.16022 · doi:10.1080/00927877808822320
[239] J. A. Beachy, ?Fully left bounded left Noetherian rings,? Lect. Notes Math.,700, 217 (1979). · Zbl 1315.16001
[240] J. A. Beachy, ?On inversive localization,? Lect. Notes Math.,700, 46?56 (1979). · doi:10.1007/BFb0063459
[241] J. A. Beachy, ?On localization at an ideal,? Can. Math. Bull.,22, No. 4, 397?401 (1979). · Zbl 0426.16001 · doi:10.4153/CMB-1979-052-7
[242] J. A. Beachy and W. D. Blair, ?Localization at semiprime ideals,? J. Algebra,38, No. 2, 309?314 (1976). · Zbl 0324.16002 · doi:10.1016/0021-8693(76)90221-0
[243] J. A. Beachy and W. D. Blair, ?Finitely annihilated modules and orders in Artinian rings,? Commun. Algebra,6, No. 1, 1?34 (1978). · Zbl 0405.16005 · doi:10.1080/00927877808822231
[244] I. Beck and P. Trosborg, ?A note on free direct summands,? Math. Scand.,42, No. 1, 34?38 (1978). · Zbl 0382.16015 · doi:10.7146/math.scand.a-11733
[245] Ernst-August Behrens, Ringtheorie, B. I.-Wissenschafts-verlag, Mannheim e.s. (1975).
[246] W. R. Belding, ?Bases for the positive cone of a partially ordered module,? Trans. Am. Math. Soc.,235, 305?313 (1978). · Zbl 0371.06012 · doi:10.1090/S0002-9947-1978-0472640-8
[247] H. Bernecker, ?Flatness and absolute purity applying functor categories to ring theory,? J. Algebra,44, No. 2, 411?419 (1977). · Zbl 0352.18020 · doi:10.1016/0021-8693(77)90191-0
[248] P. H. Berridge and M. J. Dunwoody, ?Nonfree projective modules for torsion-free groups,? J. London Math. Soc.,19, No. 3, 433?436 (1979). · Zbl 0399.20005 · doi:10.1112/jlms/s2-19.3.433
[249] F. Berrondo, ?Sur le corps des fractions d’un anneau de séries formelles généralisées,? C. R. Acad. Sci.,284, A1419-A1432 (1977). · Zbl 0354.13015
[250] D. Berry, ?Modules whose cyclic submodules have finite dimension,? Can. Math. Bull.,19, No. 1, 1?6 (1976). · Zbl 0335.16025 · doi:10.4153/CMB-1976-001-0
[251] S. M. Bhatwadecar, ?On the global dimension of some filtered algebras. II,? J. Pure Appl. Algebra,12, No. 1, 1?14 (1978). · Zbl 0391.16020 · doi:10.1016/0022-4049(78)90017-8
[252] L. Bican, ?General concept of injectivity,? Stud. Alg. Anwend.,1, 37?40 (1976). · Zbl 0334.16005
[253] L. Bican, ?Corational extensions and pseudo-projective modules,? Acta Math. Acad. Sci. Hung.,28, Nos. 1?2, 5?11 (1976). · Zbl 0339.16006 · doi:10.1007/BF01902486
[254] L. Bican, ?Kulikov’s criterion for modules,? J. Reine Angew. Math.,288, 154?159 (1976). · Zbl 0333.16021
[255] L. Bican, ?The structure of primary modules,? Acta Univ. Carol., Math. Phys.,17, No. 2, 3?12 (1976). · Zbl 0395.16027
[256] L. Bican, P. Jambor, T. Kepka, and P. Nemec, ?Centrally splitting radicals,? Comment. Math. Univ. Carol.,17, No. 1, 31?47 (1976). · Zbl 0329.16017
[257] L. Bican, P. Jambor, T. Kepka, and P. Nemec, ?Hereditary and cohereditary preradicals,? Czechosl. Mat. J.,26, No. 2, 192?206 (1976). · Zbl 0327.16013
[258] L. Bican, P. Jambor, T. Kepka, and P. Nemec, ?A note on test modules,? Comment. Math. Univ. Carol.,17, No. 2, 345?355 (1976). · Zbl 0329.16018
[259] L. Bican, P. Jambor, T. Kepka, and P. Nemec, ?Generation of preradicals,? Czechosl. Mat. J.,27, No. 1, 155?166 (1977). · Zbl 0351.16002
[260] L. Bican, P. Jambor, T. Kepka, and P. Nemec, ?Pseudoprojective modules,? Math. Slovaca,29, No.2, 107?115 (1979).
[261] L. Bican, P. Jambor, T. Kepka, and P. Nemec, ?Prime and coprime modules,? Fund. Math.,107, No. 1, 33?45 (1980). · Zbl 0354.16013
[262] R. Bieri and R. Strebel, ?Soluble groups with coherent group rings,? London Math. Soc. Lect. Note Ser., No. 36, 235?240 (1979). · Zbl 0425.20028
[263] A. Bigard, ?Theories de torsion et f-modules,? Semin. P. Dubreil. Algèbre. Univ. Paris,26, 5/1?5/12 (1972?1973).
[264] A. Bigard, K. Keimel, and S. Wolfenstein, ?Groupes et anneaux réticules,? Lect. Notes Math.,608 (1977). · Zbl 0384.06022
[265] G. F. Birkenmeier, ?On the cancellations of quasiinjective modules,? Commun. Algebra,4, No. 2, 101?109 (1976). · Zbl 0325.16021 · doi:10.1080/00927877608822096
[266] G. F. Birkenmeier, ?Self-injective rings and the minimal direct summand containing the nilpotents,? Commun. Algebra,4, No. 8, 705?721 (1976). · Zbl 0333.16024 · doi:10.1080/00927877608822132
[267] G. F. Birkenmeier, ?Modules which are subisomorphic to injective modules,? J. Pure Appl. Algebra,13, No. 2, 169?177 (1978). · Zbl 0391.16018 · doi:10.1016/0022-4049(78)90007-5
[268] P. E. Bland, ?Relatively flat modules,? Bull. Austral. Math. Soc.,13, No. 3, 375?387 (1975). · Zbl 0312.16024 · doi:10.1017/S0004972700024631
[269] P. E. Bland, ?Remarks on strongly M-projective modules,? Ill. J. Math.,23, No. 1, 167?174 (1979). · Zbl 0394.16019
[270] T. S. Blyth, Module Theory. An Approach to Linear Algebra, Oxford Univ. Press (1977). · Zbl 0353.15004
[271] M. Boisen and Ph. Sheldon, ?Pre-Prüfer rings,? Pac. J. Math.,58, No. 2, 331?344 (1975). · Zbl 0273.13008 · doi:10.2140/pjm.1975.58.331
[272] K. Bongartz and C. Riedtmann, ?Algèbres stablement héréditaires,? C. R. Acad. Sci.,288, No. 15, A703-A706 (1979). · Zbl 0408.16017
[273] M. Boratynski, ?A change of rings theorem and the Artin-Rees property,? Proc. Am. Math. Soc.,53, No. 2, 307?310 (1975). · Zbl 0319.16024 · doi:10.2307/2040001
[274] M. Boratynski, ?Generating ideals up to radical,? Arch. Math.,33, No. 5, 423?429 (1980). · Zbl 0414.13004 · doi:10.1007/BF01222779
[275] A. Bouvier, ?Sur les anneaux principaux,? Acta Math. Acad. Sci. Hung.,27, Nos. 3?4, 231?242 (1976). · Zbl 0336.13010 · doi:10.1007/BF01902099
[276] A. K. Boyle, ?Injectives containing no proper quasiinjective submodules,? Commun. Algebra,4, No. 8, 775?785 (1976). · Zbl 0332.16011 · doi:10.1080/00927877608822137
[277] A. K. Boyle, ?The large condition for rings with Krull dimension,? Proc. Am. Math. Soc.,72, No. 1, 27?32 (1978). · Zbl 0393.16019 · doi:10.1090/S0002-9939-1978-0503524-X
[278] A. K. Boyle and E. H. Feller, ?Smooth Noetherian modules,? Commun. Algebra,4, No. 7, 617?637 (1976). · Zbl 0329.16014 · doi:10.1080/00927877608822123
[279] A. K. Boyle and E. H. Feller, ?Semicritical modules and k-primitive rings,? Lect. Notes Math.,700, 57?74 (1979). · Zbl 0396.16014 · doi:10.1007/BFb0063460
[280] A. K. Boyle and K. R. Goodearl, ?Rings over which certain modules are injective,? Pac. J. Math.,58, No. 1, 43?53 (1975). · Zbl 0275.16024 · doi:10.2140/pjm.1975.58.43
[281] W. Brandal, ?On h-local integral domains,? Trans. Am. Math. Soc.,206, 201?212 (1975).
[282] W. Brandal, ?Constructing Bezout domains,? Rocky Mountain J. Math.,6, No. 3, 383?399 (1976). · Zbl 0347.13007 · doi:10.1216/RMJ-1976-6-3-383
[283] W. Brandal, ?Commutative rings whose finitely generated modules decompose,? Lect. Notes Math.,723 (1979). · Zbl 0426.13004
[284] W. Brandal and M. Wiegand, ?Reduced rings whose finitely generated modules decompose,? Commun. Algebra,6, No. 2, 195?201 (1978). · Zbl 0368.13005 · doi:10.1080/00927877808822241
[285] Sh. Brenner and C. M. Ringel, ?Pathological modules over tame rings,? J. London Math. Soc.,14, No. 2, 207?215 (1976). · Zbl 0356.16010 · doi:10.1112/jlms/s2-14.2.207
[286] J. W. Brewer and D. L. Costa, ?Contracted ideals and purity for ring extensions,? Proc. Am. Math. Soc.,53, No. 2, 271?276 (1975). · Zbl 0323.13002 · doi:10.1090/S0002-9939-1975-0384774-X
[287] J. W. Brewer and D. L. Costa, ?Projective modules over some non-Noetherian polynomial rings,? J. Pure Appl. Algebra,13, No. 2, 157?163 (1978). · Zbl 0446.13006 · doi:10.1016/0022-4049(78)90005-1
[288] J. W. Brewer, E. A. Rutter, and J. J. Watkins, ?Coherence and weak global dimension of R [[X]] when R is von Neumann regular,? J. Algebra,46, No. 1, 278?289 (1977). · Zbl 0393.13004 · doi:10.1016/0021-8693(77)90405-7
[289] W. Brockmann, ?Projektive Moduln über semilokalen Ringen,? Diss. Dokt. Naturwiss. Abt. Math., Ruhr-Univ. Bochum (1975).
[290] W. Brockmann, ?Struktur projektiver Moduln über semilokalen Ringen,? Arch. Math.,29, No. 4, 406?409 (1977). · Zbl 0376.16023 · doi:10.1007/BF01220427
[291] J. G. Brookshear, ?Projective ideals in rings of continuous functions,? Pac. J. Math.,71, No. 2, 313?344 (1977). · Zbl 0361.54004 · doi:10.2140/pjm.1977.71.313
[292] J. G. Brookshear, ?On projective prime ideals inC(X),? Proc. Am. Math. Soc.,69, No. 1, 203?204 (1978). · Zbl 0387.54004
[293] K. A. Brown, ?Artinian quotient rings of group rings,? J. Algebra,49, No. 1, 63?80 (1977). · Zbl 0371.16003 · doi:10.1016/0021-8693(77)90267-8
[294] K. A. Brown, ?The singular ideals of group rings. I,? Q. J. Math.,28, No. 109, 41?60 (1977). · Zbl 0345.16012 · doi:10.1093/qmath/28.1.41
[295] K. A. Brown, ?The singular ideals of group rings. II,? Q. J. Math.,29, No. 114, 187?197 (1978). · Zbl 0382.16007 · doi:10.1093/qmath/29.2.187
[296] K. A. Brown, ?Quotient rings of group rings,? Compos. Math.,36, No. 3, 243?254 (1978).
[297] K. A. Brown and J. Lawrence, ?Injective hulls of group rings,? Pac. J. Math.,85, No. 2, 323?343 (1979). · Zbl 0399.16005 · doi:10.2140/pjm.1979.85.323
[298] K. A. Brown, T. H. Lenagan, and J. T. Stafford, ?Weak ideal invariance and localization,? J. London Math. Soc.,21, No. 1, 53?61 (1980). · Zbl 0427.16009 · doi:10.1112/jlms/s2-21.1.53
[299] G. W. Brumfiel, Partially Ordered Rings and Semialgebraic Geometry, London Math. Soc. Lect. Note Series, No. 37 (1979).
[300] W. Bruns, ??Jede? endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals,? J. Algebra,39, No. 2, 429?439 (1976). · Zbl 0329.13010 · doi:10.1016/0021-8693(76)90047-8
[301] W. Bruns, ?Zur Einbettung von Moduln in zyklische Moduln und direkte Summen zyklischer Moduln,? J. Algebra,53, No. 1, 239?252 (1978). · Zbl 0386.13005 · doi:10.1016/0021-8693(78)90214-4
[302] W. Bruns, ?Basische Elemente in Steinschen Moduln,? Monatsh. Math.,85, No. 4, 283?295 (1978). · Zbl 0401.13007 · doi:10.1007/BF01305958
[303] W. Bruns and U. Vetter, ?Die Verallgemeinerung eines Satzes von Bourbaki und einige Anwendungen,? Manuscr. Math.,17, No. 4, 317?325 (1975). · Zbl 0315.13008 · doi:10.1007/BF01170728
[304] Ju. Brzezinski, ?Lattices of normally indecomposable modules,? Proc. Am. Math. Soc.,68, No. 3, 271?276 (1978). · Zbl 0376.16032 · doi:10.1090/S0002-9939-1978-0469979-4
[305] A. Buium, ?Asupra algebrelor cu modulele de differentiale Projective,? Stud, si Cerc. Mat.,32, No. 2, 135?151 (1980).
[306] A. Bulaszewska and J. Krempa, ?On epimorphisms in the category of all associative rings,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 11, 1153?1159 (1975(1976)). · Zbl 0316.16024
[307] W. Burgess and R. Raphael, ?Sur deux notions de complétude dans les anneaux semipremiers,? C. R. Acad. Sci.,283, No. 13, A927-A929 (1976). · Zbl 0342.16008
[308] M. C. R. Butler, ?On the structure of modules over certain augmented algebras,? Proc. London Math. Soc.,21, No. 3, 277?295 (1970). · Zbl 0217.06301 · doi:10.1112/plms/s3-21.2.277
[309] M. C. R. Butler, ?The construction of almost split sequences. I,? Proc. London Math. Soc.,40, No. 1, 72?86 (1980). · Zbl 0443.16018 · doi:10.1112/plms/s3-40.1.72
[310] K. A. Byrd, ?Right self-injective rings whose essential right ideals are two-sided,? Pac. J. Math.,82, No. 1, 23?41 (1979). · Zbl 0416.16006 · doi:10.2140/pjm.1979.82.23
[311] L. Caire and U. Cervuti, ?Fuzzy relational spaces and algebraic structures,? Rend. Semin. Mat. Univ. Politechn. Torino,35, 443?461 (1976(1977).
[312] V. Camillo, ?Distributive modules,? J. Algebra,36, No. 1, 16?25 (1975). · Zbl 0308.16015 · doi:10.1016/0021-8693(75)90151-9
[313] V. Camillo, ?Modules whose quotients have finite Goldie dimension,? Pac. J. Math.,69, No. 2, 337?338 (1977). · Zbl 0356.13003 · doi:10.2140/pjm.1977.69.337
[314] V. Camillo, ?On a conjecture of Herstein,? J. Algebra,50, No. 2, 274?275 (1978). · Zbl 0375.16022 · doi:10.1016/0021-8693(78)90154-0
[315] V. Camillo, ?Homological independence of injective hulls of simple modules over commutative rings,? Commun. Algebra,6, No. 14, 1459?1469 (1978). · Zbl 0404.13007 · doi:10.1080/00927877808822299
[316] V. Camillo and K. R. Fuller, ?Rings whose faithful modules are flat over their endomorphism rings,? Arch. Math.,27, No. 5, 522?525 (1976). · Zbl 0336.16019 · doi:10.1007/BF01224710
[317] V. Camillo and K. R. Fuller, ?A note on Loewy rings and chain conditions on primitive ideals,? Lect. Notes Math.,700, 75?86 (1979). · Zbl 0413.16020 · doi:10.1007/BFb0063461
[318] V. Camillo and J. Zelmanowitz, ?On the dimension of a sum of modules,? Commun. Algebra,6, No. 4, 345?352 (1978). · Zbl 0375.16023 · doi:10.1080/00927877808822249
[319] J. M. Campbell, ?Torsion theories for modules over a triangular matrix ring,? Bull. Austral. Math. Soc.,19, No. 2, 299?300 (1978). · doi:10.1017/S0004972700008777
[320] J. F. Carlson, ?Free modules over some modular group rings,? J. Austral. Math. Soc.,21, Part 1, 49?55 (1976). · Zbl 0338.20012 · doi:10.1017/S1446788700016906
[321] J. F. Carlson, ?Almost free modules over modular group algebras,? J. Algebra,41, No. 2, 243?254 (1976). · Zbl 0341.20007 · doi:10.1016/0021-8693(76)90181-2
[322] J. F. Carlson, ?Cyclic modules over some modular group algebras,? Stud. Sci. Math. Hungarica,11, Nos. 3/4, 324?333 (1976). · Zbl 0449.20009
[323] J. F. Carlson, ?Periodic modules over modular group algebras,? J. London Math. Soc.,15, No. 3, 431?436 (1977). · Zbl 0365.20015 · doi:10.1112/jlms/s2-15.3.431
[324] J. F. Carlson, ?Periodic modules with large periods,? Proc. Am. Math. Soc.,76, No. 2, 209?215 (1979). · Zbl 0419.20011 · doi:10.1090/S0002-9939-1979-0537075-4
[325] R. Carlson, ?Malcev-Moduln,? J. Reine Angew. Math.,281, 199?210 (1976).
[326] M. Carral, ?Modules de type fini sur un anneau mou,? C. R. Acad. Sci.,281, No. 4, A129-A132 (1975). · Zbl 0324.13006
[327] J. E. Carrig, ?The homological dimensions of symmetric algebras,? Trans. Am. Math. Soc.,236, 275?285 (1978). · Zbl 0389.13004 · doi:10.1090/S0002-9947-1978-0457425-0
[328] J. E. Carrig and W. V. Vasconcelos, ?Projective ideals in rings of dimension one,? Proc. Am. Math. Soc.,71, No. 2, 169?173 (1978). · Zbl 0419.13005 · doi:10.1090/S0002-9939-1978-0491655-2
[329] A. B. Carson, ?Representation of irregular rings of finite index,? J. Algebra,39, No. 2, 512?526 (1976). · Zbl 0345.16016 · doi:10.1016/0021-8693(76)90050-8
[330] A. B. Carson, ?Coherent polynomial rings over regular rings of finite index,? Pac. J. Math.,74, No. 2, 327?332 (1978). · Zbl 0349.16005 · doi:10.2140/pjm.1978.74.327
[331] D. W. Carter, ?Projective module groups of SLn(Z) and GLn(Z),? J. Pure Appl. Algebra,16, No. 1, 49?54 (1980). · Zbl 0416.16009 · doi:10.1016/0022-4049(80)90041-9
[332] G. Cauchon, ?Les T-anneaux, la condition (H) de Gabriel et ses consequences,? Commun. Algebra,4, No. 1, 11?50 (1976). · Zbl 0319.16014 · doi:10.1080/00927877608822093
[333] G. Cauchon, ?Anneaux de polynomes essentiellement bornes,? in: Ring Theory Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 27?42.
[334] G. Cauchon and L. Lesieur, ?Localisation classique en un ideal premier d’un anneau noetherian à gauche,? Commun. Algebra,6, No. 11, 1091?1108 (1978). · Zbl 0379.16002 · doi:10.1080/00927877808822282
[335] M. P. Cavalliero, ?Sui moduli liberi e proiettivi graduati,? Publ. Inst. Mat. Univ. Genova, No. 160 (1976).
[336] M. P. Cavalliero, ?Sui moduli liberi e prieffivi graduati,? Boll. Unione Mat. Ital.,A14, No. 1, 82?91 (1977).
[337] M. Chamarie, ?Ordres maximaux et R-ordres maximaux,? C. R. Acad. Sci.,A285-B285, No. 16, 989?991 (1977). · Zbl 0377.16002
[338] M. Chamarie, ?Anneaux de polynomes et ordres maximaux,? C. R. Acad. Sci.,287, No. 8, 599?601 (1978). · Zbl 0393.16027
[339] M. Chamarie, ?Ordres maximaux et R-ordres maximaux,? J. Algebra,58, No. 1, 148?156 (1979). · Zbl 0405.16004 · doi:10.1016/0021-8693(79)90195-9
[340] M. Chamarie and A. Hudry, ?Anneaux noetheriens à droite entiers sur leurs centres,? C. R. Acad. Sci.,283, No. 15, A1011-A1012 (1971). · Zbl 0344.16016
[341] M. Chamarie and A. Hudry, ?Anneaux noetheriens à droite entiers sur un sous-anneau de leur centre,? Commun. Algebra,6, No. 2, 203?222 (1978). · Zbl 0368.16009 · doi:10.1080/00927877808822242
[342] M. Chamarie and G. Maury, ?Un theorème de l’idéal á gauche principal dans les anneaux premiers, noethériens, à identité polynomial dont the centre est un domaine de Krull,? C. R. Acad. Sci.,AB286, No. 14, A609-A611 (1978). · Zbl 0397.16022
[343] V. R. Chandran, ?On conjecture of Hyman Bass,? Pure Appl. Math.Sci.,4, Nos. 1/2, 125?131 (1976). · Zbl 0342.16025
[344] A. W. Chatters, ?Two results on PP rings,? Commun. Algebra,4, No. 9, 881?891 (1976). · Zbl 0331.16019 · doi:10.1080/00927877608822143
[345] A. W. Chatters, ?A note on Noetherian orders in Artinian rings,? Glasgow Math. J.,20, No. 2, 125?128 (1979). · Zbl 0405.16002 · doi:10.1017/S0017089500003827
[346] A. W. Chatters, A. W. Goldie, C. R. Hajarnavis, and T. H. Lenagan, ?Reduced rank in Noetherian rings,? J. Algebra,61, No. 2, 582?589 (1979). · Zbl 0436.16009 · doi:10.1016/0021-8693(79)90296-5
[347] A. W. Chatters and C. R. Hajarnavis, ?Rings in which every complement right ideal is a direct summand,? Q. J. Math.,28, No. 109, 61?80 (1977). · Zbl 0342.16023 · doi:10.1093/qmath/28.1.61
[348] A. W. Chatters, C. R. Hajarnavis, and N. C. Norton, ?The Artin radical of a Noetherian ring,? J. Austral. Math. Soc.,A23, No. 3, 379?384 (1977). · Zbl 0376.16021 · doi:10.1017/S1446788700019030
[349] A. W. Chatters and J. C. Robson, ?Decomposition of orders in semiprimary rings,? Commun. Algebra,8, No. 6, 517?532 (1980). · Zbl 0429.16006 · doi:10.1080/00927878008822473
[350] A. W. Chatters and P. F. Smith, ?A note on hereditary rings,? J. Algebra,44, No. 1, 181?190 (1977). · Zbl 0342.16022 · doi:10.1016/0021-8693(77)90172-7
[351] T. J. Cheatham and J. R. Smith, ?Regular and semisimple modules,? Pac. J. Math.,65, No. 2, 315?323 (1976). · Zbl 0326.16011 · doi:10.2140/pjm.1976.65.315
[352] G. Cherlin, Model Theoretic Algebra. Selected Topics, Lect. Notes Math.,521 (1976). · Zbl 0332.02056
[353] K. Chiba and H. Tominaga, ?Note on strongly regular rings and P1-rings,? Proc. Jpn. Acad.,51, No.4, 259?261 (1975). · Zbl 0316.16012 · doi:10.3792/pja/1195518630
[354] A. V. Chiplunkar, ?Global dimension of algebra of differential operators,? J. Indian Math. Soc.,38, Nos. 1?4, 1?17 (1974(1975)). · Zbl 0358.12014
[355] D. P. Choudhury and K. Tewary, ?Tensor parities, cyclic quasiprojectivies and cocyclic copurity,? Commun. Algebra,7, No. 15, 1559?1572 (1979). · Zbl 0419.16015 · doi:10.1080/00927877908822418
[356] L. G. Chouinard, ?Projectivity and relative projectivity over group rings,? J. Pure Appl. Algebra,7, No. 3, 287?302 (1976). · Zbl 0327.20020 · doi:10.1016/0022-4049(76)90055-4
[357] J. Chuchel and N. Eggert, ?The complete quotient ring of images of semilocal Prufer domains,? Can. J. Math.,29, No. 5, 914?927 (1977). · Zbl 0338.13018 · doi:10.4153/CJM-1977-092-x
[358] L. W. Chung and J. Luh, ?A characterization of semisimple Artinian rings,? Mat. Jpn.,21, No. 3, 227?228 (1976). · Zbl 0343.16020
[359] B. S. Chwe and J. Neggers, ?Some classes of rings defined by properties of modules,? Rev. Univ. Mat. Argent., No. 1, 54?59 (1976(1977)). · Zbl 0364.16003
[360] M. Cipolla, ?Diseesa fedelmente piatta dei moduli,? Rend. Circ. Mat. Palermo,25, Nos. 1?2, 43?46 (1976). · Zbl 0391.16022 · doi:10.1007/BF02849557
[361] T. G. Clarke, ?Embedding flat modules in filtered unions of projectives,? Commun. Algebra,5, No. 3, 293?303 (1977). · Zbl 0359.16013 · doi:10.1080/00927877708822172
[362] J. M. Cohen, ?On the number of generators of a module,? J. Pure Appl. Algebra,12, No. 1, 15?19 (1978). · Zbl 0378.16007 · doi:10.1016/0022-4049(78)90018-X
[363] J. M. Cohen and S. Montgomery, ?The normal closure of semiprime rings,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 43?49.
