×

zbMATH — the first resource for mathematics

Zariski’s Main Theorem für affinoide Kurven. (German) Zbl 0421.14003

MSC:
14B25 Local structure of morphisms in algebraic geometry: étale, flat, etc.
14G20 Local ground fields in algebraic geometry
14H25 Arithmetic ground fields for curves
30G06 Non-Archimedean function theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bosch, S.: Homogene Räumek-affinoider Gruppen. Invent. Math.19, 165-218 (1973) · Zbl 0249.14017 · doi:10.1007/BF01390206
[2] Bosch, S.: Zur Kohomologietheorie affinoider Räume. Manuscripta Math.20, 1-27 (1977) · Zbl 0343.14004 · doi:10.1007/BF01181238
[3] Bosch, S.: Multiplikative Untergruppen in abeloiden Mannigfaltigkeiten. Math. Ann.239, 165-183 (1979) · Zbl 0402.14015 · doi:10.1007/BF01420374
[4] Fieseler, K.-H.: Zariski’s Main Theorem in der nichtarchimedischen Funktionentheorie. Schriftenr. Math. Inst. Univ. Münster. 2. Serie, Heft 18 (1979) · Zbl 0414.32009
[5] Gerritzen, L., Grauert, H.: Die Azyklizität der affinoiden Überdeckungen. In: Global analysis, papers in honor of K. Kodaira, pp. 159-184. University of Tokyo Press, Princeton: University Press · Zbl 0197.17303
[6] Grauert, H.: Affinoide Überdeckungen eindimensionaler affinoider Räume. Publ. Math. I.H.E.S.34, 5-35 (1968) · Zbl 0197.17302
[7] Grauert, H., Remmert, R.: Über die Methode der diskret bewerteten Ringe in der nichtarchimedischen Funktionentheorie. Invent. Math.2, 87-133 (1966) · Zbl 0148.32401 · doi:10.1007/BF01404548
[8] Grothendieck, A., Dieudonné, J.: Élements de géométrie algébrique. Publ. Math. I.H.E.S.4, 11
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.