×

zbMATH — the first resource for mathematics

Methods for justifying and refining the theory of shells. (Survey of recent results.). (English. Russian original) Zbl 0179.54503
PMM, J. Appl. Math. Mech. 32, 704-718 (1968); translation from Prikl. Mat. Mekh. 32, 684-695 (1968).

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kil’chevskii, N.A., An analysis of various methods of reducing three-dimen sional problems in the theory of elasticity to two-dimensional, and an investigation of the formulation of boundary problems in the theory of shells, (), 58-69, Kiev
[2] Ainola, L.Ia.; Nigul, U.K., Wave processes in the deformation of elastic plates and shells, (1965), Izv. Akad. Nauk EstSSR., N≗1
[3] Vorovich, I.I., Certain mathematical questions in the theory of plates and shells. mechanics of solid bodies, () · Zbl 0685.73004
[4] Vorovich, I.I., General problems in the theory of plates and shells, () · Zbl 0692.73017
[5] Reissner, E., On the theory of bending of elastic plates, J. math. and phys., Vol.23, (1944) · Zbl 0336.73026
[6] Naghdi, P.M., On the theory of thin elastic shells, Quart. appl. math., Vol. 14, N≗4, (1957) · Zbl 0154.22602
[7] Vlassov, B.F., On the equations of the theory of bending of plates, ()
[8] Ambartsumian, S.A., On a theory of bending of anisotropic plates, () · Zbl 0743.73019
[9] Ainola, L.Ia., On refined theories of plates of Reissner’s type, (), Yerevan
[10] Koiter, W.T., A consistent first approximation in the general theory of thin elastic shells, () · Zbl 0109.43002
[11] Koiter, W.T., On the nonlinear theory of thin elastic shells, (), N≗1 · Zbl 0213.27002
[12] John, F., Estimates for the derivatives of the stress in thin shells and interior shell equations, Comm. pure and appl. math., Vol.18, N≗12, (1965)
[13] Novozhilov, V.V.; Finkel’shtein, R.O., On the error in Kirchhoff’s hypothesis in the theory of shells, Pmm, Vol.7, N≗5, (1943)
[14] Cauchy, A.L., Exercices de math., Vol.3, 328-355, (1828), Paris
[15] Poisson, S.D., Memoire sur l’equilibre et le mouvement des corps elastiques. Mémoires de l’academie des sciences, Vol.8, 357-570, (1829), Ser.2
[16] Krauss, F., Über die gerundgleichungen der elastitätstheorie, schwachdeformierten schalen, Math. ann., Bd. 101, N≗1, (1929)
[17] Kil’chevskii, N.A., The generalized modern theory of shells, Pmm, Vol.2, N≗4, (1939)
[18] Mushtari, Kh.M.; Teregulov, I.G., On a theory of shells of moderate thickness, Dokl. akad. nauk SSSR, Vol. 128, N≗6, (1959) · Zbl 0092.41603
[19] Nigul, U.K., The linear dynamical equations of an elastic circular cylindrical shell, free from hypotheses, (), N≗176 · Zbl 0318.73025
[20] Kil’chevskii, N.A., Fundamentals of the analytical mechanics of shells, (1963), Izd. Akad. Nauk USSR Kiev
[21] Vekua, N.I., On a method of calculating prismatic shells, ()
[22] Cicala, P., Consistent approximations in shell theory, (), N≗4 · Zbl 0419.73002
[23] Poniatovskii, V.V., Theory, of plates of medium thickness, Pmm, Vol. 26, N≗2, (1962)
[24] Poniatovskii, V.V., On the theory of bending of anisotropic plates, Pmm, Vol.28, N≗2, (1964)
[25] Friedrichs, K.O., Kirchhoff’s boundary conditions and the edge effect for elastic plates, () · Zbl 0041.52907
[26] Johnson, M.W.; Reissner, E., On the foundations of the theory of thin elastic shells, J. math. phys., Vol. 37, N≗4, (1959) · Zbl 0086.18103
[27] Reiss, E.L., A theory of the small rotationally symmetric deformation of cylindrical shells, Comm. pure and appl.math., Vol.13, N≗3, (1960) · Zbl 0111.21104
[28] Friedrichs, K.O.; Dressler, R.F., A boundary-layer theory for elastic plates, Comm. pure and appl. math., Vol. 14, N≗1, (1961) · Zbl 0096.40001
[29] Reiss, E.L., On the theory of cylindrical shells, Quart. J. mech. and appl. math., Vol.15, N≗3, (1962) · Zbl 0168.22603
[30] Gol’denveizer, A.L., Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Pmm, Vol.26, N≗4, (1962)
[31] Green, A.E., On the linear theory of thin elastic shells, (), N≗1325 · Zbl 0201.57506
[32] Green, A.E., Boundary layer equations in the linear theory of thin elastic shells, (), N≗1339 · Zbl 0201.57506
[33] Gol’denveizer, A.L., Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity, Pmm, Vol.27, N≗4, (1963)
[34] Aksentian, O.K.; Vorovich, I.I., The state of stress in a thin plate, Pmm, Vol.27, N≗6, (1963) · Zbl 0146.22002
[35] Reissner, E., On the derivation of the theory of elastic shells, J.math and phys., Vol.42, N≗4, (1963) · Zbl 0133.43501
[36] Bazarenko, N.A.; Vorovich, I.I., Asymptotic solution of the elasticity problem for a hollow, finite length, thin cylinder, Pmm, Vol.29, N≗2, (1965) · Zbl 0149.22602
[37] Vilenskaia, T.V.; Vorovich, I.I., Asymptotic behavior of the solution of the problem of elasticity for a thin spherical shell, Pmm, Vol. 30, N≗2, (1966) · Zbl 0149.43504
[38] Gol’denveizer, A.L., The theory of thin elastic shells, (1953), Gostekhizdat M.
[39] Gol’denveizer, A.L., Some mathematical problems of the linear theory of thin elastic shells, Usp. mat. nauk, Vol.15, N≗5, (1960)
[40] Vishik, M.I.; Liusternik, L.A., Regular degeneration of the boundary layer for linear differential equations with a small parameter, Usp. mat. nauk, Vol.12, N≗5, (1957)
[41] Kolos, A.V., On the region of applicability of approximate theories of Reissner’s type for the bending of plates, () · Zbl 0228.73080
[42] Green, A.E.; Laws, N., Further remarks on the boundary conditions for thin elastic shells, (), N≗1417 · Zbl 0189.27101
[43] Kolos, A.V., Methods of refining the classical theory of bending and extension of plates, Pmm, Vol. 29, N≗4, (1965) · Zbl 0152.43707
[44] Gol’denveizer, A.L., On the two-dimensional equations of the general linear theory of thin elastic shells. problems in hydrodynamics and the mechanics of continuous media, (1968), Nauka M.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.