[364] P. M. Cohn, ?Numerateurs et dénominateurs dans le corps de fractions d’un semifir,? Semin. P. Dubreil. Algèbre Univ. Pierre et Marie Curie,28, 28/1?28/7 (1974?1975).
[365] P. M. Cohn, ?A construction of simple principal right ideal domains,? Proc. Am. Math. Soc.,66, No. 2, 217?222 (1977). · Zbl 0342.16002 · doi:10.1090/S0002-9939-1977-0453805-2
[366] P. M. Cohn, ?Full modules over semifirs,? Publ. Math.,24, Nos. 3?4, 305?310 (1977).
[367] P. M. Cohn, ?The affine scheme of a general ring,? Lect. Notes Math.,753, 197?211 (1979). · Zbl 0422.14001 · doi:10.1007/BFb0061819
[368] P. M. Cohn and W. Dicks, ?Localization in semifirs. II,? J. London Math. Soc.,13, No. 3, 411?418 (1976). · Zbl 0328.16003 · doi:10.1112/jlms/s2-13.3.411
[369] L. R. Colavita, ?Sobre una generalizacion del teorema de descomposicion primaria de grupos a ciertas teorias de torsion en anillos commutativos,? An. Inst. Mat. Univ. Nac. Auton., Mex.,18, No. 1, 7?12 (1978).
[370] L. R. Colavita, F. C. Raggi, and M. J. Rios, ?Sobre filtros estables de Gabriel. V. (Algunas interpretaciones topologicas respecto a filtros de Gabriel),? An. Inst. Mat. Univ. Nac. Auton. Mex.,17, No. 1, 1?16 (1977).
[371] L. R. Colavita and Montes J. Rios, ?Sobre filtros estable de Gabriel. VI. (Filtros neterianos),? An. Inst. Mat. Univ. Nac. Auton. Mex.,18, No. 1, 13?25 (1978).
[372] N. Conze-Berline, ?Sur certains quotients de l’algebre enveloppante d’un algèbre de Lie semi-simple,? Lect. Notes Math.,466, 31?37 (1975). · Zbl 0364.17008 · doi:10.1007/BFb0082195
[373] D. Costa, ?Unique factorization in modules and symmetric algebras,? Trans. Am. Math. Soc.,224, No. 2, 267?280 (1976). · doi:10.1090/S0002-9947-1976-0422250-1
[374] M. Coste, ?Localization, spectra and sheaf representation,? Lect. Notes Math.,753, 212?238 (1979). · Zbl 0422.18007 · doi:10.1007/BFb0061820
[375] Gh. Costovici, ?General topological frame for Zariski’s topologies,? Bull. Inst. Politeh. lasi,24, Sec. I, Nos. 3?4, 9?12 (1978).
[376] F. Couchot, ?Sur le dual de la notion de présentation finie,? C. R. Acad. Sci.,281, No. 23, A1005-A1008 (1975). · Zbl 0324.13010
[377] F. Couchot, ?Topologie cofinie et modules pur-injectifs,? C. R. Acad. Sci.,283, No. 6, A277-A280 (1976). · Zbl 0347.13005
[378] F. Couchot, ?Anneaux auto-fp-injectifs,? C. R. Acad. Sci.,284, No. 11, A579-A582 (1977). · Zbl 0346.16015
[379] F. Couchot, ?Sous-modules purs et modules de type cofini,? Lect. Notes Math.,641, 198?208 (1978). · Zbl 0372.13005 · doi:10.1007/BFb0064848
[380] F. Couchot, ?Classes d’anneaux contenant les V-anneaux et les anneaux absolument plats,? Lect. Notes Math.,740, 170?183 (1979). · Zbl 0408.16023 · doi:10.1007/BFb0071058
[381] R. Couture and M. Lavoie, ?Réciproque du théoreme des bases sur un espace vectoriel,? Can. Math. Bull.,18, No. 5, 749?751 (1975). · Zbl 0437.15001 · doi:10.4153/CMB-1975-129-3
[382] S. H. Cox, Jr., ?The preparation theorem and the freeness of A[[X]]/J,? Proc. Am. Math. Soc.,61, No. 2, 227?231 (1976).
[383] J. H. Cozzens, ?Maximal orders and reflexive modules,? Trans. Am. Math. Soc.,219, 323?336 (1976). · doi:10.1090/S0002-9947-1976-0419503-X
[384] J. H. Cozzens, ?The structure of localizable algebras having finite global dimension,? in: Ring Theory (Proc. Antwerp Conf., 1978) (1979), pp. 599?612. · Zbl 0429.16007
[385] J. H. Cozzens and F. L. Sandomierski, ?Reflexive primes, localization and primary decomposition in maximal orders,? Proc. Am. Math. Soc.,58, 44?50 (1976). · Zbl 0337.16001 · doi:10.1090/S0002-9939-1976-0419494-7
[386] J. H. Cozzens and F. L. Sandomierski, ?Maximal orders and localization. I,? J. Algebra,44, No. 2, 319?338 (1977). · Zbl 0347.16003 · doi:10.1016/0021-8693(77)90185-5
[387] J. H. Cozzens and F. L. Sandomierski, ?Localization at a semiprime ideal of a right Noetherian ring,? Commun. Algebra,5, No. 7, 707?726 (1977). · Zbl 0357.16001 · doi:10.1080/00927877708822188
[388] W. Crawley, ?Epimorphisms and H-coextensions,? Arch. Math.,30, No. 5, 449?457 (1978). · Zbl 0408.22004 · doi:10.1007/BF01226084
[389] I. Crivei, ?c-pure exact sequences of R-modules,? Mathematica (RSR),17, No. 1, 59?65 (1975). · Zbl 0389.16017
[390] I. Crivei, ?c-pure injective modules,? Mathematica (RSR),17, No. 2, 167?172 (1975).
[391] I. Crivei, ?Asupra unei clase de inele,? Bul. Sti. Inst. Politehn. Cluj. Ser. Mec.,20, 17?19 (1977).
[392] G. D. Crown and J. J. Hutchinson, ?On the exactness of the completion functor,? Commun. Algebra,8, No. 1, 1?12 (1980). · Zbl 0423.16017 · doi:10.1080/00927878008822444
[393] R. F. Damiano, ?Coflat rings and modules,? Pac. J. Math.,81, No. 2, 349?369 (1979). · Zbl 0415.16021 · doi:10.2140/pjm.1979.81.349
[394] R. F. Damiano, ?A right PCI ring is right Noetherian,? Proc. Am. Math. Soc.,77, No. 1, 11?14 (1979). · Zbl 0425.16022 · doi:10.1090/S0002-9939-1979-0539620-1
[395] R. S. Dark, ?On hypercentral groups and Artinian modules,? J. Algebra,41, No. 2, 597?599 (1976). · Zbl 0338.20006 · doi:10.1016/0021-8693(76)90116-2
[396] Ch. Dartois, Categories Preadditives et Modules, Equisses Math., Fac. Sci. Univ. Paris VII, No. 13 (1971). · Zbl 0374.18007
[397] J. Dauns, ?Quotient rings and one-sided primes,? J. Reine Angew. Math., 278?279, 205?224 (1975); correction: ibid.,280, 205 (1976). · Zbl 0314.16003
[398] J. Dauns, ?Generalized monoform and quasiinjective modules,? Pac. J. Math.,66, No. 1, 49?66 (1976). · Zbl 0349.16011 · doi:10.2140/pjm.1976.66.49
[399] J. Dauns, ?Prime modules,? J. Reine Angew. Math.,298, 156?181 (1978). · Zbl 0365.16002
[400] B. J. Day, ?On topological modules and duality,? Cah. Topol. Geom. Diff.,20, No. 3, 297?310 (1979).
[401] L. de Munter-Kuyl, ?Some invariants for rank three torsion-free modules over a Dedekind domain,? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis., Mat. Natur.,59, No. 5, 349?356 (1975 (1976)).
[402] L. de Munter-Kuyl, ?Isomorphisms of rank two torsion-free modules over a Dedekind domain,? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,60, No. 4, 351?358 (1976). · Zbl 0364.13007
[403] J. Descovich, ?Ringe mit monotoner modul dimension,? in: Rings, Modules and Radicals, Amsterdam-London (1973), pp. 153?166.
[404] M. Desrochers, ?Dimensions globales des extensions de Ore et des algèbres de Weyl,? Groupe Etude Algebre. Univ. Pierre et Marie Curie, 1976?1977, 6/01?6/31 (1978).
[405] W. Dicks, ?Hereditary group rings,? J. London Math. Soc.,20, No. 1, 27?38 (1979). · Zbl 0401.16005 · doi:10.1112/jlms/s2-20.1.27
[406] W. Dicks, ?Groups, trees and projective modules,? Lect. Notes Math.,790 (1980). · Zbl 0427.20016
[407] W. Dicks and P. Menal, ?The group rings that are semifir,? J. London Math. Soc.,19, No. 2, 288?290 (1979). · Zbl 0393.16012 · doi:10.1112/jlms/s2-19.2.288
[408] W. Dicks and E. D. Sontag, ?Sylvester domains,? J. Pure Appl. Algebra,13, No. 3, 243?275 (1978). · Zbl 0393.16002 · doi:10.1016/0022-4049(78)90011-7
[409] Y. Diers, ?Spectres et localisations relatifs à un foncteur,? C. R. Acad. Sci.,287, No. 15, 985?989 (1978). · Zbl 0394.18003
[410] S. Dinca, ?On co-noetherian modules,? Stud. Cerc. Math.,25, 643?646 (1973).
[411] V. H. Dinh, ?Über die Frage der Spalbarkeit von MHP-ringen,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,23, No. 2, 135?138 (1975).
[412] V. H. Dinh, ?Über Ringe mit Minimalbedingung für Hauptrechtideale,? Acta Math. Acad. Sci. Hungar.,26, Nos. 3?4, 245?250 (1975). · Zbl 0319.16015 · doi:10.1007/BF01902327
[413] V. H. Dinh, ?Über Ringe mit Minimalbedingun für Hauptrechtideale. II,? Stud. Sci. Math. Hungar.,9, Nos. 3?4, 419?423 (1976).
[414] V. H. Dinh, ?Über Ringe mit eingeschränkter Minimalbedingung höherer Stufe für Rechtsideale. I,? Math. Nachr.,71, 227?235 (1976). · Zbl 0335.16019 · doi:10.1002/mana.19760710118
[415] V. H. Dinh, ?Die Spalbarkeit von MHR-ringen,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,25, No. 10, 939?941 (1977).
[416] V. H. Dinh, ?Über Ringe mit eingeschränkter Minimalbedingung höhere Stufe für Rechtsideale,? Math. Nachr.,86, 291?307 (1978). · Zbl 0418.16010 · doi:10.1002/mana.19780860122
[417] V. H. Dinh and A. Widiger, ?Über Ringe mit eingeschränkter Minimalbedingung höherer Stufe für Rechtsideale,? Math. Nachr.,86, 309?331 (1978). · Zbl 0412.16011 · doi:10.1002/mana.19780860123
[418] V. Dlab, ?Matrix rings as injective hulls of torsionfree tidy rings,? Ottawa (1972). · Zbl 0227.16016
[419] V. Dlab and C. M. Ringel, ?The representations of tame hereditary algebras,? in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 329?353.
[420] V. Dlab and C. M. Ringel, ?A module theoretical interpretation of properties of the root systems,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 435?451.
[421] D. Dobbs, ?On the weak global dimension of pseudovaluation domains,? Can. Math. Bull.,21, No. 2, 159?164 (1978). · Zbl 0383.13001 · doi:10.4153/CMB-1978-027-9
[422] D. Dobbs, ?Coherence, ascent of going down, and pseudovaluation domains,? Houston J. Math.,4, No. 4, 551?567 (1978). · Zbl 0388.13002
[423] D. Dobbs, ?On flat finitely generated ideals,? Bull. Austral. Math. Soc.,21, No. 1, 131?135 (1980). · Zbl 0409.13002 · doi:10.1017/S0004972700011357
[424] D. Dobbs and I. J. Papick, ?When is D+M coherent?? Proc. Am. Math. Soc.,56, 51?54 (1976). · Zbl 0329.13014
[425] D. Dobbs and I. J. Papick, ?Flat or open implies going down?? Proc. Am. Math. Soc.,65, No. 2, 370?371 (1977). · Zbl 0369.13004
[426] D. Doman and G. J. Hauptfleisch, ?Filtered-injective and coflat modules,? Quaest. Math.,3, 33?48 (1978). · Zbl 0391.16017 · doi:10.1080/16073606.1978.9631557
[427] P. Dowbor and D. Simson, ?A characterization of hereditary rings of finite representation type,? Bull. Am. Math. Soc.,1, No. 2, 300?302 (1980). · Zbl 0433.16023 · doi:10.1090/S0273-0979-1980-14741-2
[428] P. Dowbor and D. Simson, ?Quasi-Artin species and rings of finite representation type,? J. Algebra,63, No. 2, 435?443 (1980). · Zbl 0428.16031 · doi:10.1016/0021-8693(80)90082-4
[429] F. Eckstein, ?Orders in locally pro-Artinian rings,? J. Pure Appl. Algebra,14, No. 3, 253?258 (1979). · Zbl 0439.13017 · doi:10.1016/0022-4049(79)90044-6
[430] G. Eerkes, ?Rings of equivalent dominant and codominant dimensions,? Proc. Am. Math. Soc.,48, No. 2, 297?306 (1975). · Zbl 0304.16009 · doi:10.1090/S0002-9939-1975-0360710-7
[431] N. Eggert, ?Rings whose overrings are integrally closed in their complete quotient ring,? J. Reine Angew. Math.,282, 88?95 (1976). · Zbl 0318.13008
[432] G. Ehrlich, ?Units and one-sided units in regular rings,? Trans. Am. Math. Soc.,216, 81?90 (1976). · Zbl 0298.16012 · doi:10.1090/S0002-9947-1976-0387340-0
[433] D. Eisenbud, ?Solution du problème de Serre par Quillen-Suslin,? Lect. Notes Math.,586, 9?19 (1977). · Zbl 0352.13005 · doi:10.1007/BFb0087116
[434] P. C. Eklof, ?Homological algebra and set theory,? Trans. Am. Math. Soc.,227, 207?226 (1977). · Zbl 0355.02047 · doi:10.1090/S0002-9947-1977-0453520-X
[435] E. Enochs, ?A note on absolutely pure modules,? Can. Math. Bull.,19, No. 3, 361?362 (1976). · Zbl 0346.16020 · doi:10.4153/CMB-1976-054-5
[436] M. W. Evans, ?Extensions of semihereditary rings,? J. Austral. Math. Soc.,A23, No. 3, 333?339 (1977). · doi:10.1017/S1446788700018954
[437] M. W. Evans, ?Extended semihereditary rings,? J. Austral. Math. Soc.,A26, No. 4, 465?474 (1978). · doi:10.1017/S1446788700011988
[438] A. Facchini, ?Reflexive rings,? in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 415?449.
[439] C. Faith, ?When are proper cyclics injective?? Pac. J. Math.,45, 97?1120 (1973); Correction: ibid.,55, 640?641 (1974). · Zbl 0258.16024 · doi:10.2140/pjm.1973.45.97
[440] C. Faith, ?On a theorem of Chatters,? Commun. Algebra,3, No. 2, 169?184 (1975). · Zbl 0303.16008 · doi:10.1080/00927877508822039
[441] C. Faith, ?Projective ideals in Cohen rings,? Arch. Math.,26, No. 6, 588?594 (1975). · Zbl 0321.16019 · doi:10.1007/BF01229785
[442] C. Faith, ?On hereditary rings and Boyle’s conjecture,? Arch. Math.,27, No. 2, 113?119 (1976). · Zbl 0325.16020 · doi:10.1007/BF01224650
[443] C. Faith, ?Galois extensions of commutative rings,? Math. J. Okayama Univ.,18, No. 2, 113?116 (1976). · Zbl 0333.13002
[444] C. Faith, ?Injective cogenerator rings and a theorem of Tachikawa,? Proc. Am. Math. Soc.,60, No. 208, 25?30 (1976). · doi:10.1090/S0002-9939-1976-0417237-4
[445] C. Faith, ?Semiperfect Prüfer rings and FPF rings,? Isr. J. Math.,26, No. 2, 166?177 (1977). · Zbl 0345.16005 · doi:10.1007/BF03007666
[446] C. Faith, ?Injective cogenerator rings and a theorem of Tachikawa. II,? Proc. Am. Math. Soc.,62, No. 1, 15?18 (1977). · Zbl 0351.16009 · doi:10.1090/S0002-9939-1977-0429990-5
[447] C. Faith, ?The basis theorem for modules a brief survey and a look to the future,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 9?23.
[448] C. Faith, ?Bounded prime rings, pseudo-frobenius rings, the Jacobson radical of a ring,? Lect. Notes Math.,700, 218?223 (1979). · Zbl 1315.16002 · doi:10.1007/BFb0063469
[449] C. Faith, ?Injective quotient rings of commutative rings,? Lect. Notes Math.,700, 151?203 (1979). · Zbl 0413.13003 · doi:10.1007/BFb0063466
[450] C. Faith, ?Self-injective rings,? Proc. Am. Math. Soc.,77, No. 2, 157?164 (1979). · Zbl 0424.16014 · doi:10.1090/S0002-9939-1979-0542077-8
[451] C. Faith, ?The genus of a module and generic families of rings,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 613?629.
[452] H. K. Farahat, ?Homological dimension and Abelian groups,? Lect. Notes Math.,616, 379?383 (1977). · Zbl 0366.20040 · doi:10.1007/BFb0068208
[453] S. Feigelstock, ?A characterization of Prüfer rings,? J. Reine Angew. Math.,282, 131?132 (1976). · Zbl 0318.13019
[454] S. Feigelstock, ?On modules over Dedekind rings,? Acta Sci. Math.,39, Nos. 3?4, 255?263 (1977). · Zbl 0379.13004
[455] M. H. Fenrick, ?Rings for which all preradicals have finite length,? Commun. Algebra,7, No. 17, 1805?1815 (1979). · Zbl 0414.16015 · doi:10.1080/00927877908822430
[456] D. Ferrand, ?Les modules projectifs de type fini sur un anneau de polynomes sur un corps sont libres (d’après Quillen et Suslin),? Lect. Notes Math.,567, 202?221 (1977). · Zbl 0359.13002 · doi:10.1007/BFb0096071
[457] D. J. Fieldhouse, ?Semihereditary rings,? Publ. Math.,25, Nos. 3?4, 211 (1978).
[458] E. Fisher, ?Powers of saturated modules,? J. Symb. Logic,37, No. 4, 777 (1972).
[459] E. R. Fisher, ?Abelian structures. I,? Lect. Notes Math.,616, 270?322 (1977). · Zbl 0414.18001 · doi:10.1007/BFb0068202
[460] J. R. Fisher, ?Goldie theorem for differentiably prime rings,? Pac. J. Math.,58, No. 1, 71?77 (1975). · Zbl 0311.16036 · doi:10.2140/pjm.1975.58.71
[461] J. W. Fisher, ?Problem session on regular rings,? Lect. Notes Math.,545, 195?199 (1976). · doi:10.1007/BFb0080312
[462] M. Flamant, ?Une nouvelle caracterisation des anneaux de Prüfer,? Publ. Dep. Math.,14, No. 4, 21?25 (1977). · Zbl 0406.13002
[463] C. Fletcher, ?Remarque sur les anneaux de fractions et la factorisation,? Publ. Dep. Math.,12, No. 1, 1?3 (1975). · Zbl 0313.13015
[464] P. Fleury, ?On local QF rings,? Aequat. Math.,16, Nos. 1?2, 173?179 (1977). · Zbl 0377.16007 · doi:10.1007/BF01836430
[465] J. Flood, ?Pontryagin duality for topological modules,? Proc. Am. Math. Soc.,75, No. 2, 329?333 (1979). · Zbl 0418.22006 · doi:10.1090/S0002-9939-1979-0532161-7
[466] M. Fontana, ?Absolutely flat Baer rings,? Boll. Unione Mat. Ital.,B16, No. 2, 566?583 (1979). · Zbl 0436.13004
[467] E. Formanek, ?The center of the ring of 3 x 3 generic matrices,? Linear Multilinear Algebra,7, No. 3, 203?212 (1979). · Zbl 0419.16010 · doi:10.1080/03081087908817278
[468] E. Formanek, ?The center of the ring of 4 x 4 generic matrices,? J. Algebra,62, No. 2, 304?319 (1980). · Zbl 0437.16013 · doi:10.1016/0021-8693(80)90184-2
[469] R. Fossum and H.-B. Foxby, ?The category of graded modules,? Math. Scand.,35, No. 2, 288?300 (1974). · Zbl 0298.13012 · doi:10.7146/math.scand.a-11553
[470] D. Fox, ?On localizing orderable modules,? J. Austral. Math. Soc.,A26, No. 1, 59?64 (1978). · Zbl 0405.06006 · doi:10.1017/S1446788700011514
[471] H.-B. Foxby, ?Injective modules under flat base change,? Proc. Am. Math. Soc.,50, 23?27 (1975). · Zbl 0318.13014 · doi:10.1090/S0002-9939-1975-0409439-7
[472] A. Frei and H. Kleisli, ?Shape invariant functors: application in module theory,? Math. Z.,164, No. 2, 179?183 (1978). · Zbl 0392.18010 · doi:10.1007/BF01174823
[473] A. Fröhlich, ?Locally free modules over arithmetic orders,? J. Reine Angew. Math.,274/275, 112?124 (1975). · Zbl 0316.12013
[474] L. Fuchs, ?Vector spaces with valuations,? J. Algebra,35, Nos. 1?3, 23?38 (1975). · Zbl 0318.15002 · doi:10.1016/0021-8693(75)90033-2
[475] L. Fuchs, ?Cotorsion modules over Noetherian hereditary rings,? Houston J. Math.,3, No. 1, 33?46 (1977). · Zbl 0347.16014
[476] L. Fuchs, ?Vector spaces with general valuations,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 433?450.
[477] L. Fuchs, ?Subfree valued vector spaces,? Lect. Notes Math.,616, 158?167 (1977). · Zbl 0389.15001 · doi:10.1007/BFb0068194
[478] L. Fuchs, ?Valued vector spaces and Abelian p-groups,? Groupe Étude Algèbre. Univ. Pierre et Marie Curie, 1976?1977,2, No. 7, 1?12 (1978).
[479] L. Fuchs, ?On a duality of modules over valuation rings,? Ann. Mat. Pura Appl.,117, 227?232 (1978). · Zbl 0417.13015 · doi:10.1007/BF02417892
[480] L. Fuchs and F. Loonstra, ?On a class of submodules in direct products,? Atti Accad. Naz. Lincei Rend., No. 6, 743?748 (1976). · Zbl 0369.16020
[481] L. Fuchs, E. Kirkman, and J. Kuzmanovich, ?Hereditary module-finite algebras,? J. London Math. Soc.,19, No. 2, 268?276 (1979). · Zbl 0393.16007
[482] J. Fuelberth and J. Kuzmanovich, ?On the structure of splitting rings,? Commun. Algebra,3, No. 10, 913?949 (1975). · Zbl 0314.16019 · doi:10.1080/00927877508822080
[483] J. Fuelberth and J. Kuzmanovich, ?The structure of semiprimary and Noetherian hereditary rings,? Trans. Am. Math. Soc.,212, No. 485, 83?111 (1975). · Zbl 0314.16018 · doi:10.1090/S0002-9947-1975-0376754-X
[484] J. Fuelberth and J. Kuzmanovich, ?Primary direct sum decomposition,? Commun. Algebra,4, No. 3, 285?304 (1976). · Zbl 0325.16006 · doi:10.1080/00927877608822107
[485] ?Split subdirect products and piecewise domains,? Can. J. Math.,28, No. 2, 408?419 (1976). · Zbl 0307.16016
[486] J. Fuelberth and J. Kuzmanovich, ?On the structure of finitely generated splitting rings,? Pac. J. Math.,80, No. 2, 389?424 (1979). · Zbl 0415.16018 · doi:10.2140/pjm.1979.80.389
[487] J. Fuelberth, J. Kuzmanovich, and T. S. Shores, ?Splitting torsion theories over commutative rings,? Bull. Austral. Math. Soc.,13, No. 3, 457?464 (1975). · Zbl 0322.13003 · doi:10.1017/S0004972700024709
[488] K. Fujita and S. Itoh, ?A note on Noetherian Hilbert rings,? Hiroshima Math. J.,10, No. 1, 153?161 (1980). · Zbl 0513.13004
[489] K. R. Fuller, ?On rings whose left modules are direct sums of finitely generated modules,? Proc. Am. Math. Soc.,54, 39?44 (1976). · Zbl 0325.16024 · doi:10.1090/S0002-9939-1976-0393133-6
[490] K. R. Fuller, ?Weakly symmetric rings of distributive module type,? Commun. Algebra,5, No. 9, 997?1008 (1977). · Zbl 0372.16010 · doi:10.1080/00927877708822207
[491] K. R. Fuller, ?Rings of left invariant module type,? Commun. Algebra,6, No. 2, 153?167 (1978). · Zbl 0366.16009 · doi:10.1080/00927877808822238
[492] K. R. Fuller, ?On a generalization of serial rings. I,? in: Representation Theory of Algebras, Proc. Philadelphia Conf., New York-Basel (1979), pp. 353?367.
[493] K. R. Fuller, ?Biserial rings,? Lect. Notes Math.,734, 64?90 (1979). · Zbl 0411.16023 · doi:10.1007/BFb0103154
[494] K. R. Fuller, ?On a generalization of serial rings. II,? Commun. Algebra,8, No. 7, 635?661 (1980). · Zbl 0429.16023 · doi:10.1080/00927878008822480
[495] K. R. Fuller, and J. Haack, ?Rings with quivers that are trees,? Pac. J. Math.,76, No. 2, 371?379 (1978). · Zbl 0389.16011 · doi:10.2140/pjm.1978.76.371
[496] K. R. Fuller, J. Haack, and H. Hullinger, ?Stable equivalence of uniserial rings,? Proc. Am. Math. Soc.,68, No. 2, 153?158 (1978). · Zbl 0403.16016 · doi:10.1090/S0002-9939-1978-0463231-9
[497] K. R. Fuller and W. A. Shutters, ?Projective modules over noncommutative semilocal rings,? Tohoku Math. J.,27, No. 3, 303?311 (1975). · Zbl 0316.16026 · doi:10.2748/tmj/1203529242
[498] M. R. Gabel, ?Lower bounds on the stable range of polynomial rings,? Pac. J. Math., 61, No. 1, 117?120 (1975). · Zbl 0322.13011 · doi:10.2140/pjm.1975.61.117
[499] P. Gabriel, ?Christine Riedtmann and the self-injective algebras of finite representation type,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 453?458.
[500] S. Garavaglia, ?Direct product decomposition of theories of modules,? J. Symbol. Logic,44, No. 1, 77?88 (1979). · Zbl 0438.03038 · doi:10.2307/2273705
[501] B. J. Gardner, ?Some aspects of T-nilpotence,? Pac. J. Math.,53, 117?130 (1974). · Zbl 0253.16009 · doi:10.2140/pjm.1974.53.117
[502] B. J. Gardner, ?Some aspects of T-nilpotence. II. Lifting properties over T-nilpotent ideals,? Pac. J. Math.,59, No. 2, 445?453 (1975). · Zbl 0296.16015 · doi:10.2140/pjm.1975.59.445
[503] B. J. Gardner, ?A note on ring epimorphisms and polynomial identities,? Comment. Math. Univ. Carol.,20, No. 2, 293?307 (1979). · Zbl 0409.16017
[504] B. J. Gardner and P. N. Stewart, ?On semisimple radical classes,? Bull. Austral. Math. Soc.,13, No. 3, 349?353 (1975). · Zbl 0307.16008 · doi:10.1017/S0004972700024606
[505] A. V. Geramita and Ch. Small, Introduction to Homological Methods in Commutative Rings, Queen’s Papers Pure Appl. Math., No. 43 (1976).
[506] L. J. Gerstein, ?A local approach to matric equivalence,? Linear Algebra Appl.,16, No. 3, 221?232 (1977). · Zbl 0386.15009 · doi:10.1016/0024-3795(77)90005-2
[507] R. Gilmer, ?Modules that are finite sums of simple submodules,? Publ. Math.,24, Nos. 1?2, 5?8 (1977). · Zbl 0371.13008
[508] R. Gilmer and A. Grams, ?Finite intersections of quotient rings of a Dedekind domain,? J. London Math. Soc.,12, No. 3, 257?261 (1976). · Zbl 0316.13008 · doi:10.1112/jlms/s2-12.3.257
[509] R. Gilmer and W. Heinzer, ?The Noetherian property for quotient rings of infinite polynomial rings,? Proc. Am. Math. Soc.,76, No. 1, 1?7 (1979). · Zbl 0388.13007 · doi:10.1090/S0002-9939-1979-0534377-2
[510] R. Gilmer and J. F. Hoffmann, ?A characterization of Prüfer domains in terms of polynomials,? Pac. J. Math.,60, No. 1, 81?85 (1975). · Zbl 0307.13011 · doi:10.2140/pjm.1975.60.81
[511] S. M. Ginn, ?A counterexample to a theorem of Kurshan,? J. Algebra,40, No. 1, 105?106 (1976). · Zbl 0328.16023 · doi:10.1016/0021-8693(76)90090-9
[512] S. M. Ginn and P. B. Moss, ?A decomposition theorem for Noetherian orders in artinian rings,? Bull. London Math. Soc.,9, No. 2, 177?181 (1977). · Zbl 0355.16013 · doi:10.1112/blms/9.2.177
[513] S. Glaz and W. V. Vasconcelos, ?Flat ideals. II,? Manuscripta Math.,22, No. 4, 325?341 (1977). · Zbl 0367.13002 · doi:10.1007/BF01168220
[514] V. K. Goel and S. K. Jain, ??-injective modules and rings whose cyclics are ?-injective,? Commun. Algebra,6, No. 1, 59?73 (1978). · Zbl 0368.16010 · doi:10.1080/00927877808822233
[515] V. K. Goel and S. K. Jain, ?Semiperfect rings with quasiprojective left ideals,? Math. J. Okayama Univ.,19, No. 1, 39?43 (1976). · Zbl 0353.16013
[516] V. K. Goel, S. K. Jain, and S. Singh, ?Rings whose cyclic modules are injective or projective,? Proc. Am. Math. Soc.,53, No. 1, 16?18 (1975). · Zbl 0313.16025 · doi:10.2307/2040356
[517] V. K. Goel, S. K. Jain, and S. Singh, ?Semiprime rings with finite length w.r.t. an idempotent kernel functor,? Israel J. Math.,28, Nos. 1?2, 110?112 (1977). · Zbl 0366.16001 · doi:10.1007/BF02759786
[518] J. S. Golan, ?Matching torsion and cotorsion theories,? Glasgow Math. J.,15, 176?179 (1974). · Zbl 0305.16016 · doi:10.1017/S001708950000238X
[519] J. S. Golan, ?Modules satisfying both chain conditions with respect to a torsion theory,? Proc. Am. Math. Soc.,52, 103?108 (1975). · Zbl 0311.16024 · doi:10.1090/S0002-9939-1975-0429981-2
[520] J. S. Golan, ?On the maximal support of a module,? Commun. Algebra,4, No. 3, 219?231 (1976). · Zbl 0327.16012 · doi:10.1080/00927877608822102
[521] J. S. Golan, ?Some functors arising from the consideration of torsion theories over noncommutative rings,? Bull. Austral. Math. Soc.,15, No. 3, 455?460 (1976). · Zbl 0334.16003 · doi:10.1017/S0004972700022899
[522] J. S. Golan, ?Decomposition and dimension in module categories,? Lecture Notes Pure Appl. Math., Vol. 33, Marcel Dekker, New York-Basel (1977).
[523] J. S. Golan, ?Quelques utilisations des formules de Camillo-Zelmanowitz,? C. R. Acad. Sci.,286, No. 17, A731-A734 (1978). · Zbl 0375.16024
[524] J. S. Golan, ?The lattice of torsion theories associated with a ring,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 25?43.
[525] J. S. Golan, ?Rings having a composition series with respect to a torsion theory,? Commun. Algebra,7, No. 6, 611?623 (1979). · Zbl 0397.16031 · doi:10.1080/00927877908822365
[526] J. S. Golan, ?Semisimple artinian rings of quotients,? Am. Math. Men.,86, No. 6, 474?475 (1979). · Zbl 0428.16003 · doi:10.2307/2320417
[527] J. S. Golan, ?Colocalization at idempotent ideals,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 631?668.
[528] J. S. Golan, ?Some torsion theories are compact,? Math. Jpn.,24, No. 6, 635?639 (1979). · Zbl 0429.16020
[529] J. S. Golan and R. W. Miller, ?Cotorsion free modules and colocalizations,? Commun. Algebra,6, No. 12, 1217?1230 (1978). · Zbl 0378.16002 · doi:10.1080/00927877808822289
[530] J. S. Golan, J. Raynaud, and F. van Oystaeyen, ?Sheaves over the spectra of certain noncommutative rings,? Commun. Algebra,4, No. 5, 491?502 (1976). · Zbl 0327.16002 · doi:10.1080/00927877608822118
[531] A. Goldie, ?Reduced rank on modules, application to some theorems on Noetherian rings,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 45?58.
[532] A. Goldie and G. Krause, ?Artinian quotient rings of ideal invariant Noetherian rings,? J. Algebra,63, No. 2, 374?388 (1980). · Zbl 0428.16004 · doi:10.1016/0021-8693(80)90079-4
[533] B. Goldsmith, ?Endomorphism rings of torsion-free modules over a complete discrete valuation ring,? J. London Math. Soc.,18, No. 3, 464?471 (1978). · Zbl 0394.16024 · doi:10.1112/jlms/s2-18.3.464
[534] B. Goldston and A. C. Mewborn, ?A structure sheaf for a noncommutative Noetherian ring,? Bull. Am. Math. Soc.,81, No. 5, 944?946 (1975). · Zbl 0318.16007 · doi:10.1090/S0002-9904-1975-13904-8
[535] K. R. Goodearl, ?Global dimension of differential operator rings. II,? Trans. Am. Math. Soc.,209, No. 482, 65?85 (1975); III. J. London Math. Soc.,17, No. 3, 397?409 (1978). · doi:10.1090/S0002-9947-1975-0382359-7
[536] K. R. Goodearl, Ring Theory. Nonsingular Rings and Modules, Marcel Dekker, New York-Basel (1976).
[537] K. R. Goodearl, ?Completions of regular rings. I,? Math. Ann.,220, No. 3, 229?252 (1976). · Zbl 0321.16010 · doi:10.1007/BF01431094
[538] K. R. Goodearl, ?Direct sum properties of quasiinjective modules,? Bull. Am. Math. Soc.,82, No. 1, 108?110 (1976). · Zbl 0321.16016 · doi:10.1090/S0002-9904-1976-13980-8
[539] K. R. Goodearl, ?Power-cancellation of groups and modules,? Pac. J. Math.,64, No. 2, 387?412 (1976). · Zbl 0308.16016 · doi:10.2140/pjm.1976.64.387
[540] K. R. Goodearl, ?Regular rings and rank functions,? Lect. Notes Math.,545, 83?104 (1976). · Zbl 0341.16006 · doi:10.1007/BFb0080306
[541] K. R. Goodearl, ?Power-cancellation of modules,? in: Ring Theory. II. Proc. 2nd Okla. Conf., 1975, New York-Basel (1977), pp. 131?147.
[542] K. R. Goodearl, ?Completions of regular rings. II,? Pac. J. Math.,72, No. 2, 423?640 (1977). · Zbl 0337.16002 · doi:10.2140/pjm.1977.72.423
[543] K. R. Goodearl, ?Centers of regular self-injective rings,? Pac. J. Math.,76, No. 2, 381?395 (1978). · Zbl 0351.16007 · doi:10.2140/pjm.1978.76.381
[544] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne (1979).
[545] K. R. Goodearl, ?Artinian and Noetherian modules over regular rings,? Commun. Algebra,8, No. 5, 477?504 (1980). · Zbl 0438.16006 · doi:10.1080/00927878008822470
[546] K. R. Goodearl and A. K. Boyle, Dimension Theory for Nonsingular Injective Modules, Mem. AMS, No. 177 (1976). · Zbl 0335.16024
[547] K. R. Goodearl and D. Handelman, ?Simple self-injective rings,? Commun. Algebra,3, No. 9, 797?834 (1975). · Zbl 0311.16029 · doi:10.1080/00927877508822074
[548] K. R. Goodearl and R. B. Warfield, Jr., ?Algebras over zero-dimensional rings,? Math. Ann.,223, No. 2, 157?168 (1978). · Zbl 0317.16004 · doi:10.1007/BF01360879
[549] K. R. Goodearl and R. B. Warfield, Jr., ?Simple modules over hereditary Noetherian prime rings,? J. Algebra,57, No. 1, 82?100 (1979). · Zbl 0422.16002 · doi:10.1016/0021-8693(79)90210-2
[550] R. Gordon, ?Some aspects of noncommutative Noetherian rings,? Lect. Notes Math.,545, 105?127 (1976). · Zbl 0345.16027 · doi:10.1007/BFb0080307
[551] R. Gordon and E. Green, ?A representation theory for Noetherian rings,? J. Algebra,39, No. 1, 100?130 (1976). · Zbl 0344.16021 · doi:10.1016/0021-8693(76)90064-8
[552] R. Gordon and E. Green, ?Indecomposable modules with cores,? Bull. Am. Math. Soc.,82, No. 4, 590?592 (1976). · Zbl 0344.16019 · doi:10.1090/S0002-9904-1976-14119-5
[553] R. Gordon and E. Green, ?Indecomposable modules: amalgamations,? Bull. Am. Math. Soc.,82, No. 6, 884?887 (1976). · Zbl 0344.16020 · doi:10.1090/S0002-9904-1976-14192-4
[554] R. Gordon and E. Green, ?Modules with cores and amalgamations of indecomposable modules,? Mem. Am. Math. Soc., No. 187 (1977). · Zbl 0363.16015
[555] S. Goto and K. Watanabe, ?On graded rings. 1,? J. Math. Soc. Jpn.,30, No. 2, 179?213 (1978). · Zbl 0406.13007 · doi:10.2969/jmsj/03020179
[556] S. Goto and K. Watanabe, ?On graded rings. 2. (Zn graded rings),? Tokyo J. Math.,1, No. 2, 237?261 (1978). · Zbl 0406.13007 · doi:10.3836/tjm/1270216496
[557] J. Goursaud, ?Sur les V-anneaux réguliers,? Sem. Alg. Noncommutative, 1975?1976, Paris XI, Orsay (1976).
[558] S. Goto and L. Jeremy, ?Un anneau régulier continu à gauche et ?0-continu à droite est continu,? C. R. Acad. Sci.,283, No. 11, A807-A808 (1976). · Zbl 0341.16008
[559] S. Goto and L. Jeremy, ?Une notion de rang dans les facteurs réguliers autoinjectifs à droite,? Commun. Algebra,5, No. 8, 829?839 (1977). · Zbl 0357.16008 · doi:10.1080/00927877708822197
[560] S. Goto, J. Osterburg, J.-L. Pascaud, and J. Valette, ?Points fixes des anneaux réguliers autoinjectifs,? C. R. Acad. Sci.,A290, No. 21, 985?988 (1980).
[561] S. Goto and J.-L. Pascaud, ?Anneaux semihereditaires,? C. R. Acad. Sci.,A284, No. 1, 583?586 (1977).
[562] S. Goto and J.-L. Pascaud, ?Anneaux de polynomes semihereditaires,? Lect. Notes Math.,734, 131?157 (1979). · doi:10.1007/BFb0103157
[563] S. Goto and J. Valette, ?Sur l’enveloppe des anneaux de groupes réguliers,? Bull. Soc. Math. France,103, No. 1, 91?102 (1975).
[564] S. Goto and J. Valette, ?Sur les anneaux de groupe hereditaires,? Lect. Notes Math.,740, 432?443 (1979). · doi:10.1007/BFb0071073
[565] S. Grabiner, ?Finitely generated Noetherian and Artinian Banach modules,? Indiana Univ. Math. J.,26, No. 3, 413?426 (1977). · Zbl 0354.46032 · doi:10.1512/iumj.1977.26.26032
[566] E. L. Green, ?A note on modules with waists,? Ill. J. Math.,21, No. 2, 385?387 (1977). · Zbl 0347.16018
[567] E. L. Green, ?Diagrammatic techniques in the study of indecomposable modules,? in: Ring Theory 2. Proc 2nd Okla. Conf., 1975, New York-Basel (1977), pp. 149?169.
[568] E. L. Green, ?On the structure of indecomposable modules,? in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 369?380.
[569] E. L. Green, ?Frobenius algebras and their quivers,? Can. J. Math.,30, No. 5, 1029?1044 (1978). · Zbl 0362.16006 · doi:10.4153/CJM-1978-087-5
[570] E. L. Green, ?On the decomposability of amalgamated sums,? J. Pure Appl. Algebra,14, No. 3, 259?272 (1979). · Zbl 0423.18003 · doi:10.1016/0022-4049(79)90045-8
[571] E. L. Green and I. Reiten, ?On the construction of ring extensions,? Glasgow Math. J.,17, No. 1, 1?11 (1976). · Zbl 0319.16011 · doi:10.1017/S0017089500002640
[572] B. Greenberg, ?Coherence in Cartesian squares,? J. Algebra,50, No. 1, 12?25 (1978). · Zbl 0374.13008 · doi:10.1016/0021-8693(78)90170-9
[573] B. Greenberg and W. V. Vasconcelos, ?Coherence of polynomial rings,? Proc. Am. Math. Soc.,54, 59?64 (1976). · Zbl 0332.13012 · doi:10.1090/S0002-9939-1976-0417164-2
[574] R. P. Grimaldi, ?Baer and UT-modules over domains,? Pac. J. Math.,54, No. 2, 59?72 (1974). · Zbl 0283.13004 · doi:10.2140/pjm.1974.54.59
[575] K. M. Gruenberg and K. W. Roggenkamp, ?Extension categories of groups and modules. I. Essential covers,?49, No. 2, 564?594 (1977). · Zbl 0376.16028
[576] L. Grünenfelder, ?On the homology of filtered and graded rings,? J. Pure Appl. Algebra,14, No. 1, 21?37 (1979). · Zbl 0394.20040 · doi:10.1016/0022-4049(79)90010-0
[577] L. Gruson and Ch. U. Jensen, ?Deux applications de la notion de L-dimension,? C. R. Acad. Sci.,A282, No. 1, 23?25 (1976). · Zbl 0341.18010
[578] J. Guérindon, ?On the linearly compact envelope, Queen’s Pap.,? Pure Appl. Math., No. 42, 249?252 (1975).
[579] J. Guérindon, ?Séries restreintes et compacité linéaire,? Semin. P. Dubreil. Algèbre. Univ. Pierre et Marie Curie,28, 7/1?7/6 (1974?1975).
[580] J. Guérindon, ?Sur les modules linéairement compactés,? Groupe Étude Algèbre. Univ. Pierre et Marie Curie, 1976?1977,2, 1/01?1/08 (1978).
[581] J. Guérindon, ?Décomposition canonique d’un module artinien,? C. R. Acad. Sci.,286, No. 20, A867-A869 (1978).
[582] W. H. Gustafson, ?Remark on relatively projective modules,? Math. Jpn.,16, 21?24 (1971). · Zbl 0229.20014
[583] W. H. Gustafson, P. R. Halmos, and J. M. Zelmanowitz, ?The Serre conjecture,? Am. Math. Mon.,85, No. 5, 357?359 (1978). · Zbl 0392.13010 · doi:10.2307/2321341
[584] J. K. Haack, ?Self-duality and serial rings,? J. Algebra,59, No. 2, 345?363 (1979). · Zbl 0444.16012 · doi:10.1016/0021-8693(79)90132-7
[585] A. Hagnany, ?Reflective modules over certain differential polynomial rings,? Proc. Am. Math. Soc.,73, No. 3, 313?318 (1979). · doi:10.1090/S0002-9939-1979-0518511-6
[586] D. Handelman, ?Simple regular rings with a unique rank function,? J. Algebra,42, No. 1, 60?80 (1976). · Zbl 0335.16013 · doi:10.1016/0021-8693(76)90026-0
[587] D. Handelman, ?Perspectivity and cancellation in regular rings,? J. Algebra,48, No. 1, 1?16 (1977). · Zbl 0363.16009 · doi:10.1016/0021-8693(77)90289-7
[588] A. Hanna and S. Khuri, ?Modules with irredundant sets of cogenerators,? Rend. 1st Mat. Univ. Trieste,9, Nos. 1?2, 38?45 (1977). · Zbl 0416.16008
[589] J. Hannah, ?Maximal quotient rings of prime group algebras. 2. Uniform right ideals,? J. Austral. Math. Soc.,A24, No. 3, 339?349 (1977). · Zbl 0421.16009 · doi:10.1017/S144678870002036X
[590] J. Hannah, ?Quotient rings of subgroup algebras,? Bull. London Math. Soc.,10, No. 1, 81?83 (1978). · Zbl 0383.16006 · doi:10.1112/blms/10.1.81
[591] J. Hannah, ?Maximal quotient rings of prime nonsingular algebras,? Bull. Austral. Math. Soc.,18, No. 2, 305?306 (1978). · Zbl 0391.16003 · doi:10.1017/S0004972700008145
[592] J. Hannah, ?Simple quotient rings of group algebras,? J. Algebra,59, No. 1, 188?201 (1979). · Zbl 0421.16008 · doi:10.1016/0021-8693(79)90156-X
[593] J. Hannah and K. C. O’Meara, ?Maximal quotient rings of prime group algebras,? Proc. Am. Math. Soc.,65, No. 1, 1?7 (1977). · doi:10.1090/S0002-9939-1977-0573039-0
[594] F. T. Hannick, ?Some notes on left coherent rings,? Proc. Mont. Acad. Sci.,38, 107?110 (1979).
[595] F. Hansen, ?Schranken für die Gabriel- und Krull-Dimension Idealisatorähnlicher Ringerweiterungen,? Arch. Math.,28, No. 6, 584?593 (1977). · Zbl 0356.16005 · doi:10.1007/BF01223970
[596] F. Hansen, ?Ringerweiterungen und lokalisation,? Commun. Algebra,7, No. 7, 689?751 (1979). · Zbl 0405.16019 · doi:10.1080/00927877908822371
[597] F. Hansen and M. L. Teply, ?On the Gabriel dimension and subidealizer rings,? Lect. Notes Math.,700, 95?118 (1979). · Zbl 0405.16018 · doi:10.1007/BFb0063463
[598] M. Harada, ?On the exchange property in a direct sum of indecomposable modules,? Osaka J. Math.,12, No. 3, 719?736 (1975). · Zbl 0325.16019
[599] M. Harada, ?On a minimal chain of iterated idealizers from an HNP-ring,? J. London Math. Soc.,12, No. 2, 183?191 (1976). · Zbl 0329.16005 · doi:10.1112/jlms/s2-12.2.183
[600] M. Harada, ?A ring theoretical proof in a factor category of indecomposable modules,? J. Math. Soc. Jpn.,28, No. 1, 160?167 (1976). · Zbl 0313.16032 · doi:10.2969/jmsj/02810160
[601] M. Harada, ?On small submodules in the total quotient ring of a commutative ring,? Rev. Union Mat. Argent.,28, No. 2, 99?102 (1977). · Zbl 0383.13007
[602] M. Harada, ?Small submodules in a projective module and semi-T-nilpotent sets,? Osaka J. Math.,14, No. 2, 355?364 (1977). · Zbl 0364.16005
[603] M. Harada, ?A note on hollow modules,? Rev. Union. Mat. Argent.,28, Nos. 3?4 (1977?1978).
[604] M. Harada, ?On the small hulls of a commutative rings,? Osaka J. Math.,15, 679?682 (1978). · Zbl 0403.13002
[605] M. Harada, ?On small ring homomorphisms,? Osaka J. Math.,15, No. 2, 365?370 (1978). · Zbl 0403.13001
[606] M. Harada, ?Nonsmall modules and noncosmall modules,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 669?690.
[607] M. Harada and T. Ishii, ?On perfect rings and the exchange property,? Osaka J. Math.,12, No. 2, 483?491 (1975). · Zbl 0325.16018
[608] B. Hartley, ?Uncountable artinian modules and uncountable soluble groups satisfying Min-n,? Proc. London Math. Soc.,35, No. 1, 55?75 (1977). · Zbl 0356.20030 · doi:10.1112/plms/s3-35.1.55
[609] B. Hartley, ?Ihjective modules over group rings,? Q. J. Math.,28, No. 109, 1?29 (1977). · Zbl 0345.16010 · doi:10.1093/qmath/28.1.1
[610] H. Harui, ?Remarks on injective modules over commutative regular rings,? Bull. Fukuoka Univ. Educ. Nat. Sci.,25, 1?8 (1975). · Zbl 0324.13005
[611] H. Harui, ?On torsion-free injective modules,? Bull. Fukuoka Univ. Educ. Nat. Sci.,26, 1?11 (1976).
[612] H. Harui, ?Decompositions of injective modules over non-Noetherian rings,? Acta Math. Hungar.,30, Nos. 3?4, 203?217 (1977). · Zbl 0369.13012 · doi:10.1007/BF01896185
[613] J. Hauger, ?Aufsteigende Kettenbedingung für zyklische Moduln und perfekte Endomorphismenringe,? Acta Math. Acad. Sci. Hung.,28, Nos. 3?4, 275?278 (1976). · Zbl 0336.16026 · doi:10.1007/BF01896790
[614] J. Hauger, ?Injektive Moduln über Ringen linearer Differentialoperatoren,? Monatsh. Math.,86, No. 3, 189?201 (1978). · Zbl 0365.16016 · doi:10.1007/BF01659719
[615] J. Hauger and W. Zimmermann, ?Lokalisierung und Moritas Fh-bedingung,? Commun. Algebra,4, No. 3, 199?217 (1976). · Zbl 0326.16004 · doi:10.1080/00927877608822101
[616] G. J. Hauptfleisch and D. Döman, ?Filtered projective and semiflat modules,? Quastiones Math.,1, No. 2, 197?217 (1976). · Zbl 0351.16016 · doi:10.1080/16073606.1976.9632524
[617] G. J. Hauptfleisch and F. Loonstra, ?On modules over rings of type (n, k),? Acta Math. Acad. Sci. Hung.,31, Nos. 1?2, 15?19 (1978). · Zbl 0381.16011 · doi:10.1007/BF01896069
[618] M. Hazenwinkel, ?Constructing formal groups. VIII: Formal A-modules,? Compos. Math.,38, No. 3, 277?291 (1979).
[619] M. Hazenwinkel, ?Infinite dimensional universal formal group laws and formal A-modules,? Lect. Notes Math.,732, 124?143 (1979). · Zbl 0419.14025 · doi:10.1007/BFb0066641
[620] J. R. Hedstrom, ?Integral closure of generalized quotient rings,? Math. Nachr.,69, 145?148 (1975). · Zbl 0321.13006 · doi:10.1002/mana.19750690114
[621] J. Henderson and M. Orzech, ?Cotorsion modules for torsion theories,? Port. Math.,36, 33?40 (1977). · Zbl 0417.13006
[622] D. Hill, ?The structure of semilocal HQ-rings,? J. London Math. Soc.,12, No. 2, 129?132 (1975?1976).
[623] D. Hill, ?Endomorphism rings of hereditary modules,? Arch. Math.,28, No. 1, 63?66 (1977). · Zbl 0356.16006 · doi:10.1007/BF01223887
[624] P. Hill, ?Criteria for freeness in groups and valuated vector spaces,? Lect. Notes Math.,616, 140?157 (1977). · Zbl 0372.20041 · doi:10.1007/BFb0068193
[625] H. L. Hiller, ?Derived functors of torsion,? Can. Math. Bull.,19, No. 1, 63?66 (1976). · Zbl 0336.18010 · doi:10.4153/CMB-1976-008-5
[626] H. L. Hiller, ?Radicals and local freeness,? Arch. Math.,32, No. 2, 123?127 (1979). · Zbl 0398.16002 · doi:10.1007/BF01238478
[627] Y. Hirano, ?On Fitting’s lemma,? Hiroshima Math. J.,9, No. 3, 623?626 (1979). · Zbl 0431.16010
[628] Y. Hirano, Sh. Ikehata, and H. Tominaga, ?Commutativity theorems of Outcalt-Yaqub type,? Math. J. Okayama Univ.,21, No. 1, 21?24 (1979). · Zbl 0417.16018
[629] Y. Hirano and Sh. Ikehata, ?Regular rings, V-rings, and their generalizations,? Hiroshima Math. J.,9, No. 1, 137?149 (1979).
[630] V. A. Hiremath, ?Finitely projective modules over a Dedekind domain,? J. Austral. Math. Soc.,A26, No. 3, 330?336 (1978). · doi:10.1017/S144678870001185X
[631] V. A. Hiremath, ?On cofinitely injective modules,? J. London Math. Soc.,17, No. 1, 28?32 (1978). · Zbl 0378.16016 · doi:10.1112/jlms/s2-17.1.28
[632] M. Hochster, ?Cyclic purity versus purity in excellent Noetherian rings,? Trans. Am. Math. Soc.,231, No. 2, 463?488 (1977). · Zbl 0369.13005 · doi:10.1090/S0002-9947-1977-0463152-5
[633] A. Horn, ?Quasi-Frobenius quotient rings of group rings,? J. Austral. Math. Soc.,20, No. 4, 394?397 (1975). · Zbl 0312.16009 · doi:10.1017/S1446788700016128
[634] A. Horn, ?Twisted group rings and quasi-Frobenius quotient rings,? Arch. Math.,26, No. 6, 581?587 (1975). · Zbl 0328.20004 · doi:10.1007/BF01229784
[635] J. A. Huckaba and J. M. Keller, ?Annihilation of ideals in commutative rings,? Pac. J. Math.,83, No. 2, 375?379 (1979). · Zbl 0388.13001 · doi:10.2140/pjm.1979.83.375
[636] A. Hudry, ?Épimorphisms plats à buts locaux, quasilocaux et semilocaux,? Publs. Dep. Math.,12, No. 2, 31?41 (1975).
[637] A. Hudry, ?Sur la théorie des idéaux dans les anneaux premiers à identité polynomiale,? Arch. Math.,31, No. 5, 443?450 (1979). · Zbl 0388.16013 · doi:10.1007/BF01226473
[638] H. L. Hullinger, ?Stable equivalence and rings whose modules are a direct sum of finitely generated modules,? J. Pure Appl. Algebra,16, No. 3, 265?273 (1980). · Zbl 0441.16028 · doi:10.1016/0022-4049(80)90032-8
[639] R. Hunter, F. Richman, and E. Walker, ?Warfield modules,? Lect. Notes Math.,616, 87?123 (1977). · doi:10.1007/BFb0068191
[640] J. Hutchinson and M. Fenrick, ?Primary decompositions and Morita contexts,? Commun. Algebra,6, No. 13, 1359?1368 (1978). · Zbl 0403.18006 · doi:10.1080/00927877808822294
[641] J. Hutchinson and D. R. Turnridge, ?Morita equivalent quotient rings,? Commun. Algebra,4, No. 7, 669?675 (1976). · Zbl 0343.16004 · doi:10.1080/00927877608822128
[642] J. D. Ion and C. Nastasescu, ?Anneaux gradués semisimples,? C. R. Acad. Sci.,283, No. 16, A1077-A1080 (1976). · Zbl 0348.16009
[643] J. D. Ion and C. Nastasescu, ?Anneaux gradués semisimples,? Rev. Roum. Math. Pures Appl.,23, No. 4, 573?588 (1978).
[644] B. W. Irlbeck, ?Finitely generated projective ideals in commutative rings,? J. Reine Angew. Math.,298, 98?100 (1978).
[645] R. S. Irving, ?Generic flatness and the nullstellensatz for Ore extensions,? Commun. Algebra,7, No. 3, 259?277 (1979). · Zbl 0402.16002 · doi:10.1080/00927877908822347
[646] R. S. Irving, ?Noetherian algebras and the Nullstellensatz,? Lect. Notes Math.,740, 80?87 (1979). · Zbl 0423.16003 · doi:10.1007/BFb0071054
[647] R. S. Irving, ?An algebra whose simple modules are of arbitrary finite degree,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 87?96.
[648] R. S. Irving, ?Finitely generated simple Ore domains with big centres,? Bull. London Math. Soc.,12, No. 3 (1980). · Zbl 0435.16002
[649] M. Ishibashi, ?A formulation of cancellation theory and its application to modules,? Comment. Math. Univ. St. Pauli,27, No. 1, 43?50 (1978). · Zbl 0392.13007
[650] T. Ishii, ?On locally direct summands of modules,? Osaka J. Math.,12, No. 2, 473?482 (1975). · Zbl 0313.16031
[651] G. Ivanov, ?Decompositions of modules over serial rings,? Commun. Algebra,3, No. 11, 1031?1036 (1975). · Zbl 0328.16021 · doi:10.1080/00927877508822084
[652] Y. Iwanaga, ?On rings with self-injective dimension ? 1,? Osaka J. Math.,15, 33?46 (1978). · Zbl 0402.16017
[653] Y. Iwanaga, ?On rings with finite self-injective dimension,? Commun. Algebra,7, No. 4, 393?414 (1979). · Zbl 0399.16010 · doi:10.1080/00927877908822356
[654] T. Izawa, ?A module whose double centralizer is semiprimary QF-3,? Repts. Fac. Sci. Shizuoka Univ.,10, 3?8 (1975).
[655] T. Izawa, ?Torsion theories and torsionless generators,? Repts. Fac. Sci. Shizuoka Univ.,11, 1?8 (1976). · Zbl 0358.18010
[656] T. Izawa, ?Injectors and projectors relative to torsion theory,? Repts. Fac. Sci. Shizuoka Univ.,12, 19?26 (1978). · Zbl 0376.18007
[657] G. Jacob, ?Sur certaines catégories de modules, généralisant les modules de type fini et les modules noéthériens,? C. R. Acad. Sci.,283, No. 9, 687?690 (1976).
[658] N. Jacobson, K. McCrimmon, and M. Parvathi, ?Localization of Jordan algebras,? Commun. Algebra,6, No. 9, 911?958 (1978). · Zbl 0394.17009 · doi:10.1080/00927877808822274
[659] S. K. Jain, ?Rings whose cyclic modules have certain properties and the duals,? in: Ring Theory. Proc. Conf. Ohio Univ., Athens, Ohio, 1976, Lect. Notes Pure Appl. Math., Vol. 25, Marcel Dekker, New York (1977), pp. 143?160.
[660] S. K. Jain and S. Singh, ?Rings with quasiprojective left ideals,? Pac. J. Math.,60, No. 1, 169?181 (1975). · doi:10.2140/pjm.1975.60.169
[661] S. K. Jain, S. Singh, and R. G. Symonds, ?Rings whose proper cyclic modules are quasiinjective,? Pac. J. Math.,67, No. 2, 461?472 (1976). · Zbl 0351.16021 · doi:10.2140/pjm.1976.67.461
[662] M. F. Janowitz, ?A note on Rickart rings and semi-Boolean algebras,? Algebra Univ.,6, No. 1, 9?12 (1976). · Zbl 0332.06011 · doi:10.1007/BF02485810
[663] W. G. Jansen, ?FSP rings and modules and local modules,? Commun. Algebra,6, No. 6, 617?637 (1978). · Zbl 0374.16019 · doi:10.1080/00927877808822261
[664] G. J. Janusz, ?Tensor products of orders,? J. London Math. Soc.,20, No. 2, 181?192 (1979). · Zbl 0433.16007
[665] A. V. Jategaonkar, ?Structure and classification of hereditary Noetherian prime rings,? in: Ring Theory, Proc. Conf., Park City, Utah, 1971, Academic Press, New York (1972), pp. 171?229.
[666] A. V. Jategaonkar, ?Principal ideal theorem for noetherian PI-rings,? J. Algebra,35, Nos. 1?3, 17?22 (1975). · Zbl 0308.16012 · doi:10.1016/0021-8693(75)90032-0
[667] A. V. Jategaonkar, ?Certain injectives are artinian,? Lect. Notes Math.,545, 128?139 (1976). · Zbl 0343.16021 · doi:10.1007/BFb0080308
[668] A. Jebli, ?Corps des fractions et topologies linéaires,? Thèse Doct. Sci. Math. Univ. Rennes, 1975. · Zbl 0312.13009
[669] C. U. Jensen, ?Peano rings of arbitrary global dimension,? J. London Math. Soc.,21, No. 1, 39?44 (1980). · Zbl 0416.03038 · doi:10.1112/jlms/s2-21.1.39
[670] C. U. Jensen, ?Applications logiques en théorie des anneaux et des modules,? Conf. Colloque d’Algèbre a Rennes, May 28?31, 1980.
[671] C. U. Jensen and P. Vamos, ?On the axiomatizability of certain classes of modules,? Math. Z.,167, No. 3, 227?237 (1979). · Zbl 0387.03012 · doi:10.1007/BF01174803
[672] L. Jeremy, ?Une notion de rang des facteurs réguliers autoinjectifs à droite,? Sem. Alg. Non Commutative, 1975?1976, No. 4, Paris XI, Orsay (1976).
[673] L. Jeremy, ?Modules ?-projectifs,? Sem. Alg. Commutative, 1975?1976, No. 12, Parix XI, Orsay (1976).
[674] L. Jeremy, ?L’arithmétique de von Neumann pour les facteurs injectifs,? J. Algebra,62, No. 1, 154?169 (1980). · Zbl 0429.16012 · doi:10.1016/0021-8693(80)90210-0
[675] M. I. Jinnah, ?Reflexive modules over regular local rings,? Arch. Math.,26, No. 4, 367?371 (1975). · Zbl 0309.13005 · doi:10.1007/BF01229753
[676] M. I. Jinnah, ?A note on PG-modules,? Math. Scand.,37, No. 1, 27?28 (1975). · Zbl 0332.13010 · doi:10.7146/math.scand.a-11584
[677] J. Jirasko, ?Pseudohereditary and pseudocohereditary preradicals,? Comment. Math. Univ. Carol.,20, No. 2, 317?327 (1979). · Zbl 0412.18013
[678] J. Jirasko, ?Generalized projectivity. II,? Comment. Math. Univ. Carol.,20, No. 3, 483?499 (1979). · Zbl 0416.16005
[679] H. Jiraskova, ?Generalized flatness and coherence,? Comment. Math. Univ. Carol.,21, No. 2, 293?300 (1980). · Zbl 0418.16014
[680] H. Jiraskova and J. Jirasco, ?Generalized projectivity,? Czech. Mat. J.,28, No. 4, 632?646 (1978).
[681] B. Johns, ?Annihilator conditions in Noetherian rings,? J. Algebra,49, No. 1, 222?224 (1977). · Zbl 0365.16008 · doi:10.1016/0021-8693(77)90282-4
[682] J. L. Johnson, ?Modules injective with respect to primes,? Commun. Algebra,7, No. 3, 327?332 (1977). · Zbl 0403.13006 · doi:10.1080/00927877908822351
[683] S. Jondrup, ?Projective modules,? Proc. Am. Math. Soc.,59, No. 2, 217?221 (1976). · doi:10.1090/S0002-9939-1976-0419525-4
[684] S. Jondrup, ?The centre of a right hereditary ring,? J. London Math. Soc.,15, No. 2, 211?212 (1977). · Zbl 0353.16012 · doi:10.1112/jlms/s2-15.2.211
[685] S. Jondrup, ?Flat and projective modules,? Math. Scand.,43, No. 2, 336?342 (1978). · Zbl 0406.16016 · doi:10.7146/math.scand.a-11787
[686] S. Jondrup, ?Rings of quotients of some semiprime P. I. rings,? Commun. Algebra,7, No. 3, 279?286 (1979). · Zbl 0398.16004 · doi:10.1080/00927877908822348
[687] S. Jondrup, ?Indecomposable modules,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 97?104.
[688] S. Jondrup, ?Homological dimensions of some P. I. rings,? Commun. Algebra,8, No. 7, 685?696 (1980). · Zbl 0431.16012 · doi:10.1080/00927878008822483
[689] S. Jondrup and C. Ringel, ?Remarks on a paper by Skornyakov concerning ring for which every module is a direct sum of s left ideals,? Arch. Math.,31, No. 4, 329?331 (1978). · Zbl 0402.16016 · doi:10.1007/BF01226456
[690] D. A. Jordan, ?A left Noetherian right Ore domain which is not right Noetherian,? Bull. London Math. Soc.,12, No. 3, 202?204 (1980). · Zbl 0433.16001 · doi:10.1112/blms/12.3.202
[691] J. Kado, ?Note on exchange property,? Math. J. Okayama Univ.,18, No. 2, 153?157 (1976). · Zbl 0335.16026
[692] M. Kamil, ?On quasi-artinian rings,? Rend. Math.,9, No. 4, 617?619 (1976).
[693] M. Kamil, ?On simple injective rings,? Rend. Math.,9, No. 4, 613?615 (1976).
[694] M.-Ch. Kang, ?Projective modules over some polynomial rings,? J. Algebra,59, No. 1, 65?76 (1979). · Zbl 0419.13006 · doi:10.1016/0021-8693(79)90153-4
[695] H. I. Karakas, ?On Noetherian modules,? METU J. Pure Appl. Sci.,5, No. 2, 165?168 (1972). · Zbl 0354.13011
[696] F. Kasch, Moduln und Ringe, B. G. Teubner, Stuttgart (1977).
[697] T. Kato, ?Structure of dominant modules,? J. Algebra,39, No. 2, 569?570 (1976). · Zbl 0325.16017 · doi:10.1016/0021-8693(76)90053-3
[698] T. Kato, ?Duality between colocalization and localization,? J. Algebra,55, No. 2, 351?374 (1978). · Zbl 0403.16023 · doi:10.1016/0021-8693(78)90227-2
[699] Y. Kawada, ?On dominant modules and dominant rings,? in: Proc. Tenth Symp. Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 62?82.
[700] Y. Kawada, ?On dominant modules and dominant rings,? J. Algebra,56, No. 2, 409?435 (1979). · Zbl 0403.16017 · doi:10.1016/0021-8693(79)90347-8
[701] G. O. Kenny, ?The completion of an Abelian L-group,? Can. J. Math.,27, No. 5, 980?985 (1975). · Zbl 0321.06021 · doi:10.4153/CJM-1975-101-1
[702] T. Kepka, ?Torsion theories and homological dimensions,? Stud. Alg. Anwend.,1, 41?44 (1976). · Zbl 0334.16006
[703] T. Kepka, ?Notes on quasimodules,? Comment. Math. Univ. Carol.,20, No. 2, 229?247 (1979). · Zbl 0413.20054
[704] T. Kepka and P. N?mec, ?Quasimodules generated by three elements,? Comment. Math. Univ. Carol.,20, No. 2, 249?266 (1979). · Zbl 0413.20055
[705] T. Kepka and P. Nemec, ?Trilinear construction of quasimodules,? Comment. Math. Univ. Carol.,21, No. 2, 341?354 (1980). · Zbl 0439.20049
[706] O. Kerner, ?Ringe mit verallgemeinerter Kupischreihe. I, II,? J. Reine Angew. Math.,305, 155?181 (1979);314, 177?195 (1980).
[707] O. Kerner and Th. Thode, ?Primary rings and related radical. I,? Arch. Math.,27, No. 4, 372?377 (1976). · Zbl 0331.16008 · doi:10.1007/BF01224688
[708] O. Kerner and Th. Thode, ?Primary rings and related radicals. II,? Commun. Algebra,4, No. 11, 1029?1044 (1976). · Zbl 0336.16011 · doi:10.1080/00927877608822149
[709] A. Kertesz, Rings, Modules and Radicals, Colloq. Math. Soc. Janos Bolyai, 6, North-Holland, Amsterdam-London (1973).
[710] M. N. Khan, ?A continuous ring in which every large right ideal is two sided,? Riv. Mat. Univ. Parma,2, 277?280 (1973). · Zbl 0316.16028
[711] M. Z. Khan, ?A note on RSI-ring,? Tamkang J. Math.,8, No. 2, 153?164 (1977). · Zbl 0407.16011
[712] M. Z. Khan, ?Modules over bounded hereditary noetherian prime rings,? Can. Math. Bull.,22, No. 1, 53?57 (1979). · Zbl 0402.16005 · doi:10.4153/CMB-1979-008-1
[713] S. M. Khaleelulla, ?A closed graph theorem for ordered topological Abelian groups,? Tamkand J. Math.,7, No. 1, 31?35 (1976). · Zbl 0362.22003
[714] D. Kirby and H. A. Mehran, ?Fractional powers of a submodule of an algebra,? Mathematika,18, 8?13 (1971). · Zbl 0221.13008 · doi:10.1112/S0025579300008329
[715] M. Kirezci, ?A remark on IBN-rings and free ideal rings,? METU J. Pure Appl. Sci.,5, No. 1, 15?18 (1972). · Zbl 0344.16001
[716] E. E. Kirkman and J. J. Kuzmanovich, ?Order over hereditary rings,? J. Algebra,55, No. 1, 1?27 (1978). · Zbl 0405.16013 · doi:10.1016/0021-8693(78)90187-4
[717] E. W. Kiss, ?A module-theoretic characterization of rings with unity,? Acta Math. Hungar.,31, Nos. 3/4, 345?348 (1978). · Zbl 0404.16018 · doi:10.1007/BF01901982
[718] Y. Kitamura, ?Centralizers of a module over a quasi-Frobenius extension,? Math. J. Okayama Univ.,17, No. 2, 103?123 (1975). · Zbl 0358.16010
[719] Y. Kitamura, ?A note on quotient rings over a quasi-Frobenius extension,? Math. J. Okayama Univ.,18, No. 1, 57?67 (1975). · Zbl 0336.16004
[720] Y. Kitamura, ?Note on the maximal quotient rings of a Galois subring,? Math. J. Okayama Univ.,19, No. 1, 55?60 (1976). · Zbl 0355.16023
[721] R. Knörr, ?Ringepimorphismen und Morita-projektive Moduln über kommutativen Dedekind-Ringen,? Comment. Math. Helv.,50, No. 2, 267?275 (1975). · Zbl 0323.13004 · doi:10.1007/BF02565750
[722] R. Knörr, ?Morita-injektive Moduln über Kommutativen Dedekind-Ringen,? J. Reine Angew. Math.,281, 143?163 (1976). · Zbl 0318.13020
[723] R. Knörr, ?Relative projective covers,? Var. Publs. Ser. Mat. Inst. Aarhus Univ., No. 29, 28?32 (1978).
[724] M.-A. Knus, ?Modules quadratiques sur un anneau de polynomes,? Monogr. Enseign. Math., No. 26, 179?185 (1978). · Zbl 0396.13023
[725] A. Koehler, ?Pre-self-injective duo rings,? Proc. Am. Math. Soc.,60, No. 208, 31?34 (1976). · Zbl 0338.16009 · doi:10.1090/S0002-9939-1976-0419527-8
[726] P. Koh, ?Finite projective dimension under change of rings,? Rocky Mount. J. Math.,8, No. 4, 647?651 (1978). · Zbl 0395.16024 · doi:10.1216/RMJ-1978-8-4-647
[727] G. Krause, ?Krull dimension and Gabriel dimension of idealizers of semimaximal left ideals,? J. London Math. Soc.,12, No. 2, 137?140 (1976). · Zbl 0317.16011 · doi:10.1112/jlms/s2-12.2.137
[728] G. Krause, ?Some recent developments in the theory of noetherian rings,? Lect. Notes Math.,641, 209?219 (1978). · Zbl 0383.16009 · doi:10.1007/BFb0064849
[729] G. Krause, T. H. Lenagan, and J. T. Stafford, ?Ideal invariance and Artinian quotient rings,? J. Algebra,55, No. 1, 145?154 (1978). · Zbl 0408.16002 · doi:10.1016/0021-8693(78)90196-5
[730] G. Krause and M. L. Teply, ?The transfer of the Krull dimension and the Gabriel dimension to subidealizers,? Can. J. Math.,29, No. 4, 874?888 (1977). · Zbl 0362.16010 · doi:10.4153/CJM-1977-089-4
[731] M. Krusemeyer, ?Completing? 2,?, ?,? Queen’s Pap. Pure Appl. Math., No. 42, 253?254 (1975). · Zbl 0333.18012
[732] M. Kulkarni, ?A generalization of Pascal’s theorem to commutative rings,? Arch. Math.,33, No. 5, 426?429 (1980). · Zbl 0431.51005 · doi:10.1007/BF01222780
[733] H. Kupisch, ?Quasi-Frobenius algebras of finite representation type,? Lect. Notes Math.,488, 184?200 (1975). · Zbl 0319.16027 · doi:10.1007/BFb0081224
[734] H. Kupisch, ?Basialgebren symmetrischer Algebren und eine Vermutung von Gabriel,? J. Algebra,55, No. 1, 58?73 (1978). · Zbl 0406.16020 · doi:10.1016/0021-8693(78)90190-4
[735] Y. Kurata and H. Katayama, ?On a generalization of QF-3 rings,? Osaka J. Math.,13, 407?418 (1976). · Zbl 0353.16007
[736] M. Kutami and K. Oshiro, ?Direct sums of nonsingular indecomposable injective modules,? Math. J. Okayama Univ.,20, No. 2, 91?99 (1978). · Zbl 0399.16013
[737] Hoang Ky, ?A divisible module over a principal ideal ring,? Acta Math. Vietnamica,2, No. 1, 141?151 (1977). · Zbl 0404.13001
[738] J. P. Labute, ?Free Lie algebras as modules over their enveloping algebras,? Proc. Am. Math. Soc.,68, No. 2, 135?139 (1978). · Zbl 0379.17004 · doi:10.1090/S0002-9939-1978-0469992-7
[739] E. L. Lady, ?Completely decomposable flat modules over locally factorial domains,? Proc. Am. Math. Soc.,54, 27?31 (1976). · Zbl 0321.13009 · doi:10.1090/S0002-9939-1976-0387265-6
[740] E. L. Lady, ?Splitting fields for torsion-free modules over discrete valuation rings. I,? J. Algebra,49, No. 1, 261?275 (1977). · Zbl 0366.13002 · doi:10.1016/0021-8693(77)90285-X
[741] E. L. Lady, ?On classifying torsion-free modules over discrete valuation rings,? Lect. Notes Math.,616, 168?172 (1977). · Zbl 0375.13002 · doi:10.1007/BFb0068195
[742] E. L. Lady, ?Extension of scalars for torsion free modules over Dedekind domains,? in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 287?305. · Zbl 0425.13001
[743] C. C. Lai, ?Localization in non-noetherian rings,? Commun. Algebra,7, No. 13, 1351?1376 (1979). · Zbl 0428.16005 · doi:10.1080/00927877908822407
[744] T. Y. Lam, ?Series summation of stably free modules,? Q. J. Math.,27, No. 105, 37?46 (1976). · Zbl 0316.16025 · doi:10.1093/qmath/27.1.37
[745] T. Y. Lam, Serre’s Conjecture, Lect. Notes Math., Vol. 635 (1978). · Zbl 0373.13004
[746] J. Lambek, ?Localization at epimorphisms and quasiinjectives,? J. Algebra,38, No. 1, 163?181 (1976). · Zbl 0327.18012 · doi:10.1016/0021-8693(76)90252-0
[747] P. Landrock, ?Some remarks on Loewy lengths of projective modules,? Prepr. Ser. Math. Inst. Aarhus Univ., No. 24, (1979/1980).
[748] C. Lanski, ?Regularity and quotients in rings with involution,? Pac. J. Math.,56, No. 2, 565?574 (1975). · Zbl 0265.16010 · doi:10.2140/pjm.1975.56.565
[749] C. Lanski, ?Gabriel dimension and rings with involution,? Houston J. Math.,4, No. 3, 397?415 (1978). · Zbl 0398.16008
[750] D. Latsis, ?Localisation dans les anneaux duos,? C. R. Acad. Sci.,282, No. 24, A1403-A1406 (1976). · Zbl 0328.16004
[751] D. Latsis, ?Modules tertiaires,? Groupe d’Étude d’Algèbre, Paris (1978), Exp. No. 3. · Zbl 0377.16011
[752] J. Lawrence, ?A countable self-injective ring is quasi-Frobenius,? Proc. Am. Math. Soc.,65, No. 2, 217?220 (1977). · Zbl 0366.16011 · doi:10.1090/S0002-9939-1977-0442025-3
[753] J. Lawrence and K. Louden, ?Rationally complete group rings,? J. Algebra,50, No. 1, 113?121 (1978). · Zbl 0372.16007 · doi:10.1016/0021-8693(78)90177-1
[754] Kwang Young Lee, ?Remarks on the quasiprojectiveness of rings,? Ulsan Inst. Techn. Rep.,6, No. 1, 25?28 (1975).
[755] B. Lemonnier, ?Dimension de Krull et codeviation des anneaux semihéréditaires,? C. R. Acad. Sci.,284, No. 12, 663?666 (1977). · Zbl 0344.13002
[756] B. Lemonnier, ?Dimension de Krull et codeviation. Application au théorème d’Éakin,? Commun. Algebra,6, No. 16, 1647?1665 (1978). · Zbl 0397.16028 · doi:10.1080/00927877808822313
[757] T. H. Lenagan, ?Artinian ideals in Noetherian rings,? Proc. Am. Math. Soc.,51, No. 2, 499?500 (1975). · Zbl 0311.16023
[758] T. H. Lenagan, ?Krull dimension and invertible ideals in Noetherian rings,? Proc. Edinburgh Math. Soc.,20, No. 2, 81?86 (1976). · Zbl 0338.16007 · doi:10.1017/S0013091500010580
[759] T. H. Lenagan, ?Artinian quotient rings of Macaulay rings,? Lect. Notes Math.,545, 140?150 (1976). · Zbl 0338.16006 · doi:10.1007/BFb0080309
[760] T. H. Lenagan, ?Reduced rank in rings with Krull dimension,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 123?131.
[761] T. H. Lenagan, ?Modules with Krull dimension,? Bull. London Math. Soc.,12, No. 1, 39?40 (1980). · Zbl 0438.16017 · doi:10.1112/blms/12.1.39
[762] H. Lenzing, ?Direct sums of projective modules as direct summands of their direct product,? Commun. Algebra,4, No. 7, 681?691 (1976). · Zbl 0342.16024 · doi:10.1080/00927877608822130
[763] Y. Lequain and A. Simis, ?Projective modules over R[X,...,Xn], R a Prüfer domain,? Notas Commun. Mat., No. 84 (1978).
[764] L. Lesieur, ?Ideal premierp d’un anneau Noethérien a gauche: condition de Ore pourC(P)?. Séminaire d’Algèbre non commutative, 1973/1974, Paris-Orsay (1974).
[765] Zb. Leszczynski and D. Simson, ?On triangular matrix rings of finite representation type,? J. London Math. Soc.,20, No. 3, 396?402 (1979). · Zbl 0434.16022 · doi:10.1112/jlms/s2-20.3.396
[766] R. A. Levaro, ?Projective quasicoherent sheaves of modules,? Pac. J. Math.,57, No. 2, 457?461 (1975). · Zbl 0319.13006 · doi:10.2140/pjm.1975.57.457
[767] L. S. Levy, ?Matrix equivalence and finite representation type,? Commun. Algebra,3, No. 8, 739?748 (1975). · Zbl 0311.16035 · doi:10.1080/00927877508822069
[768] L. S. Levy, ?Decomposing a projective module and several submodules,? Adv. Math.,20, No. 1, 30?42 (1976). · Zbl 0328.13004 · doi:10.1016/0001-8708(76)90168-7
[769] L. S. Levy, ?Modules over the cyclic group of prime order,? Lect. Notes Math.,734, 207?222 (1979). · Zbl 0414.16016 · doi:10.1007/BFb0103160
[770] D. Licoiu, ?Sur la dimension homologique des morphismes d’anneaux,? C. R. Acad. Sci.,A281, Nos. 2?3, 77?79 (1975). · Zbl 0307.16019
[771] D. Lecoiu, ?Sur les anneaux semiartiniens réguliers,? Rev. Roum. Math. Pures Appl.,23, No. 3, 411?412 (1978).
[772] D. Licoiu, ?Sur la dimension homologique des modules,? C. R. Acad. Sci.,A287, No. 4, 193 (1978). · Zbl 0392.13006
[773] W. Liebert, ?Ulm valuations and covaluations on torsion-complète p-groups,? Lect. Notes Math.,616, 337?353 (1977). · Zbl 0375.20039 · doi:10.1007/BFb0068205
[774] I-Peng B. Lin, ?Products of torsion theories and applications to coalgebras,? Osaka J. Math.,12, No. 2, 433?439 (1975). · Zbl 0316.16033
[775] I-Peng B. Lin, ?Semiperfect coalgebras,? J. Algebra,49, No. 2, 357?373 (1977). · Zbl 0369.16010 · doi:10.1016/0021-8693(77)90246-0
[776] T. Y. Lin and H. R. Margolis, ?Homological aspects of modules over the Steenrod algebra,? J. Pure Appl. Algebra,9, No. 2, 121?129 (1977). · Zbl 0364.55010 · doi:10.1016/0022-4049(77)90060-3
[777] H. Lindel, ?Wenn B ein Hauptidealring ist, so sind alle projektiven B[X, Y]-Moduln frei,? Math. Ann.,222, No. 3, 283?289 (1976). · Zbl 0314.13007 · doi:10.1007/BF01362585
[778] H. Lindel, ?Projektive Moduln über Polynomringen A[Ti,...,Tm] mit einem regulären Grundring A,? Manuscr. Math.,23, No. 2, 143?154 (1978). · Zbl 0369.13007 · doi:10.1007/BF01180569
[779] H. Lindel and W. Lutkebohmert, ?Projektive Moduln über polynomialen Erweiterungen von Potenzreihen algebren,? Arch. Math.,28, No. 1, 51?54 (1977). · Zbl 0351.13006 · doi:10.1007/BF01223888
[780] C. Löfwall, ?The global homological dimension of trivial extensions of rings,? J. Algebra,39, No. 1, 287?307 (1976). · Zbl 0325.16022 · doi:10.1016/0021-8693(76)90078-8
[781] F., Loonstra, ?Notes on subdirect products of modules,? An. Sti. Univ. Iasi, Sec. la,21, 1?8 (1975). · Zbl 0369.16019
[782] F. Loonstra, ?Note on extensions of modules,? Acta Math. Acad. Sci. Hung.,26, Nos. 3?4, 349?354 (1975). · Zbl 0318.16010 · doi:10.1007/BF01902344
[783] F. Loonstra, ?Subproducts and subdirect products,? Publ. Math.,24, Nos. 1?2, 129?137 (1977). · Zbl 0375.13003
[784] F. Loonstra, ?Essential submodules and essential subdirect products,? in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 85?105. · Zbl 0424.16018
[785] K. Louden, ?Maximal quotient rings of ring extensions,? Pac. J. Math.,62, No. 2, 489?496 (1976). · Zbl 0308.16002 · doi:10.2140/pjm.1976.62.489
[786] K. Louden, ?Torsion theories and ring extensions,? Commun. Algebra,4, No. 6, 503?532 (1976). · Zbl 0325.16002 · doi:10.1080/00927877608822119
[787] J. K. Luedeman and J. A. Bate, ?The ring of quotients of R(S),? Semigroup Forum,18, No. 3, 271?278 (1979). · Zbl 0419.16001 · doi:10.1007/BF02574190
[788] M.-P. Mallavin-Brameret, ?Regularité locale d’algèbres universelles,? C. R. Acad. Sci.,283, No. 13, A923-A925 (1976).
[789] J. Manocha, ?On rings with essential socle,? Commun. Algebra,4, No. 11, 1077?1086 (1976). · Zbl 0355.16001 · doi:10.1080/00927877608822152
[790] Z. Maoulaoui, ?Sur les modules réguliers,? Arch. Math.,30, No. 5, 469?472 (1978). · Zbl 0404.16015 · doi:10.1007/BF01226086
[791] P. Maroscia, ?Modules projectifs sur certains anneaux de polynomes,? C. R. Acad. Sci.,285, No. 4, A183-A185 (1977). · Zbl 0364.13006
[792] Ph. Martin, ?Théorème de décomposition en produits pour des anneaux autoinjectifs à droite admettant des sommes,? C. R. Acad. Sci.,282, No. 17, A951-A953 (1976). · Zbl 0328.16026
[793] Ph. Martin, ?Autoinjectivité des images homomorphiques d’un anneau de polynomes,? C. R. Acad. Sci.285, No. 7, A489-A492 (1977). · Zbl 0364.16011
[794] J. Martinez, ?Is the lattice of torsion classes algebraic?? Proc. Am. Math. Soc.,63, No. 1, 9?14 (1977). · Zbl 0376.06019 · doi:10.1090/S0002-9939-1977-0552652-0
[795] V. R. Martinez, ?Almost projective modules over artin algebras and almost split sequences,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 495?511.
[796] H. Marubayashi, ?A note on locally uniform rings and modules,? Proc. Jpn. Acad.,47, No. 1, 11?14 (1971). · Zbl 0232.16006 · doi:10.3792/pja/1195520100
[797] H. Marubayashi, ?Remarks on ideals of bounded Krull prime rings,? Proc. Jpn. Acad.,53, No. 1, 27?29 (1977). · Zbl 0383.16001 · doi:10.3792/pja/1195517924
[798] H. Marubayashi, ?Polynomial rings over Krull orders in simple Artinian rings,? Hokkaido Math. J.,9, No. 1, 63?78 (1980). · Zbl 0436.16005 · doi:10.14492/hokmj/1381758228
[799] K. Masalke, ?On equivalent orders in semisimple rings,? Bull. Tokyo G akugei Univ. (4),26, 39?44 (1974).
[800] K. Masaike, ?On embedding torsion free modules into free modules,? Proc. Jpn. Acad.,53, No. 1, 23?26 (1977). · Zbl 0369.16021 · doi:10.3792/pja/1195517923
[801] K. Masaike, ?Endomorphisms of modules over maximal orders,? Math. J. Okayama Univ.,21, No. 1, 33?40 (1979). · Zbl 0417.16014
[802] G. Mason, ?Injective and projective near-ring modules,? Compos. Math.,33, No. 1, 43?54 (1976).
[803] E. Matlis, ?Generalizations of divisible abelian groups to the theory of modules,? in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 241?250. · Zbl 0429.13003
[804] G. Maury, ?Anneaux de fractions classiques dans les R-ordres maximaux,? Commun. Algebra,3, No. 12, 1083?1091 (1975). · Zbl 0316.16005 · doi:10.1080/00927877508822088
[805] G. Maury, ?Compléments à mon article ?Anneaux de fractions classiques dans les ordres maximaux?,? Commun. Algebra,3, No. 12, 1093?1096 (1975). · Zbl 0316.16006 · doi:10.1080/00927877508822089
[806] G. Maury, ?Exemples et compléments en théorie des ordres maximaux au sens de K. Asano,? C. R. Acad. Sci.,284, No. 15, A839-A842 (1977). · Zbl 0345.16006
[807] G. Maury, ?Un théorème de l’idéal principal dans les R-ordres,? Commun. Algebra,7, No. 7, 677?687 (1979). · Zbl 0404.16006 · doi:10.1080/00927877908822370
[808] M. Mazan, ?Dual topologique d’un module quelconque,? Boll. Unione Mat. Ital.,A13, No. 3, 586?591 (1976). · Zbl 0362.46004
[809] J. C. McConnell, ?On the global dimension of some rings,? Math. Z.,153, No. 3, 253?254 (1977). · Zbl 0331.16024 · doi:10.1007/BF01214478
[810] J. C. McConnell, ?The global dimension of rings of differential operators,? Lect. Notes Math.,641, 189?197 (1978). · Zbl 0375.16025 · doi:10.1007/BFb0064847
[811] B. R. McDonald, Geometric Algebra Over Local Rings, Monographs and Textbooks in Pure and Applied Math., No. 36, Marcel Dekker, New York-Basel (1976).
[812] B. R. McDonald, ?Endomorphisms of infinitely generated projective modules,? J. Algebra,45, No. 1, 69?82 (1977). · Zbl 0354.16011 · doi:10.1016/0021-8693(77)90361-1
[813] K. McDowell, ?A codimension theorem for pseudo-Noetherian rings,? Trans. Am. Math. Soc.,214, 179?185 (1975). · doi:10.1090/S0002-9947-1975-0382252-X
[814] K. McDowell, ?Pseudo-Noetherian rings,? Can. Math. Bull.,19, No. 1, 77?84 (1976). · Zbl 0353.13014 · doi:10.4153/CMB-1976-010-0
[815] W. S. McVoy and L. A. Rubel, ?Coherence of some rings of functions,? J. Funct. Anal.,21, No. 1, 76?87 (1976). · Zbl 0317.46049 · doi:10.1016/0022-1236(76)90030-6
[816] F. Mehdi, ?On multiplications modules,? Math. Stud.,42, Nos. 1?4, 149?153 (1974(1975)).
[817] F. Mehdi, ?On multiplications and weak multiplication modules,? Riv. Mat. Univ. Parma,2, No. 4, 107?112 (1976).
[818] J. D. P. Meldrum, ?Injective near-ring modules over Zn,? Proc. Am. Math. Soc.,68, No. 1, 16?18 (1978). · Zbl 0395.16033
[819] C. Menini, ?Topologie di caratteri per moduli su anelli Noetheriani,? Ann. Univ. Ferrara,23, Sez. 7, 45?48 (1977).
[820] C. Menini, ?On E-compact modules over SISI rings,? Ann. Univ. Ferrara,23, Sez. 7, 195?207 (1977). · Zbl 0374.13020
[821] K. Meyberg and B. Zimmerman-Huisgen, ?Rings with descending chain condition on certain principal ideals,? Proc. Kon. Ned. Akad. Wetensch.,A80, 225?229 (1977). · Zbl 0355.16006 · doi:10.1016/1385-7258(77)90070-1
[822] G. O. Michler, ?Petits modules projectifs des groupes finis,? C. R. Acad. Sci.,282, No. 8, A397-A398 (1976). · Zbl 0324.20007
[823] G. O. Michler, ?Small projective modules of finite groups,? Lect. Notes Math.,586, 34?42 (1977). · doi:10.1007/BFb0087119
[824] C. B. Miller and M. Rajagopalan, ?Topologies in locally compact groups. III,? Proc. London Math. Soc.,31, No. 1, 55?78 (1975). · Zbl 0305.22006 · doi:10.1112/plms/s3-31.1.55
[825] D. D. Miller, ?Semihereditary prime algebras,? Commun. Algebra,7, No. 9, 885?940 (1979). · Zbl 0403.16004 · doi:10.1080/00927877908822382
[826] R. W. Miller, ?Finitely generated projective modules and TTF classes,? Pac. J. Math.,64, No. 2, 505?515 (1976). · Zbl 0342.16006 · doi:10.2140/pjm.1976.64.505
[827] R. W. Miller and M. L. Teply, ?On flatness relative to a torsion theory,? Commun. Algebra,6, No. 10, 1037?1072 (1978). · Zbl 0381.16012 · doi:10.1080/00927877808822279
[828] R. W. Miller and M. L. Teply, ?The descending chain condition relative to a torsion theory,? Pac. J. Math.,83, No. 1, 269?272 (1979). · Zbl 0444.16017 · doi:10.2140/pjm.1979.83.207
[829] R. W. Miller and D. Turnidge, ?Factors of cofinitely generated injective modules,? Commun. Algebra,4, No. 3, 233?243 (1976). · Zbl 0322.16011 · doi:10.1080/00927877608822103
[830] I. Mogami and H. Tominaga, ?On coprimary decomposition theory for modules,? Math. J. Okayama Univ.,17, No. 2, 125?130 (1975). · Zbl 0325.16028
[831] I. Mogami and H. Tominaga, ?On coprimary decomposition theory for modules,? Math. J. Okayama Univ.,17, No. 2, 125?130 (1975). · Zbl 0325.16028
[832] S. Mohamed, ?On PCI rings,? J. Univ. Kuwait Sci.,2, 21?23 (1975). · Zbl 0337.16010
[833] S. Mohamed and B. J. Muller, ?Decomposition of dual-continuous modules,? Lect. Notes Math.,700, 87?94 (1979). · doi:10.1007/BFb0063462
[834] S. Mohamed and S. Singh, ?Weak q-rings,? Can. J. Math.,29, No. 4, 687?695 (1977). · Zbl 0362.16013 · doi:10.4153/CJM-1977-072-7
[835] S. Mohamed and S. Singh, ?Generalizations of decomposition theorems known over perfect rings,? J. Austral. Math. Soc.,24, No. 4, 496?510 (1977). · Zbl 0379.16007 · doi:10.1017/S144678870002084X
[836] S. Mohamed and S. Singh, ?Weak q-rings with zero singular ideal,? Proc. Am. Math. Soc.,76, No. 1, 25?30 (1979). · Zbl 0417.16010
[837] A. Mohammad, ?Rings whose proper homomorphic images are left q-rings,? Tamkang J. Math.,9, No. 2, 265?268 (1978). · Zbl 0412.16014
[838] W. Moran, ?The global dimension of C(X),? J. London Math. Soc.,17, No. 2, 321?329 (1978). · Zbl 0378.46066 · doi:10.1112/jlms/s2-17.2.321
[839] K. Morita, ?Localization in categories of modules. IV,? Sci. Repts. Tokyo Kyoiku Daigaku,A13, Nos. 366?382, 153?164 (1977).
[840] B. J. Müller, ?Localization in fully bounded Noetherian rings,? Pac. J. Math.,67, No. 1, 233?246 (1976). · Zbl 0333.16005 · doi:10.2140/pjm.1976.67.233
[841] B. J. Müller, ?Localization on noncommutative Noetherian rings,? Can. J. Math.,28, No. 3, 600?610 (1976). · Zbl 0344.16004 · doi:10.4153/CJM-1976-059-x
[842] B. J. Müller, ?An example in noncommutative localization,? An. Inst. Mat. Univ. Nac. Autonoma Mexico,17, 75?86 (1977).
[843] B. J. Müller, ?Noncommutative localization and invariant theory,? Commun. Algebra,6, No. 8, 839?862 (1978). · Zbl 0378.16001 · doi:10.1080/00927877808822271
[844] B. J. Müller, ?Two-sided quotient rings for Noetherian PI-rings,? R. Soc. Can. Math. Repts.,1, No. 1, 53?56 (1979).
[845] B. J. Müller, ?Ideal invariance and localization,? Commun. Algebra,7, No. 4, 415?441 (1979). · Zbl 0408.16003 · doi:10.1080/00927877908822357
[846] B. J. Müller, ?Two-sided localization in Noetherian PI-rings,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 169?190.
[847] B. J. Müller, ?Two-sided localization in Noetherian PI-rings,? J. Algebra,63, No. 2, 359?373 (1980). · Zbl 0429.16003 · doi:10.1016/0021-8693(80)90078-2
[848] W. Müller, ?On Artin rings of finite representation type,? Lect. Notes Math.,488, 236?243 (1975). · Zbl 0315.16020 · doi:10.1007/BFb0081227
[849] W. Müller, ?A generalization of Swan’s theorem,? Math. Z.,151, No. 1, 57?70 (1976). · Zbl 0322.41012 · doi:10.1007/BF01214936
[850] W. Müller, ?A categorical characterisation of compactness,? J. London Math. Soc.,17, No. 2, 356?362 (1978). · Zbl 0393.54017
[851] C. J. Mulvey, ?Compact ringed spaces,? J. Algebra,52, No. 2, 411?436 (1978). · Zbl 0418.18009 · doi:10.1016/0021-8693(78)90248-X
[852] C. J. Mulvey, ?Representations of rings and modules,? Lect. Notes Math.,753, 542?585 (1979). · Zbl 0432.16015 · doi:10.1007/BFb0061834
[853] D. C. Murdoch and F. M. van Oystaeyen, ?A note on reductions of modules and kernel functors,? Bull. Soc. Math. Belg.,26, No. 4, 351?361 (1974). · Zbl 0335.16008
[854] M. P. Murthy, ?Generators for certain ideals in regular rings of dimension three,? Comment. Math. Helv.,47, 179?184 (1972). · Zbl 0251.13006 · doi:10.1007/BF02566796
[855] I. M. Musson, ?Injective modules for group algebras of locally finite groups,? Math. Proc. Cambridge Phil. Soc.,84 No. 2, 247?262 (1978). · Zbl 0392.16007 · doi:10.1017/S0305004100055080
[856] C. Nastasescu, ?Decomposition tertiaire et primaire dans un anneau,? Bull. Math. Soc. Sci. Math. RSR,18, Nos. 3?4, 339?354 (1974(1976)). · Zbl 0326.16028
[857] C. Nastasescu, ?Anneaux et modules gradués,? Rev. Roum. Math. Pures Appl.,21, No. 7, 911?931 (1976). · Zbl 0337.16006
[858] C. Nastasescu, ?Modules simples sur les anneaux gradués,? C. R. Acad. Sci.,283, No. 7, 425?428 (1976). · Zbl 0337.16005
[859] C. Nastasescu, Inele. Module, Categorii, Editura Academiei Republicii Socialiste Romani, Bucharest (1976).
[860] C. Nastasescu, ?Quelques observations sur la dimension de Krull,? Bull. Math. Soc. Sci. RSR,20, Nos. 3?4, 291?293 (1976(1977)). · Zbl 0372.16014
[861] C. Nastasescu, ?Conditions de finitude pour les modules,? Rev. Roum. Math. Pures Appl.,24, No. 5, 745?758 (1979). · Zbl 0413.18009
[862] C. Nastasescu, ?Modules ?-injectifs,? in: Ring Theory., Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 729?740.
[863] C. Nastasescu, ?Décompositions primaires dans les anneaux Noethériens à gauche gradués,? in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 251?258.
[864] C. Nastasescu, ?Conditions de finitude pour les modules. II,? Rev. Roum. Math. Pures Appl.,25, No. 4, 615?630 (1980). · Zbl 0484.16011
[865] C. Nastasescu and F. van Oystaeyen, ?Graded and filtered rings and modules,? Lect. Notes Math.,758, No. 10 (1979). · Zbl 0418.16001
[866] E. Nauwelaerts, ?Symmetric localization of Asano orders,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 65?80.
[867] E. Nauwelaerts and F. van Oystaeyen, ?Localization of primes in algebras over fields,? Proc. Kon. Ned. Akad. Wetensch.,A80, No. 3, 233?242 (1977); Indag. Math.,39, No. 3, 233?242 (1977). · Zbl 0354.16001 · doi:10.1016/1385-7258(77)90072-5
[868] E. Nauwelaerts and F. van Oystaeyen, ?Birational hereditary Noetherian prime rings,? Commun. Algebra,8, No. 4, 309?338 (1980). · Zbl 0429.16004 · doi:10.1080/00927878008822462
[869] J. Neggers, ?Cyclic rings,? Rev. Union. Mat. Argent.,28, No. 2, 108?114 (1977). · Zbl 0371.16011
[870] P. N?mec, ?General theory of preradicals,? Stud. Alg. Anwend.,1, 31?35 (1976).
[871] P. N?mec, ?Remarque sur les sommes directes des modules de type denombrable,? Publ. Dep. Math.,15, No. 4, 37?48 (1978). · Zbl 0432.16012
[872] W. Neumayer, ?Schwachperfekte Ringe,? Fachbereich Mathematik der Technischen Universität München (1978).
[873] T. Neuvonen, ?On the structure of produced and induced indecomposable Lie modules,? Ann. Acad. Sci. Fenn., Ser. A1, No. 2, 199?206 (1975). · Zbl 0332.17003
[874] M. Newell, ?Ideals with hypercentral action on modules,? J. Algebra,42, No. 2, 600?603 (1976). · Zbl 0335.16031 · doi:10.1016/0021-8693(76)90117-4
[875] W. K. Nicholson, ?I-rings,? Trans. Am. Math. Soc.,207, 361?373 (1975).
[876] W. K. Nicholson, ?On semiperfect modules,? Can. Math. Bull.,18, No. 1, 77?80 (1975). · Zbl 0311.16027 · doi:10.4153/CMB-1975-014-4
[877] W. K. Nicholson, ?Semiregular modules and rings,? Can. J. Math.,28, No. 5, 1105?1120 (1976). · Zbl 0317.16005 · doi:10.4153/CJM-1976-109-2
[878] W. K. Nicholson, ?Lifting idempotents and exchange rings,? Trans. Am. Math. Soc.,229, 269?278 (1977). · Zbl 0352.16006 · doi:10.1090/S0002-9947-1977-0439876-2
[879] W. K. Nicholson and J. F. Watters, ?The strongly prime radicals,? Proc. Am. Math. Soc.,76, No. 2, 236?240 (1979). · Zbl 0421.16005 · doi:10.1090/S0002-9939-1979-0537080-8
[880] A.-M. Nicolas, ?Modules factorables de type fini et de rang n?2; localiz? d’un module factorable,? C. R. Acad. Sci., A-B,280, No. 25, A1717-A1718 (1975). · Zbl 0302.13007
[881] A.-M. Nicolas, ?Sur les modules tels que toute suite croissante de sous modules engendrés par n générateurs soit stationnaire,? J. Algebra,60, No. 1, 249?260 (1979). · Zbl 0419.13010 · doi:10.1016/0021-8693(79)90120-0
[882] A.-M. Nicolas, ?Généralisation d’un critère de Pontryagin concernant les groupes sans torsion dénombrables á des modules sans torsion sur des anneaux de Dedekind. Conditions de rang, de type, de chaines ascendantes,? Lect. Notes Math.,740, 385?396 (1979). · Zbl 0411.13008 · doi:10.1007/BFb0071070
[883] M. Nishi and M. Shinagawa, ?Codivisorial and divisorial modules over completely integrally closed domains. I,? Hiroshima Math. J.,5, No. 2, 269?292 (1975); II. Ibid.,5, No. 3, 461?471 (1975). · Zbl 0335.13001
[884] Kenji Nishida, ?U-rational extension of a ring,? Hokkaido Math. J.,5, No. 2, 227?231 (1976). · Zbl 0331.16023 · doi:10.14492/hokmj/1381758671
[885] Kenji Nishida, ?Remarks on relatively flat modules,? Hokkaido Math. J.,6, No. 1, 130?135 (1977). · Zbl 0358.16019 · doi:10.14492/hokmj/1381758554
[886] Kenji Nishida, ?Divisible modules, codivisible modules, and quasidivisible modules,? Commun. Algebra,5, No. 6, 591?610 (1977). · Zbl 0358.16018 · doi:10.1080/00927877708822183
[887] Kenji Nishida, ?Construction of coreflectors,? J. Algebra,54, No. 2, 316?328 (1978). · Zbl 0402.16030 · doi:10.1016/0021-8693(78)90002-9
[888] C. Nita, ?S-anneaux Noethériens,? Rend. Sem. Mat. Univ. Padova,53, 1?11 (1975).
[889] C. Nita, ?Quelques observations sur les théories de torsion héréditaires,? Bull. Math. Soc. Sci. Math. RSR,24, No. 1, 73?76 (1980).
[890] A. Nobile, ?A note on flat algebras,? Proc. Am. Math. Soc.,64, No. 2, 206?208 (1977). · Zbl 0407.13006 · doi:10.1090/S0002-9939-1977-0498548-4
[891] A. Nowicki, ?The primary decomposition of differential modules,? Rocz. Pol. Tow. Mat., Ser. 1,21, No. 2, 341?346 (1979). · Zbl 0499.13011
[892] R. J. Nunke, ?Whitehead’s problem,? Lect. Notes Math.,616, 240?250 (1977). · doi:10.1007/BFb0068200
[893] J. Ohm, ?An axiomatic approach to homological dimension,? Math. Scand.,37, No. 2, 197?222 (1975). · Zbl 0319.18009 · doi:10.7146/math.scand.a-11602
[894] M. Ohori, ?Characterizations of division rings,? J. Fac. Sci. Shinshu Univ.,12, No. 1, 41?42 (1977). · Zbl 0375.16018
[895] K. Ohtake, ?Colocalization and localization,? J. Pure Appl. Algebra,11, No. 13, 217?241 (1977). · Zbl 0373.16002 · doi:10.1016/0022-4049(77)90053-6
[896] J. Okninski, ?Spectrally finite and semilocal group rings,? Commun. Algebra,8, No. 6, 553?541 (1980). · Zbl 0428.16012 · doi:10.1080/00927878008822474
[897] J.-P. Olivier, ?L’eanneau absolument plat universel, les épimorphismes et les parties constructibles,? Bol. Soc. Mat. Mex.,23, No. 2, 68?74 (1978). · Zbl 0447.13003
[898] K. C. O’Meara, ?Quotient rings of symmetric and universal group algebras,? Commun. Algebra,8, No. 3, 235?260 (1980). · Zbl 0425.16011 · doi:10.1080/00927878008822457
[899] T. Onodera, ?On balanced projectives and injectives over linearly compact rings,? Hokkaido Math. J.,5, No. 2, 249?256 (1976). · Zbl 0333.16022 · doi:10.14492/hokmj/1381758675
[900] T. Onodera, ?Codominant dimensions and Morita equivalences,? Hokkaido Math. J.,6, No. 2, 169?182 (1977). · Zbl 0374.18008 · doi:10.14492/hokmj/1381758522
[901] T. Onodera, ?A note on linearly compact modules,? Hokkaido Math. J.,8, No. 1, 121?125 (1979). · Zbl 0419.16016 · doi:10.14492/hokmj/1381758413
[902] A. Orsatti, ?Dualita per alcune classi di moduli E-compatti,? Ann. Mat. Pura Appl.,113, 211?235 (1977). · Zbl 0443.13004 · doi:10.1007/BF02418373
[903] J. M. Osborn, ?Modules over nonassociative rings,? Commun. Algebra,6, No. 13, 1297?1358 (1978). · Zbl 0382.17001 · doi:10.1080/00927877808822293
[904] K. Oshiro, ?A note on direct sums of cyclic modules over commutative regular rings,? Osaka J. Math.,12, No. 3, 715?718 (1975). · Zbl 0324.13004
[905] K. Oshiro, ?On torsion free modules over regular rings. III,? Math. J. Okayama Univ.,18, No. 1, 43?56 (1975). · Zbl 0332.06012
[906] K. Oshiro, ?Basic elements over von Neumann regular elements,? Proc. Jpn. Acad.,52, No. 7, 351?354 (1976). · Zbl 0362.13003 · doi:10.3792/pja/1195518271
[907] K. Oshiro, ?On commutative rings which have completely reducible torsion theories,? Proc. Jpn. Acad., Ser. A, Math. Sci.,53, No. 2, 46?49 (1977). · Zbl 0381.13007 · doi:10.3792/pjaa.53.46
[908] K. Oshiro, ?On cyclic splitting commutative rings,? Osaka J. Math.,15, No. 2, 371?380 (1978). · Zbl 0396.13007
[909] K. Oshiro, ?Thin patches and semiprime FGC-rings,? Osaka J. Math.,16, No. 1, 57?63 (1979). · Zbl 0404.13013
[910] B. Osofsky, ?Projective dimension of ?nice? directed union,? J. Pure Appl. Algebra,13, 179?219 (1978). · Zbl 0392.16023 · doi:10.1016/0022-4049(78)90008-7
[911] B. Osofsky, ?Remarks on projective dimension of ?-unions,? Lect. Notes Math.,734, 223?235 (1979). · Zbl 0408.16020 · doi:10.1007/BFb0103161
[912] J. Osterburg, ?Completely outer Galois theory of perfect rings,? Pac. J. Math.,56, No. 1, 215?220 (1975). · Zbl 0313.16039 · doi:10.2140/pjm.1975.56.215
[913] J. Osterburg, ?A note on perfect modules over crossed products,? Rev. Colomb. Mat.,10, No. 2, 69?73 (1976). · Zbl 0333.16027
[914] J. Osterburg, ?Some remarks on the crossed product,? Yokohama Math. J.,24, Nos. 1?2, 57?61 (1976). · Zbl 0359.16020
[915] A. Oswald, ?A note on injective modules over a.d.g. near-rings,? Can. Math. Bull.,20, No. 2, 267?269 (1977). · Zbl 0363.16019 · doi:10.4153/CMB-1977-041-2
[916] A. Oswald, ?On near-rings of quotients,? Proc. Edinburgh Math. Soc.,22, No. 2, 77?86 (1979). · Zbl 0417.16020 · doi:10.1017/S0013091500016187
[917] F. van Oystaeyen, ?Note on the torsion theory at a prime ideal of a left Noetherian ring,? J. Pure Appl. Algebra,6, No. 3, 297?304 (1975). · Zbl 0332.16002 · doi:10.1016/0022-4049(75)90026-2
[918] F. van Oystaeyen, ?Extension of ideals under symmetric localization,? J. Pure Appl. Algebra,6, No. 3, 275?283 (1975). · Zbl 0332.16001 · doi:10.1016/0022-4049(75)90023-7
[919] F. van Oystaeyen, ?Localizations of fully left bounded rings,? Commun. Algebra,4, No. 3, 271?284 (1976). · Zbl 0327.16003 · doi:10.1080/00927877608822106
[920] F. van Oystaeyen, ?A note on left balanced rings,? Proc. Kon. Ned. Akad. Wetensch.,A79, No. 3, 213?216 (1976); Indag. Math.,38, No. 3, 213?216 (1976).
[921] F. van Oystaeyen, ?On the relation between localization of groups and group rings,? Commun. Algebra,4, No. 2, 179?192 (1976). · Zbl 0328.16009 · doi:10.1080/00927877608822099
[922] F. van Oystaeyen, ?Compatibility of kernel functors and localization functors,? Bull. Soc. Math. Belg.,28, No. 2, 131?137 (1976). · Zbl 0424.16004
[923] F. van Oystaeyen, ?On the AR-property,? Bull. Soc. Math. Belg.,28, No. 1, 11?16 (1976). · Zbl 0424.16003
[924] F. van Oystaeyen, ?Pointwise localization in presheaf categories,? Proc. Kon. Ned. Akad. Wetensch.,A80, No. 2, 114?121 (1977); Indag. Math.,39, No. 2, 114?121 (1977). · Zbl 0346.16004
[925] F. van Oystaeyen, ?Stalks of sheaves over the spectra of certain noncommutative rings,? Commun. Algebra,5, No. 8, 899?901 (1977). · Zbl 0372.16001 · doi:10.1080/00927877708822202
[926] F. van Oystaeyen, ?Zariski central rings,? Commun. Algebra,6, No. 8, 799?821 (1978). · Zbl 0389.16001 · doi:10.1080/00927877808822269
[927] F. van Oystaeyen, ?Ring theory ? torsion theory-useful localization,? Nieuw Arch. Wisk.,26, No. 3, 413?427 (1978). · Zbl 0412.18014
[928] F. van Oystaeyen, ?On graded rings and modules of quotients,? Commun. Algebra,6, No. 18, 1923?1959 (1978). · Zbl 0388.16001 · doi:10.1080/00927877808822328
[929] F. van Oystaeyen, ?Graded and nongraded birational extensions,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 155?179.
[930] F. van Oystaeyen, ?Birational extensions of rings,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 287?328.
[931] F. van Oystaeyen, ?Graded prime ideals and the left Ore condition,? Commun. Algebra,8, No. 9, 861?868 (1980). · Zbl 0434.16002 · doi:10.1080/00927878008822494
[932] F. van Oystaeyen and J. van Geel, ?Local-global results for regular rings,? Commun. Algebra,4, No. 9, 811?821 (1976). · Zbl 0331.16012 · doi:10.1080/00927877608822140
[933] F. van Oystaeyen and A. Verschoren, ?Localization of presheaves of modules,? Proc. Kon. Ned. Akad. Wetensch.,A79, No. 4 (1976); Indag. Math.,38, No. 4, 335?348 (1976). · Zbl 0333.16006
[934] F. van Oystaeyen and A. Verschoren, ?Relative localization; bimodules and semiprime PI rings,? Commun. Algebra,7, No. 9, 955?988 (1979). · Zbl 0406.16003 · doi:10.1080/00927877908822384
[935] F. van Oystaeyen and A. Verschoren, Reflectors and Localization. Application to Sheaf Theory, Lect; Notes Pure Appl. Math., Vol. 41, Marcel Dekker, New York-Basel (1979). · Zbl 0408.16001
[936] A. Page, ?Sur les anneaux héréditaires ou semihéréditaires,? Commun. Algebra,6, No. 11, 1169?1186 (1978). · Zbl 0393.16005 · doi:10.1080/00927877808822287
[937] A. Page, ?Actions des groupes,? Lect. Notes Math.,740, 9?24 (1979). · Zbl 0408.16025 · doi:10.1007/BFb0071050
[938] S. S. Page, ?Continuous rings and rings of quotients,? Can. Math. Bull.,21, No. 3, 319?324 (1978). · Zbl 0393.16003 · doi:10.4153/CMB-1978-055-3
[939] S. S. Page, ?Regular FPF rings,? Pac. J. Math.,79, No. 1, 169?176 (1978). · Zbl 0418.16007 · doi:10.2140/pjm.1978.79.169
[940] S. S. Page, ?Images of injectives and universally cotorsionless modules,? Commun. Algebra,7, No. 2, 193?201 (1979). · Zbl 0368.13007 · doi:10.1080/00927877908822341
[941] I. Palmer, ?The global homological dimension of semitrivial extensions of rings,? Math. Scand.,37, No. 2, 223?256 (1975). · Zbl 0327.16018 · doi:10.7146/math.scand.a-11603
[942] I. J. Papick, ?A remark on coherent overrings,? Can. Math. Bull.,21, No. 3, 373?375 (1978). · Zbl 0396.13012 · doi:10.4153/CMB-1978-067-4
[943] I. J. Papick, ?Coherent overrings,? Can. Math. Bull.,22, No. 3, 331?337 (1979). · Zbl 0448.13011 · doi:10.4153/CMB-1979-041-3
[944] Z. Papp, ?On stable Noetherian rings,? Trans. Am. Math. Soc.,213, 107?114 (1975). · Zbl 0326.16017 · doi:10.1090/S0002-9947-1975-0393120-1
[945] Z. Papp, ?Semistability and topologies on R-sp,? Commun. Algebra,4, No. 9, 793?809 (1976). · Zbl 0335.16007 · doi:10.1080/00927877608822139
[946] Z. Papp, ?A topological characterization of stable rings,? Arch. Math.,29, No. 3, 235?240 (1977). · Zbl 0372.16002 · doi:10.1007/BF01220400
[947] Z. Papp, ?On the spectra of left stable rings,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 741?756.
[948] Z. Papp, ?Spectrum topologies and sheaves for left Noetherian rings,? Lect. Notes Math.,700, 204?214 (1979). · Zbl 0397.16004 · doi:10.1007/BFb0063467
[949] S. Parimala, ?Projective modules and Hermitian matrices,? J. Pure Appl. Algebra,7, No. 1, 5?14 (1976); Correction: ibid.,9, No. 2, 239 (1976/77). · Zbl 0325.15013 · doi:10.1016/0022-4049(76)90063-3
[950] S. Parimala and R. Sridharan, ?Projective modules over quaternion algebras,? J. Pure Appl. Algebra,9, No. 2, 181?193 (1977). · Zbl 0356.16007 · doi:10.1016/0022-4049(77)90065-2
[951] J. L. Pascaud and J. Valette, ?Group actions on Q-F-rings,? Proc. Am. Math. Soc.,76, No. 1, 43?44 (1979). · doi:10.1090/S0002-9939-1979-0534387-5
[952] G. Paxia, ?Ascent properties for absolutely flat homomorphisms,? Commun. Algebra,6, No. 4, 393?407 (1978). · Zbl 0381.13010 · doi:10.1080/00927877808822252
[953] P. M. Perdew, ?Collapsible modules over pseudorings,? Commun. Algebra,6, No. 6, 611?616 (1978). · Zbl 0375.16026 · doi:10.1080/00927877808822260
[954] R. S. Pierce, ?The global dimension of commutative regular rings,? Houston J. Math.,2, No. 1, 97?110 (1976). · Zbl 0318.13015
[955] P. Pillay, ?On semihereditary noncommutative polynomial rings,? Proc. Am. Math. Soc.,78, No. 4, 473?474 (1980). · Zbl 0446.16012 · doi:10.1090/S0002-9939-1980-0556614-9
[956] M. I. Platzeck, ?Representation theory of algebras stably equivalent to an hereditary artin algebra,? Trans. Am. Math. Soc.,238, 89?128 (1978). · Zbl 0389.16010 · doi:10.1090/S0002-9947-1978-0480635-3
[957] M. I. Platzeck, ?On algebras stably equivalent to an hereditary Artin algebra,? Can. J. Math.,30, No. 4, 817?829 (1978). · Zbl 0357.16017 · doi:10.4153/CJM-1978-070-8
[958] M. I. Platzeck and M. Auslander, ?Representation theory of hereditary artin algebras,? in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 389?424. · Zbl 0378.16014
[959] G. G. Pleasant, ?A note on the torsion concept of Levy and Goldie,? J. Trennessel Acad. Sci.,51, No. 1, 39?40 (1976). · Zbl 0316.16008
[960] Y. Plusquellec, ?Dual ordonné d’un module,? R. Soc. Can. Math. Repts.,2, No. 1, 23?26 (1980). · Zbl 0438.06013
[961] V. Poneleit, ?Lineare Kompaktheit und die Zerlegung endlich erzeugter Moduln bei einreiningen Duoringen,? Mitt. Math. Sem. Giesseen, No. 121, 85?92 (1976). · Zbl 0333.16019
[962] E. L. Popescu, ?A characterization of II-reducible rings,? Rev. Roum. Math. Pure Appl.,22, No. 4, 537?540 (1977).
[963] N. Popescu, ?Sur l’anneau des quotients d’un anneau Noéthérien à droite par rapport à un système localisant associé à un idéal bilatère premier,? C. R. Acad. Sci.,283, No. 14, A967?969 (1976).
[964] N. Popescu and T. Spircu, ?Permanence theorems for semi-Artinian rings,? Rev. Roum. Math. Pures Appl.,21, No. 2, 227?231 (1976). · Zbl 0321.16012
[965] M. Y. Prest, ?Some model-theoretic aspects of torsion theories,? J. Pure Appl. Algebra,12, No. 3, 295?310 (1978). · Zbl 0398.03019 · doi:10.1016/0022-4049(87)90007-7
[966] M. Y. Prest, ?Torsion and universal Horn classes of modules,? J. London Math. Soc.,19, No. 3, 411?417 (1979). · Zbl 0396.18005 · doi:10.1112/jlms/s2-19.3.411
[967] M. Y. Prest, ?Model-completions of some theories of modules,? J. London Math. Soc.,20, No. 3, 369?372 (1979). · Zbl 0426.03035 · doi:10.1112/jlms/s2-20.3.369
[968] I. Prodanov, ?Precompact minimal topologies in some torsion free modules,? Godishn. Sofiisk. Un-t. Fak. Mat. Mekh.,69, 157?163 (1974?1975(1979)).
[969] Ph. Quartararo and H. S. Butts, ?Finite unions of ideals and modules,? Proc. Am. Math. Soc.,52, 91?96 (1975). · Zbl 0315.13001 · doi:10.1090/S0002-9939-1975-0382249-5
[970] Y. Quentel, ?Sur les anneaux dont tous les modules injectifs sont plats,? C. R. Acad. Sci.,280, No. 22, A1491-A1493 (1975). · Zbl 0304.13009
[971] D. Quillen, ?Projective modules over polynomial rings,? Invent. Math.,36, 167?171 (1976). · Zbl 0337.13011 · doi:10.1007/BF01390008
[972] M. A. R. Qureshi, ?On noncommutative Prüfer rings,? J. Sci. Phys. Sec.,1, No. 1, 69?70 (1971).
[973] F. Rado, ?A generalization of the valued vector space,? Mathematica (RSR),19, No. 2, 203?209 (1977). · Zbl 0389.46059
[974] S. Raghavan, Balwant Singh, and R. Sridharan, Homological Methods in Commutative Algebra (Mathematical Pamphlets), Oxford Univ. Press, Delhi 1. a. (1975).
[975] V. S. Ramamurthi, ?On modules with projective character modules,? Math. Jpn.,23, No. 2, 181?184 (1978). · Zbl 0412.16015
[976] V. S. Ramamurthi and E. A. Rutter, Jr., ?On cotorsion radicals,? Pac. J. Math.,62, No. 1, 163?172 (1976). · Zbl 0331.16002 · doi:10.2140/pjm.1976.62.163
[977] M. Ramras, ?The center of an order with finite global dimension,? Trans. Am. Math. Soc.,210, 249?257 (1975). · Zbl 0311.16004 · doi:10.1090/S0002-9947-1975-0374191-5
[978] K. M. Rangaswamy, ?Modules with finite spanning dimension,? Can. Math. Bull.,20, No. 2, 255?262 (1977). · Zbl 0358.16017 · doi:10.4153/CMB-1977-039-4
[979] K. M. Rangaswamy, ?An aspect of purity and its dualization in abelian groups and modules,? in: Symp. Math. Ist. Naz. Alta Mat. Francesco Severi, Vol. 23, Roma (1979), pp. 307?320. · Zbl 0424.16012
[980] W. H. Rant, ?Minimally generated modules,? Can. Math. Bull.,23, No. 1, 103?105 (1980). · Zbl 0449.16017 · doi:10.4153/CMB-1980-014-1
[981] R. Raphael, ?No rings have injective effacements,? J. Pure Appl. Algebra,8, No. 3, 285?288 (1976). · Zbl 0381.18022 · doi:10.1016/0022-4049(76)90049-9
[982] R. Raphael, ?Autour de la régularité,? in: Séminaire d’Algèbre Noncommutative (année 1975-76), Exp. No. 7, Publ. Math. Orsay, Nos. 186-7655, U.E.R. Math., Univ. Paris XI, Orsay (1976).
[983] R. Raphael, ?Fully idempotent factorization rings,? Commun. Algebra,7, No. 6, 547?563 (1979). · Zbl 0404.16005 · doi:10.1080/00927877908822363
[984] L. J. Ratliff and J. C. Robson, ?Minimal bases for modules,? Houston J. Math.,4, No. 4, 593?596 (1978). · Zbl 0402.16023
[985] B. K. Ray, ?Remarks on some theorems of Feller and Swokowski,? Math. Seminar Notes,6, No. 2, 359?362 (1978). · Zbl 0391.16004
[986] J. Raynaud, ?Localisations et topologie de Stone,? C. R. Acad. Sci.,282, No. 24, A1407-A1410 (1976). · Zbl 0331.16001
[987] J. Raynaud, ?Localizations stables par enveloppes injectives,? C. R. Acad. Sci.,282, No. 24, A1407-A1410 (1976). · Zbl 0331.16001
[988] J. Raynaud, ?Localisations premiers et copremiers. Localisations stables par enveloppes injectives,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 81?111.
[989] M. B. Rege and K. Varadarajan, ?Chain conditions and pure-exactness,? Pac. J. Math.,72, No. 1, 223?235 (1977). · Zbl 0376.16029 · doi:10.2140/pjm.1977.72.223
[990] J. D. Reid, ?Twisted group rings which are semiprime Goldie rings,? Glasgow Math. J.,16, No. 1, 1?11 (1975). · Zbl 0311.16008 · doi:10.1017/S0017089500002433
[991] I. Reiner, Maximal Orders, Academic Press, London (1975), (L.M.S. Monogr. No. 5). · Zbl 0305.16001
[992] I. Reiten, ?Stable equivalence of dualizing R-varieties. VI. Nakayama dualizing H-varieties,? Adv. Math.,17, No. 2, 196?211 (1975). · Zbl 0312.16019 · doi:10.1016/0001-8708(75)90092-4
[993] I. Reiten, ?Stable equivalence for some categories with radical square zero,? Trans. Am. Math. Soc.,212, 333?345 (1975). · Zbl 0314.16017 · doi:10.1090/S0002-9947-1975-0382396-2
[994] I. Reiten, ?Stable equivalence of self-injective algebras,? J. Algebra,40, No. 1, 63?74 (1976). · Zbl 0325.16016 · doi:10.1016/0021-8693(76)90087-9
[995] I. Reiten, ?Almost split sequences for group algebras of finite representation type,? Trans. Am. Math. Soc.,233, 125?136 (1977). · Zbl 0368.16004 · doi:10.1090/S0002-9947-1977-0573041-3
[996] I. Reiten, ?A note on stable equivalence and Nakayama algebras,? Proc. Am. Math. Soc.,71, No. 2, 157?163 (1978). · Zbl 0389.16009 · doi:10.1090/S0002-9939-1978-0500481-7
[997] I. Reiten, ?Algebras stably equivalent to Nakayama algebras of Loewy length at most 4,? J. Austral. Math. Soc.,A27, No. 1, 37?50 (1979). · Zbl 0404.16013 · doi:10.1017/S1446788700016621
[998] I. Reiten, ?Almost split sequences,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 513?533.
[999] G. Renault, ?Sur des conditions de chaines ascendantes dans des modules libres,? in: Sem. Alg. Non-commutative (1975?1976), Paris XI, Orsay (1976).
[1000] G. Renault, ?Sur des conditions de chaines ascendantes dans des modules libres,? J. Algebra,47, No. 2, 268?275 (1977). · Zbl 0365.16011 · doi:10.1016/0021-8693(77)90225-3
[1001] G. Renault, ?Actions des groupes et anneaux réguliers injectifs,? Lect. Notes Math.,734, 236?247 (1979). · Zbl 0409.16012 · doi:10.1007/BFb0103162
[1002] R. Resco, ?A dimension theorem for division rings,? Isr. J. Math.,35, No. 3, 215?221 (1980). · Zbl 0437.16014 · doi:10.1007/BF02761192
[1003] P. Ribenboim, ?Valuations and lengths of constructible modules,? in: Rings, Modules and Radicals, Amsterdam-London (1973), pp. 447?456.
[1004] P. Ribenboim, ?Valuations and lengths of constructible modules,? J. Reine Angew. Math.,283?284, 186?201 (1976). · Zbl 0327.13010
[1005] R. Richards, ?Noetherian prime rings of Krull dimension one,? Commun. Algebra,7, No. 8, 845?873 (1979). · Zbl 0397.16005 · doi:10.1080/00927877908822379
[1006] F. Richman, ?The constructive theory of KT -modules,? Pac. J. Math.,61, No. 1, 263?274 (1975). · Zbl 0305.02046 · doi:10.2140/pjm.1975.61.263
[1007] F. Richman, ?A guide to valuated groups,? Lect. Notes Math.,616, 73?86 (1977). · Zbl 0372.20040 · doi:10.1007/BFb0068190
[1008] F. Richman and E. Walker, ?Valuated groups,? J. Algebra,56, No. 1, 145?167 (1979). · Zbl 0401.20049 · doi:10.1016/0021-8693(79)90330-2
[1009] D. Rimer, ?Éléments de la théorie des pseudomodules,? Proc. Inst. Math. Iasi, 75?84 (1976). · Zbl 0374.16025
[1010] Ringe, Moduln und homologische Methoden, Tagungsber. Math. Forschungsinst. Oberwolfach, No. 22, 1?14 (1976).
[1011] Ringe, Moduln und homologische Methoden, Tagungsber. Math. Forschungsinst. Oberwolfach, No. 20, 1?15 (1977).
[1012] C. M. Ringel, ?Unions of chains of indecomposable modules,? Commun. Algebra,3, No. 12, 1121?1144 (1975). · Zbl 0345.16029 · doi:10.1080/00927877508822091
[1013] C. M. Ringel, ?Finite-dimensional hereditary algebras of wild representation type,? Math. Z.,161, No. 3, 235?256 (1978). · Zbl 0415.16023 · doi:10.1007/BF01214506
[1014] C. M. Ringel, ?The spectrum of a finite-dimensional algebra,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 535?598.
[1015] M. J. Rios, ?Sobre filtres de Gabriel. IV. (Modulos pianos y anillos regulares relativos),? An. Inst. Mat. Univ. Nac. Auton. Mex.,17, No. 1, 95?108 (1977).
[1016] E. de Robert, ?Suites exactes absolument scindées,? C. R. Acad. Sci.,A284, No. 21, 1337?1340 (1977).
[1017] R. N. Roberts, ?Krull dimension for Artinian modules over quasi local commutative rings,? Q. J. Math.,26, No. 103, 269?273 (1975). · Zbl 0311.13006 · doi:10.1093/qmath/26.1.269
[1018] J. C. Robson, ?Cyclic and faithful objects in quotient categories with application to Noetherian simple or Asano rings,? Lect. Notes Math.,545, 151?172 (1976). · Zbl 0336.16022 · doi:10.1007/BFb0080310
[1019] J. C. Robson, ?Quotient categories and Weyl algebras,? Lect. Notes Math.,586, 101?109 (1977). · Zbl 0364.16010 · doi:10.1007/BFb0087126
[1020] R. W. Roggenkamp, ?Injective modules for group rings and Gorenstein orders,? J. Algebra,24, No. 3, 465?472 (1973). · Zbl 0249.20004 · doi:10.1016/0021-8693(73)90120-8
[1021] R. W. Roggenkamp, ?Bass algebras,? J. Pure Appl. Algebra,9, No. 2, 169?179 (1977). · Zbl 0359.16014 · doi:10.1016/0022-4049(77)90064-0
[1022] R. W. Roggenkamp, ?Some examples of orders and global dimension two,? Math. J.,154, No. 3, 225?238 (1977). · Zbl 0335.16010 · doi:10.1007/BF01214321
[1023] R. W. Roggenkamp, ?Orders of global dimension two,? Math. Z.,160, No. 1, 63?68 (1978). · Zbl 0383.16002 · doi:10.1007/BF01182330
[1024] R. W. Roggenkamp, ?Algebras of global dimension two,? Arch. Math.,30, No. 4, 385?390 (1978). · Zbl 0369.16024 · doi:10.1007/BF01226071
[1025] M. Roitman, ?On Serre’s problem on projective modules,? Proc. Am. Math. Soc.,50, 45?52 (1975). · Zbl 0329.13008
[1026] M. Roitman, ?Completely unimodular rows to invertible matrices,? J. Algebra,49, No. 1, 206?211 (1977). · Zbl 0367.15017 · doi:10.1016/0021-8693(77)90280-0
[1027] M. Roitman, ?A note on Quillen’s paper ?Protective modules over polynomial rings?,? Proc. Am. Math. Soc.,64, No. 2, 231?232 (1977). · Zbl 0326.13010
[1028] M. Roitman, ?On projective modules over polynomial rings,? J. Algebra,58, No. 1, 51?63 (1979). · Zbl 0437.13003 · doi:10.1016/0021-8693(79)90188-1
[1029] A. Rosenberg, ?La dimension globale d’extension d’Ore,? in: Groupe d’étude algebre. Univ. Pierre et Marie Curie, 1975?1976 (1978),1, 3/01?3/02.
[1030] B. Roux, ?Sur les anneaux de Koethe,? An. Acad. Brasil. Cienc.,48, No. 1, 13?28 (1976).
[1031] L. H. Rowen, ?Monomial conditions on prime rings,? Isr. J. Math.,27, No. 2, 131?149 (1977). · Zbl 0426.16003 · doi:10.1007/BF02761663
[1032] R. A. Rubin, ?Simple maximal quotient rings,? Proc. Am. Math. Soc.,55, No. 1, 29?33 (1976). · Zbl 0345.16003 · doi:10.1090/S0002-9939-1976-0393097-5
[1033] D. E. Rush, ?Remarks on flat modules,? Michigan Math. J.,23, 193?201 (1976(1977)).
[1034] E. Rutter, ?OF-3 rings with ascending chain condition on annihilators,? J. Reine Angew. Math.,277, 40?44 (1975). · Zbl 0309.16013
[1035] E. Rutter, ?Dominant modules and finite localizations,? Tohoku Math. J.,27, No. 2, 225?239 (1975). · Zbl 0439.16005 · doi:10.2748/tmj/1178240989
[1036] G. Sabbagh, ?Catégoricitéen ? et stabilité: constructions les préservant et conditions de chaine,? C.R. Acad. Sci.,280, No. 9, A531-A533 (1975). · Zbl 0327.02044
[1037] G. Sabbagh, ?Catégoricité et stabilité: quelques exemples parmi les groupes et anneaux,? C. R. Acad. Sci.,280, No. 10, A603-A606 (1975). · Zbl 0327.02045
[1038] L. Salce, ?Moduli Slender su anello di Dedekind,? Ann. Univ. Ferrara,20, Sez. VII, 59?63 (1975).
[1039] D. Salles, ?Anneaux semiartiniens non commutatifs,? in: Semin. P. Dubreil. Algèbre. Univ. Paris, 1972?1973,26, 2/1?2/6.
[1040] D. Salles, ?Anneaux semiartiniens non commutatifs,? in: Sem. d’Algebre non commutative. Publ. Math. Orsay, No. 107?7523, Univ. Paris XI (1974).
[1041] D. Salles, ?Anneaux de groupes semiartiniens, anneaux de groupe coherents,? C. R. Acad. Sci.,283, No. 16, A1073-A1076 (1976). · Zbl 0345.16014
[1042] J. D. Sally and W. V. Vasconcelos, ?Flat ideals. I,? Commun. Algebra,3, No. 6, 531?543 (1975). · Zbl 0315.13010 · doi:10.1080/00927877508822059
[1043] F. L. Sandomierski, ?Classical localization at prime ideals of fully bounded Noetherian rings,? in: Ring Theory. Proc. Conf., Ohio Univ., Athens, Ohio, 1976, Lect. Notes Pure Appl. Math., Vol. 25, Marcel Dekker, New York (1977), pp. 169?181. · Zbl 0344.16003
[1044] B. Sarath, ?Krull dimension and Noetherianness,? III. J. Math.,20, No. 2, 329?335 (1976). · Zbl 0323.16008
[1045] B. Sarath and K. Varadarajan, ?Divisibility of direct sums in torsion theories,? Can. J. Math.,28, No. 1, 211?214 (1976). · Zbl 0328.16025 · doi:10.4153/CJM-1976-027-6
[1046] B. Sarath and K. Varadarajan, ?Dual Goldie dimension. II,? Commun. Algebra,7, No. 17, 1885?1899 (1979). · Zbl 0487.16020 · doi:10.1080/00927877908822434
[1047] H. Sato, ?Duality of torsion modules over a QF-3 one-dimensional Gorenstein ring,? Sci. Repts. Tokyo Kyoiku Daigaku,A13, No. 347?365, 28?36 (1975). · Zbl 0334.16020
[1048] H. Sato, ?On localizations of 1-Gorenstein ring,? Sci. Repts. Tokyo Daigaku,13, No. 366?382, 188?193 (1977).
[1049] H. Sato, ?Remark on localizations of Noetherian rings with Krull dimension one,? Tsukuba J. Math.,3, No. 1, 123?128 (1979). · Zbl 0426.16015 · doi:10.21099/tkbjm/1496158619
[1050] M. Sato, ?The concrete description of the colocalization,? Proc. Jpn. Acad.,52, No. 9, 502?504 (1976). · Zbl 0376.16002
[1051] M. Sato, ?On equivalences between module categories,? in: Proc. 10th Symp. Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 83?94.
[1052] M. Sato, ?Fuller’s theorem on equivalences,? J. Algebra,52, No. 1, 274?284 (1978). · Zbl 0374.16024 · doi:10.1016/0021-8693(78)90275-2
[1053] G. Scheja and U. Storch, ?Quasi-Frobenius-Algebren und lokal Vollständige Durchschnitte,? Manuscr. Math.,19, No. l, 75?104 (1976). · Zbl 0329.13011 · doi:10.1007/BF01172339
[1054] W. Schelter, ?Essential extensions and intersection theorems,? Proc. Am. Math. Soc.,53, No. 2, 328?330 (1975). · Zbl 0331.16016 · doi:10.1090/S0002-9939-1975-0389971-5
[1055] W. Schelter and L. W. Small, ?Some pathological rings of quotients,? J. London Math. Soc.,14, No. 53, 200?202 (1976). · Zbl 0344.16002 · doi:10.1112/jlms/s2-14.2.200
[1056] R. Schmähung, ?Eine axiomatosche Kennzeichnung der Determinante auf endlich-erzeugten projektiven Moduln,? J. Reine Angew. Math.,276, 56?67 (1975). · Zbl 0313.15018
[1057] R. Schulz, ?Reflexive modules over perfect rings,? J. Algebra,61, No. 2, 527?537 (1979). · Zbl 0428.16026 · doi:10.1016/0021-8693(79)90293-X
[1058] D. Segal, ?On the residual simplicity of certain modules,? Proc. London Math. Soc.,34, No. 2, 327?353 (1977). · Zbl 0354.20004 · doi:10.1112/plms/s3-34.2.327
[1059] H. Sekiyama, ?Trivial extension of a ring with balanced condition,? Proc. Am. Math. Soc.,77, No. 1, 1?6 (1979). · Zbl 0428.13001 · doi:10.1090/S0002-9939-1979-0539618-3
[1060] J. Shapiro, ?T-torsion theories and central localizations,? J. Algebra,48, No. 1, 17?29 (1977). · Zbl 0378.16021 · doi:10.1016/0021-8693(77)90290-3
[1061] J. Shapiro, ?R-sequences in fully bounded Noetherian rings,? Commun. Algebra,7, No. 8, 819?831 (1979). · Zbl 0398.16001 · doi:10.1080/00927877908822377
[1062] R. Y. Sharp, ?Ramification indices and injective modules,? J. London Math. Soc.,11, No. 3, 267?275 (1975). · Zbl 0313.13005 · doi:10.1112/jlms/s2-11.3.267
[1063] R. Y. Sharp, ?Secondary representations for injective modules over commutative Noetherian rings,? Proc. Edinburgh Math. Soc.,20, No. 2, 143?151 (1976). · Zbl 0334.13004 · doi:10.1017/S0013091500010658
[1064] S. Shelah, ?Infinite Abelian groups, Whitehead problem and some constructions,? Isr. J. Math.,18, No. 3, 243?256 (1974). · Zbl 0318.02053 · doi:10.1007/BF02757281
[1065] S. Shelah, ?A compactness theorem for singular cardinals, free algebras. Whitehead problem and transversals,? Isr. J. Math.,21, No. 4, 319?349 (1975). · Zbl 0369.02034 · doi:10.1007/BF02757993
[1066] S. Shelah, ?The lazy model-theoretician’s guide to stability,? Log. et. Anal.,18, No. 71?72, 241?308 (1975). · Zbl 0359.02052
[1067] S. Shelah, ?Whitehead groups may be not free even assuming CH. I,? Isr. J. Math.,28, No. 3, 193?204 (1977). · Zbl 0369.02035 · doi:10.1007/BF02759809
[1068] C. Sherman, ?A note on the localization theorem for projective modules,? Proc. Am. Math. Soc.,75, No. 2, 207?208 (1979). · Zbl 0417.18006 · doi:10.1090/S0002-9939-1979-0532136-8
[1069] M. Shinagawa, ?On flat extensions of Krull domains,? Hiroshima Math. J.,5, No. 3, 517?524 (1975). · Zbl 0322.13008
[1070] R. C. Shock, ?Dual generalizations of the Artinian and Noetherian conditions,? Pac. J. Math.,54, No. 2, 227?235 (1974). · Zbl 0303.13013 · doi:10.2140/pjm.1974.54.227
[1071] R. C. Shock, ?On orders in QF-2 rings,? Math. Scand.,38, No. 2, 192?198 (1976). · Zbl 0335.16006 · doi:10.7146/math.scand.a-11628
[1072] T. S. Shores, ?A topological criterion for primary decomposition,? Acta Math. Acad. Sci. Hung.,28, Nos. 3?4, 383?387 (1976). · Zbl 0337.13002 · doi:10.1007/BF01896804
[1073] T. Shudo, ?A note on coalgebras and rational modules,? Hiroshima Math. J.,6, No. 2, 297?304 (1976). · Zbl 0332.16013
[1074] S. K. Sim, ?On rings of which every prime kernel functor is symmetric,? Nanta Math.,7, No. 2, 69?70 (1974).
[1075] S. K. Sim, ?Prime ideals and symmetric idempotent kernel functors,? Rev. Union Mat. Argent.,27, No. 2, 59?64 (1975). · Zbl 0316.16004
[1076] S. K. Sim, ?Prime ideals and symmetric idempotent kernel functors,? Nanta Math.,9, No. 2, 121?124 (1976). · Zbl 0371.16001
[1077] D. Simson, ?Pure semisimple categories and rings of finite representation type,? J. Algebra,48, No. 2, 290?294 (1977); correction: ibid.,67, No. 1, 254?256 (1980). · Zbl 0409.16030 · doi:10.1016/0021-8693(77)90307-6
[1078] D. Simson, ?Categories of representations of species,? J. Pure Appl. Algebra,14, 101?114 (1979). · Zbl 0396.18004 · doi:10.1016/0022-4049(79)90015-X
[1079] S. Singh, ?Modules over hereditary Noetherian prime rings, II,? Can. J. Math.,28, No. 1, 73?82 (1976). · Zbl 0314.13005 · doi:10.4153/CJM-1976-008-3
[1080] S. Singh, ?Some decomposition theorems in Abelian groups and their generalizations,? in: Ring Theory. Proc. Ohio Univ. Conf., 1976, New York-Basel (1977), pp. 183?189.
[1081] S. Singh, ?(hnp)-rings over which every module admits a basic submodule,? Pac. J. Math.,76, No. 2, 509?512 (1978). · Zbl 0391.16021 · doi:10.2140/pjm.1978.76.509
[1082] S. Singh and M. Asrar, ?Rings in which every finitely generated left ideal is quasiprojective,? J. Indian Math. Soc.,40, Nos. 1?4, 195?205 (1976). · Zbl 0435.16017
[1083] S. Singh and A. Beg, ?Restricted balanced rings,? Arch. Math.,33, No. 2, 127?130 (1979). · Zbl 0482.16019 · doi:10.1007/BF01222735
[1084] S. Singh and F. Mehdi, ?Multiplication modules,? Can. Math. Bull.,22, No. 1, 93?98 (1979). · Zbl 0408.13002 · doi:10.4153/CMB-1979-013-9
[1085] S. Singh and S. Talwar, ?Pure submodules of modules over bounded (hnp)-rings,? Arch. Math.,30, No. 6, 570?577 (1978). · Zbl 0369.16005 · doi:10.1007/BF01226102
[1086] S. Singh and S. Talwar, ?Modules over bounded hereditary Noetherian prime rings,? Arch. Math.,32, No. 2, 134?142 (1979). · Zbl 0394.16020 · doi:10.1007/BF01238480
[1087] G. Sjödin, ?On the indecomposable modules over certain wild algebras,? Stockholms Univ. Mat. Inst. (Medd.), No. 1, 1?17 (1979).
[1088] S. Smale, ?Global dimension of special endomorphism rings over Artin algebras,? Ill. J. Math.,22, No. 3, 414?427 (1978).
[1089] S. Smale, ?The structure of special endomorphism rings over Artinian algebras,? Ill. J. Math.,22, No. 3, 428?442 (1978).
[1090] S. Smale, ?The inductive step of the second Brauer-Thrall conjecture,? Can. J. Math.,32, No. 2, 342?349 (1980). · Zbl 0405.16010 · doi:10.4153/CJM-1980-026-0
[1091] Bohumil Smarda, ?The lattice of topologies of topological L-groups,? Czechosl. Mat. J.,26, No. 1, 128?136 (1976). · Zbl 0333.54004
[1092] P. F. Smith, ?A note on projective modules,? Proc. R. Soc. Edinburgh,A75, No. 1, 23?31 (1976). · Zbl 0332.16010
[1093] P. F. Smith, ?Some rings which are characterized by their finitely generated modules,? Q. J. Math.,29, No. 1, 113, 101?109 (1978). · Zbl 0383.16013 · doi:10.1093/qmath/29.1.101
[1094] P. F. Smith, ?Finitely embedded modules over group rings,? Proc. Edinburgh Math. Soc.,21, Ser. 2, No. 1, 55?64 (1978). · Zbl 0383.16008 · doi:10.1017/S0013091500015881
[1095] P. F. Smith, ?Decomposing modules into projectives and injectives,? Pac. J. Math.,76, No. 1, 247?266 (1978). · Zbl 0399.16012 · doi:10.2140/pjm.1978.76.247
[1096] P. F. Smith, ?Rings characterized by their cyclic modules,? Can. J. Math.,31, No. 1, 93?111 (1979). · Zbl 0412.16012 · doi:10.4153/CJM-1979-011-2
[1097] P. F. Smith, ?On the structure of certain PP-rings,? Math. Z.,166, No. 2, 147?157 (1979). · Zbl 0387.16011 · doi:10.1007/BF01214041
[1098] R. Snider, ?Rings whose ideals have projective covers,? Arch. Math.,27, No. 4, 378?382 (1976). · Zbl 0328.13007 · doi:10.1007/BF01224689
[1099] R. Snider, ?On the singular ideal of a group algebra,? Commun. Algebra,4, No. 11, 1087?1089 (1976). · Zbl 0345.20007 · doi:10.1080/00927877608822153
[1100] R. Snider, ?Injective hulls of simple modules over group rings,? in: Ring Theory. Proc. Ohio Univ. Conf., 1976, New York-Basel (1977), pp. 223?226.
[1101] D. Spulber, ?On localizing system of M-dense left ideals of a ring,? Bull. Math. Soc. Sci. Math. RSR,18, Nos. 1?2, 203?206 (1974(1975)). · Zbl 0322.16002
[1102] D. Spulber, ?F-Dedekind rings,? Bull. Math. Soc. Sci. Math. RSR,18, Nos. 3?4, 379?389 (1974(1976)).
[1103] D. Spulber, ?Observations sur les systèmes localisants réguliers et leur liaison avec la transformée Nagata d’un idéal,? Rev. Roumaine de Math. Pure Appl.,21, No. 5, 559?563 (1976). · Zbl 0342.13004
[1104] D. Spulber, ?Induced flat epimorphisms of rings,? Rev. Roumaine de Math. Pure Appl.,23, No. 3, 495?496 (1978). · Zbl 0385.18002
[1105] D. Spulber, ?TP-rings,? Rev. Roumaine Math. Pures Appl.,23, No. 4, 611?615 (1978). · Zbl 0382.13005
[1106] J. T. Stafford, ?Completely faithful modules and ideals of simple Noetherian rings,? Bull. London Math. Soc.,8, No. 2, 168?173 (1976). · Zbl 0327.16010 · doi:10.1112/blms/8.2.168
[1107] J. T. Stafford, ?Weyl algebras are stably free,? J. Algebra,48, No. 2, 297?304 (1977). · Zbl 0409.16023 · doi:10.1016/0021-8693(77)90308-8
[1108] J. T. Stafford, ?Stable structure of noncommutative Noetherian rings. I,? J. Algebra,47, No. 2, 244?267 (1977); II, ibid.,52, No. 1, 218?235 (1978). · Zbl 0391.16009 · doi:10.1016/0021-8693(77)90224-1
[1109] J. T. Stafford, ?A simple Noetherian ring not Morita equivalent to a domain,? Proc. Am. Math. Soc.,68, No. 2, 159?160 (1978). · Zbl 0376.16004 · doi:10.1090/S0002-9939-1978-0466210-0
[1110] J. T. Stafford, ?Module structure of Weyl algebras,? J. London Math. Soc.,18, No. 3, 429?442 (1978). · Zbl 0394.16001 · doi:10.1112/jlms/s2-18.3.429
[1111] J. T. Stafford, ?Cancellation for nonprojective modules,? Lect. Notes Math.,700, 3?15 (1979). · Zbl 0405.16009 · doi:10.1007/BFb0063456
[1112] J. T. Stafford, ?Simple Noetherian rings,? Lect. Notes Math.,700, 230?231 (1979). · Zbl 1315.13003 · doi:10.1007/BFb0063474
[1113] J. T. Stafford, ?Morita equivalence of simple Noetherian rings,? Proc. Am. Math. Soc.,74, No. 2, 212?214 (1979). · Zbl 0408.16004 · doi:10.1090/S0002-9939-1979-0524287-9
[1114] J. T. Stafford, ?On the regular elements of Noetherian rings,? in: Ring Theory. Proc. Antwerp Conf., 1978. New York-Basel (1979), pp. 257?277.
[1115] J. T. Stafford, ?Projective modules over polynomial extensions of division rings,? Invent. Math.,59, No. 2, 105?117 (1980). · Zbl 0432.16011 · doi:10.1007/BF01390040
[1116] R. O. Stanton, ?An invariant for modules over a discrete valuation ring,? Proc. Am. Math. Soc.,49, No. 1, 51?54 (1975). · Zbl 0283.13003 · doi:10.1090/S0002-9939-1975-0360572-8
[1117] R. O. Stanton, ?Relatives-invariants,? Proc. Am. Math. Soc.,65, No. 2, 221?224 (1977).
[1118] R. O. Stanton, ?Decomposition of modules over a discrete valuation ring,? J. Austral. Math. Soc.,A27, No. 3, 284?288 (1979). · doi:10.1017/S1446788700012398
[1119] O. Steinfeld, ?Some characterizations of semisimple rings with minimum condition on principal left ideals,? Acta Math. Acad. Sci. Hung.,26, Nos. 3?4, 377?384 (1975). · Zbl 0321.16004 · doi:10.1007/BF01902347
[1120] B. Stenström, ?The maximal ring of quotients of a generalized matrix ring,? Stud. Alg. Anwend.,1, 65?67 (1976). · Zbl 0333.16004
[1121] R. Strebel, ?A homological fitness criterion,? Math. Z.,151, No. 3, 263?275 (1976). · Zbl 0325.16023 · doi:10.1007/BF01214939
[1122] K. Sugano, ?On projective H-separable extension,? Hokkaido Math. J.,5, No. 1, 44?54 (1976). · Zbl 0333.16007 · doi:10.14492/hokmj/1381758747
[1123] T. Sumioka, ?On nonsingular QF-3? rings with injective dimension ?1,? Osaka J. Math.,15, No. 1, 1?12 (1978). · Zbl 0391.16012
[1124] T. Sumioka, ?On finite-dimensional QF-3? rings,? in: Proc. 10th Symp. Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 99?105.
[1125] A. A. Suslin, ?The cancellation problem for projective modules and related topics,? Lect. Notes Math.,734, 323?338 (1979). · doi:10.1007/BFb0103166
[1126] R. G. Swan, ?Serre’s problem,? Queen’s Pap. Pure Appl. Math., No. 42, 2?60 (1975).
[1127] R. G. Swan, ?Topological examples of projective modules,? Trans. Am. Math. Soc.,230, 201?234 (1977). · Zbl 0443.13005 · doi:10.1090/S0002-9947-1977-0448350-9
[1128] R. G. Swan, ?Projective modules over Laurent polynomial rings,? Trans. Am. Math. Soc.,237, 111?120 (1978). · Zbl 0404.13006 · doi:10.1090/S0002-9947-1978-0469906-4
[1129] A. Szendrei, ?On affine modules. Contributions to universal algebra,? Colloq. Math. Soc. J. Bolyai,17, 457?464 (1977).
[1130] G. Szeto, ?The localization of zero-dimensional rings,? Bull. Soc. Math. Belg.,28, No. 3, 193?196 (1976). · Zbl 0434.13004
[1131] G. Szeto, ?The structure of semiperfect rings,? Commun. Algebra,5, No. 3, 219?229 (1977). · Zbl 0358.16002 · doi:10.1080/00927877708822166
[1132] G. Szeto, ?On exact sequences of modules,? Arch. Math.,29, No. 1, 67?71 (1977). · Zbl 0365.16003 · doi:10.1007/BF01220376
[1133] G. Szeto, ?Classical algebras of quotients and central quotients of algebras,? Acta Math. Acad. Sci. Hung.,32, Nos. 1?2, 59?62 (1978). · Zbl 0404.13005 · doi:10.1007/BF01902203
[1134] G. Szeto, ?On weakly biregular algebra,? Bull. Acad. Pol. Sci. Sec. Sci. Math., Astron. Phys.,26, Nos. 9?10, 775?780 (1978).
[1135] G. Szeto, ?PP rings and reduced rings,? Czech. Mat. J.,29, No. 1, 53?56 (1979). · Zbl 0433.16014
[1136] H. Tachikawa, ?Balancedness and left serial algebras of finite type,? in: Proc. Int. Conf. on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974), Paper No. 26. Carleton Math. Lect. Notes No. 9, Carleton Univ., Ottawa (1974). · Zbl 0328.16016
[1137] H. Tachikawa, ?Balanced modules and constructible submodules,? Sci. Repts. Tokyo Kyoiku Daigaku,A13, Nos. 347?365, 37?45 (1975). · Zbl 0344.16013
[1138] H. Tachikawa, ?Commutative perfect QF-1 rings,? Proc. Am. Math. Soc.,68, No. 3, 261?264 (1978). · Zbl 0376.16014
[1139] T. Takeuchi, ?On cofinite-dimensional modules,? Hokkaido Math. J.,5, No. 1, 1?43 (1976). · Zbl 0328.16027 · doi:10.14492/hokmj/1381758746
[1140] S. Talwar, ?Modules over bounded hereditary Noetherian prime rings. II,? Arch. Math.,34, No. 1, 21?26 (1980). · Zbl 0441.16024 · doi:10.1007/BF01224923
[1141] M. L. Teply, ?Generalizations of the simple torsion class and the splitting property,? Can. J. Math.,27, No. 5, 1056?1074 (1975). · Zbl 0283.16013 · doi:10.4153/CJM-1975-111-9
[1142] M. L. Teply, ?Prime singular-splitting rings with finiteness conditions,? Lect. Notes Math.,545, 173?194 (1976). · doi:10.1007/BFb0080311
[1143] M. L. Teply, ?Subidealizers,? Lect. Notes Math.,700, 232?234 (1979). · doi:10.1007/BFb0063475
[1144] J. C. Thomas, ?Homological dimension under change of rings,? Commun. Algebra,7, No. 6, 625?640 (1979). · Zbl 0397.16029 · doi:10.1080/00927877908822366
[1145] P. M. Timothy, ?Quelques resultats sur les anneaux semi-Noéthériens,? Bull. Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys.,24, No. 10, 829?834 (1976).
[1146] C. Tisseron, ?Sur les anneaux tels que tout produit de copies d’un module quasiinjectif soit module quasiinjectif,? Ann. Mat. Pura Appl.,105, 37?71 (1975). · Zbl 0309.16021 · doi:10.1007/BF02414923
[1147] C. Tisseron, ?Sur les anneaux tels que tout produit de copies d’un module quasiinjectif soit un module quasiinjectif. II,? Ann. Mat. Pura Appl.,110, No. 8, 15?28 (1976). · Zbl 0351.13007 · doi:10.1007/BF02418001
[1148] A. K. Tiwary and B. M. Pandey, ?Rings over which every module is quasipolysimple,? Progr. Math. (Allahabad),9, No. 1, 1?6 (1975). · Zbl 0328.90055 · doi:10.1007/BF01681328
[1149] A. K. Tiwary and B. M. Pandey, ?Pseudoprojective and pseudoinjective modules,? Indian J. Pure Appl. Math.,9, No. 9, 941?949 (1978).
[1150] A. K. Tiwary and S. A. Paramhans, ?On closure of submodules,? Indian J. Pure Appl. Math.,8, No. 11, 1415?1419 (1977).
[1151] H. Tominaga, ?On left s-unital rings. I, II,? Math. J. Okayama Univ.,18, No. 2, 117?133 (1976);19, No. 2, 171?182 (1976/1977). · Zbl 0335.16020
[1152] G. Törner, ?Some remarks on the structure of indecomposable injective modules over valuation rings,? Commun. Algebra,4, No. 5, 467?482 (1976). · Zbl 0322.16012 · doi:10.1080/00927877608822116
[1153] G. Törner, ?Unzerlegbare, injektive Moduln über Kettenringen,? J. Reine Angew. Math.,285, 172?180 (1976).
[1154] J. Towber, ?Two new functors from modules to algebras,? J. Algebra,47, No. 1, 80?104 (1977). · Zbl 0358.15033 · doi:10.1016/0021-8693(77)90211-3
[1155] R. Treger, ?Reflexive modules,? J. Algebra,54, No. 2, 444?466 (1978). · Zbl 0406.14001 · doi:10.1016/0021-8693(78)90010-8
[1156] M. A. Upham, ?A new proof of a theorem of Michler,? Arch. Math.,31, No. 6, 554?561 (1979). · Zbl 0388.16018 · doi:10.1007/BF01226490
[1157] M. A. Upham, ?Localization and completion of FBN hereditary rings,? Commun. Algebra,7, No. 12, 1269?1307 (1979). · Zbl 0423.16002 · doi:10.1080/00927877908822402
[1158] R. Ursianu, ?Asupra submodulelor diferentiale,? Std. Si Cerc. Mat.,29, No. 1, 85?89 (1977).
[1159] M. Uscki, ?On exact modules over a commutative ring,? Colloq. Math.,40, No. 2, 197?202 (1979). · Zbl 0425.13004
[1160] J. Valette, ?Sur les modules projectifs,? C. R. Acad. Sci.,282, No. 16, A281-A283 (1976). · Zbl 0326.16021
[1161] P. Vamos, ?Test modules and cogenerators,? Proc. Am. Math. Soc.,56, No. 1, 8?10 (1976). · Zbl 0328.13008 · doi:10.2307/2041562
[1162] P. Vamos, ?Rings with duality,? Proc. London Math. Soc.,35, No. 2, 275?289 (1977). · Zbl 0372.16016 · doi:10.1112/plms/s3-35.2.275
[1163] P. Vamos, ?The decomposition of finitely generated modules and fractionally self-injective rings,? J. London Math. Soc.,16, No. 2, 209?220 (1977). · Zbl 0404.13012 · doi:10.1112/jlms/s2-16.2.209
[1164] P. Vamos, ?Semilocal Noetherian Pi-rings,? Bull. London Math. Soe.,9, No. 3, 251?256 (1977). · Zbl 0387.16009 · doi:10.1112/blms/9.3.251
[1165] P. Vamos, ?Finitely generated Artinian and distributive modules are cyclic,? Bull. London Math. Soc.,10, No. 3, 287?288 (1978). · Zbl 0398.16006 · doi:10.1112/blms/10.3.287
[1166] P. Vamos, ?Sheaf-theoretical methods in the solution of Kaplansky’s problem,? Lect. Notes Math.,753, 732?738 (1979). · Zbl 0477.13005 · doi:10.1007/BFb0061843
[1167] K. Varadarajan, ?M-projective and strongly M-projective modules,? Ill. J. Math.,20, No. 3, 507?515 (1976). · Zbl 0331.16021
[1168] K. Varadarajan, ?Study of certain radicals,? J. Pure Appl. Algebra,9, No. 1, 107?120 (1976). · Zbl 0346.16008 · doi:10.1016/0022-4049(76)90009-8
[1169] K. Varadarajan, ?Dual Goldie dimension,? Commun. Algebra,7, No. 6, 565?610 (1979). · Zbl 0487.16019 · doi:10.1080/00927877908822364
[1170] K. Varadarajan, ?Modules with supplements,? Pac. J. Math.,82, No. 2, 559?564 (1979). · Zbl 0425.16024 · doi:10.2140/pjm.1979.82.559
[1171] K. Varadarajan, ?Study of certain preradicals,? Commun. Algebra,8, No. 2, 185?209 (1980). · Zbl 0425.16009 · doi:10.1080/00927878008822453
[1172] W. V. Vasconcelos, Divisor Theory in Module Categories, North Holland Math. Stud., Vol. 14, North-Holland, Amsterdam-Oxford, Amer. Eisevier, New York (1974). · Zbl 0296.13005
[1173] W. V. Vasconcelos, ?The ?-dimension of a ring,? Queen’s Pap. Pure Appl. Math., No. 43, 213?224 (1975).
[1174] W. V. Vasconcelos, ?Superregularity in local rings,? J. Pure Appl. Algebra,7, No. 2, 231?233 (1976). · Zbl 0318.13013 · doi:10.1016/0022-4049(76)90034-7
[1175] W. V. Vasconcelos, ?On the arithmetic of flat ideals and epimorphisms,? Notas e Comuns. Mat., No. 70 (1976).
[1176] W. V. Vasconcelos, The Rings of Dimension Two, Marcel Dekker, New York-Basel (1976).
[1177] W. V. Vasconcelos and R. Wiegandt, ?Bounding the number of generators of a module,? Math. Z.,164, No. 1, 1?7 (1978). · Zbl 0362.13004 · doi:10.1007/BF01214784
[1178] A. Verschoren, ?A note on strictly local kernel functors,? Bull. Soc. Math. Belg.,28, No. 3, 179?192 (1976). · Zbl 0429.18012
[1179] A. Verschoren, ?Localization and the Gabriel-Popescu embedding,? Commun. Algebra,6, No. 15, 1563?1567 (1978). · Zbl 0389.18006 · doi:10.1080/00927877808822308
[1180] A. Verschoren, ?Localization of (pre)-sheaves of modules and structure sheaves,? in: Ring Theory. Proc. Antwerp Conf., 1977, New York-Basel (1978), pp. 181?207.
[1181] A. Verschoren, ?Localization of bimodules and PI-rings,? in: Ring Theory. Proc. Antwerp Conf., 1978, New York-Basel (1979), pp. 329?350.
[1182] A. Verschoren, ?Torsion free extensions and perfect localizations,? Commun. Algebra,8, No. 9, 839?859 (1980). · Zbl 0431.16013 · doi:10.1080/00927878008822493
[1183] A. Verschoren and F. van Oystaeyen, ?Localization of sheaves of modules,? Proc. Kon. Ned. Akad. Wetensch.,A79, No. 5, 470?481 (1977). · Zbl 0362.18013
[1184] R. Vidal, ?Modules de type quasi fini sur un anneau non commutatif,? Semin. P. Dubreil. Algèbre. Univ. Pierre et Marie Curie,28, 8/1?8/6 (1975). · Zbl 0318.16011
[1185] C. L. Wangneo and K. Tewari, ?Right Noetherian rings integral over their centers,? Commun. Algebra,7, No. 15, 1573?1598 (1979). · Zbl 0418.16008 · doi:10.1080/00927877908822419
[1186] R. B. Warfield, Jr., ?Countably generated modules over commutative Artinian rings,? Pac. J. Math.,60, No. 2, 289?302 (1975). · Zbl 0321.13008 · doi:10.2140/pjm.1975.60.289
[1187] R. B. Warfield, Jr., ?Large modules over artinian rings,? in: Represent. Theory Algebras. Proc. Philadelphia Conf., New York-Basel (1978), pp. 451?463.
[1188] R. B. Warfield, Jr., ?Stable equivalence of matrices and resolutions,? Commun. Algebra,6, No. 17, 1811?1828 (1978). · Zbl 0389.16008 · doi:10.1080/00927877808822323
[1189] R. B. Warfield, Jr., ?Bezout rings and serial rings,? Commun. Algebra,7, No. 5, 533?545 (1979). · Zbl 0397.16007 · doi:10.1080/00927877908822361
[1190] R. B. Warfield, Jr., ?Stable generation of modules,? Lect. Notes Math.,700, 16?33 (1979). · Zbl 0397.16032 · doi:10.1007/BFb0063457
[1191] R. B. Warfield, Jr., ?Modules over fully bounded Noetherian rings,? Lect. Notes Math.,734, 339?352 (1979). · Zbl 0411.16010 · doi:10.1007/BFb0103167
[1192] J. Waschbusch, ?Unzerlegbare Moduln über Artinringen,? Arch. Math.,28, No. 5, 478?490 (1977). · Zbl 0358.16014 · doi:10.1007/BF01223954
[1193] J. Waschbusch, ?Über Bimoduln in Artinringen vom endlichen Modultyp,? Commun. Algebra,8, No. 2, 105?151 (1980). · Zbl 0429.16024 · doi:10.1080/00927878008822450
[1194] C. Webb, ?Tensor products of separable reduced primary modules,? Proc. Edinburgh Math. Soc.,22, No. 1, 23?26 (1979). · Zbl 0413.13006 · doi:10.1017/S0013091500027759
[1195] E. C. Weinberg, ?Relative injectives,? in: Symp. Math. Ist. Naz. Alta Mat., Vol. 21, London-New York (1977), pp. 555?564.
[1196] E. Wexler-Kreindler, ?Propriétés de transfert des extensions d’Ore,? Lect. Notes Math.,641, 235?251 (1978). · Zbl 0375.16029 · doi:10.1007/BFb0064851
[1197] E. Wexler-Kreindler, ?Polynomes d’Ore, séries formelles tordues et anneaux filtres complets héréditaires,? Commun. Algebra,8, No. 4, 339?371 (1980). · Zbl 0428.16002 · doi:10.1080/00927878008822463
[1198] R. Wiegand, ?Rings of bounded module type,? Lect. Notes Math.,700, 143?150 (1979). · Zbl 0401.13008 · doi:10.1007/BFb0063465
[1199] R. Wiegand and S. Wiegand, ?Commutative rings whose finitely generated modules are direct sums of cyclics,? Lect. Notes Math.,616, 406?423 (1977). · Zbl 0369.13010 · doi:10.1007/BFb0068212
[1200] R. W. Wilkerson, ?Injective quotient rings of group rings,? Tydskr. Naturwetenskap.,16, No. l, 24?27 (1976). · Zbl 0334.16017
[1201] A. Wirth, ?Locally compact tight Riesz groups,? J. Austral. Math. Soc.,19, No. 2, 247?251 (1975). · Zbl 0306.06016 · doi:10.1017/S1446788700029542
[1202] R. Wisbauer, ?Injektive und projektive Moduln über nichtassoziativen Ringen,? Arch. Math.,28, No. 5, 460?468 (1977). · Zbl 0442.17002 · doi:10.1007/BF01223952
[1203] R. Wisbauer, ?Cosemisimpie modules and nonassociative V-rings,? Commun. Algebra,5, No. 11, 1193?1209 (1977). · Zbl 0368.17003 · doi:10.1080/00927877708822212
[1204] R. Wisbauer, ?Nonassociative left regular and biregular rings,? J. Pure Appl. Algebra,10, No. 2, 215?226 (1977). · Zbl 0368.17002 · doi:10.1016/0022-4049(77)90024-X
[1205] R. Wisbauer, ??-semiperfekte und ?-perfekte Moduln,? Math. Z.,162, No. 2, 131?138 (1978). · Zbl 0368.16011 · doi:10.1007/BF01215070
[1206] R. Wisbauer, ?Separable Moduln von Algebren über Ringen,? J. Reine Angew. Math.,303?304, 221?230 (1978). · Zbl 0385.16002
[1207] R. Wisbauer, ?Erbliche Moduln und nichtassoziative Ringe,? Commun. Algebra,7, No. l, 47?77 (1979). · Zbl 0432.16014 · doi:10.1080/00927877908822333
[1208] R. Wisbauer and L. Witkowski, ?On linearly topological modules,? Demonstr. Math.,10, No. 2, 317?327 (1977).
[1209] R. W. Wong, ?Free ideal monoid rings,? J. Algebra,53, No. 1, 21?35 (1978). · Zbl 0381.16001 · doi:10.1016/0021-8693(78)90201-6
[1210] R. W. Wong, ?Finitely generated ideals in free group algebras,? Commun. Algebra,7, No, 9, 875?883 (1979). · Zbl 0401.16006 · doi:10.1080/00927877908822381
[1211] T. Würfel, ?Ring extensions and essential monomorphisms,? Proc. Am. Math. Soc.,69, No. 1, 1?7 (1978). · Zbl 0376.16027 · doi:10.2307/2043176
[1212] S. M. Yanya, ?P-neat exact sequences,? Stud. Sci. Math. Hung.,11, Nos. 3?4, 363?371 (1976).
[1213] S. M. Yanya and A. Al-Daffa, ?On cogenerators in modules,? Math. Sem. Notes Kobe Univ.,7, No. 1, 153?166 (1979).
[1214] S. M. Yanya and A. Al-Daffa, ?Cogenerators in modules over Dedekind domains,? Math. Sem. Notes Kobe Univ.,8, No. 1, 91?102 (1980).
[1215] K. Yamagata, ?On artinian rings of finite representation type,? J. Algebra,50, No. 2, 276?283 (1978). · Zbl 0373.16007 · doi:10.1016/0021-8693(78)90155-2
[1216] Chi Ming R. Yue, ?On annihilator ideals,? Math. J. Okayama Univ.,19, No. 1, 51?53 (1976). · Zbl 0348.16008
[1217] Chi Ming R. Yue, ?On von Neumann regular rings. II,? Math. Scand.,39, No. 2, 167?170 (1976). · Zbl 0344.16011 · doi:10.7146/math.scand.a-11654
[1218] Chi Ming R. Yue, ?On annihilators and quasi-Frobenius rings,? Bull. Soc. Math. Belg.,28, No. 2, 115?120 (1976). · Zbl 0423.16010
[1219] Chi Ming R. Yue, ?On annihilators and continuous regular rings,? Bull. Math. Soc. Sci. Math. RSR,20, Nos. 3?4, 423?427 (1976(1977)). · Zbl 0423.16010
[1220] Chi Ming R. Yue, ?On von Neumann regular rings. III,? Monatsh. Math.,86, No. 3, 251?257 (1978). · Zbl 0414.16006 · doi:10.1007/BF01659723
[1221] Chi Ming R. Yue, ?On generalizations of V-rings and regular rings,? Math. J. Okayama Univ.,20, No. 2, 123?129 (1978). · Zbl 0402.16014
[1222] Chi Ming R. Yue, ?A remark on decomposable modules,? Publ. Inst. Math.,25, 101?104 (1979). · Zbl 0408.16018
[1223] Chi Ming R. Yue, ?On regular rings and V-rings,? Monatsh. Math.,88, No. 4, 335?344 (1979). · Zbl 0423.16006 · doi:10.1007/BF01534252
[1224] Chi Ming R. Yue, ?On V-rings and prime rings,? J. Algebra,62, No. 1, 13?20 (1980). · Zbl 0429.16018 · doi:10.1016/0021-8693(80)90202-1
[1225] J. M. Zelmanowitz, ?Semisimple rings of quotients,? Bull. Austral. Math. Soc.,19, No. 1, 97?115 (1978). · Zbl 0381.16002 · doi:10.1017/S0004972700008480
[1226] W. Zimmermann, ?Über die aufsteigende Kettenbedingung für Annulatoren,? Arch. Math.,27, No. 3, 261?266 (1976). · Zbl 0337.16003 · doi:10.1007/BF01224669
[1227] W. Zimmermann, ??-Projektive Moduln,? J. Reine Angew. Math.,292, 117?124 (1977). · Zbl 0347.16016
[1228] W. Zimmermann, ?Rein injektive direkte Summen von Moduln,? Commun. Algebra,5, No. 10, 1083?1117 (1977). · Zbl 0371.16012 · doi:10.1080/00927877708822211
[1229] B. Zimmerman-Huisgen, ?Pure submodules of direct products of free modules,? Math. Ann.,224, No. 3, 233?245 (1976). · Zbl 0321.16015 · doi:10.1007/BF01459847
[1230] B. Zimmerman-Huisgen, ?Decomposability of direct products of modules,? J. Algebra,56, No. 1, 119?128 (1979). · Zbl 0407.16016 · doi:10.1016/0021-8693(79)90328-4
[1231] B. Zimmerman-Huisgen, ?Rings whose right modules are direct sums of indecomposable modules,? Proc. Am. Math. Soc., No. 3, 191?197 (1977(1979)).
[1232] B. Zimmerman-Huisgen and W. Zimmerman, ?Algebraically compact rings and modules,? Math. Z.,161, No. 1, 81?93 (1978). · Zbl 0363.16017 · doi:10.1007/BF01175615
[1233] H. Zöschinger, ?Basis-Untermoduln und Quasi-kotorsions-Moduln über diskreten Bewertungsringen,? Bayer Akad. Wiss. Math.-Nat. Kl. Sitzungsber., 9?16 (1977). · Zbl 0369.13009
[1234] H. Zöschinger, ?Komplements für zyklische Moduln über Dedekindringen,? Arch. Math.,32, No. 2, 143?148 (1979). · Zbl 0427.13002 · doi:10.1007/BF01238481
[1235] H. Zöschinger, ?Quasiseparable und koseparable Moduln über diskreten Bewrtungsringen,? Math. Scand.,44, No. 1, 17?36 (1979). · Zbl 0465.13005 · doi:10.7146/math.scand.a-11794
[1236] H. Zoschinger, ?Koatomare Moduln,? Math. Z.,170, No. 3, 221?232 (1980). · Zbl 0411.13009 · doi:10.1007/BF01214862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.